久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)大全

時(shí)間:2021-01-15 16:40:26下載本文作者:會(huì)員上傳
簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了多篇相關(guān)的《高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)大全》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)大全》。

第一篇:高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)大全

一般的,在一個(gè)變化過程中,假設(shè)有兩個(gè)變量x、y,如果對(duì)于任意一個(gè)x都有唯一確定的一個(gè)y和它對(duì)應(yīng),那么就稱y是x的函數(shù),其中x是自變量,y是因變量,x的取值范圍叫做這個(gè)函數(shù)的定義域,相應(yīng)y的取值范圍叫做函數(shù)的值域。下面小編給大家分享一些高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn),希望能夠幫助大家,歡迎閱讀!

高中數(shù)學(xué)函數(shù)知識(shí)一、一次函數(shù)定義與定義式:

自變量x和因變量y有如下關(guān)系:

y=kx+b

則此時(shí)稱y是x的一次函數(shù)。

特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

即:y=kx(k為常數(shù),k≠0)

二、一次函數(shù)的性質(zhì):

1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

三、一次函數(shù)的圖像及性質(zhì):

1.作法與圖形:通過如下3個(gè)步驟

(1)列表;

(2)描點(diǎn);

(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

3.k,b與函數(shù)圖像所在象限:

當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;

當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。

當(dāng)b>0時(shí),直線必通過一、二象限;

當(dāng)b=0時(shí),直線通過原點(diǎn)

當(dāng)b<0時(shí),直線必通過三、四象限。

特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

四、確定一次函數(shù)的表達(dá)式:

已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個(gè)二元一次方程,得到k,b的值。

(4)最后得到一次函數(shù)的表達(dá)式。

五、一次函數(shù)在生活中的應(yīng)用:

1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

2.當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

六、常用公式:

1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

3.求與y軸平行線段的中點(diǎn):|y1-y2|/2

4.求任意線段的長(zhǎng):√(x1-x2)’2+(y1-y2)’2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

高中數(shù)學(xué)函數(shù)知識(shí)2

二次函數(shù)

I.定義與定義表達(dá)式

一般地,自變量x和因變量y之間存在如下關(guān)系:

y=ax’2+bx+c

(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

則稱y為x的二次函數(shù)。

二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

II.二次函數(shù)的三種表達(dá)式

一般式:y=ax’2+bx+c(a,b,c為常數(shù),a≠0)

頂點(diǎn)式:y=a(x-h)’2+k[拋物線的頂點(diǎn)P(h,k)]

交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a

III.二次函數(shù)的圖像

在平面直角坐標(biāo)系中作出二次函數(shù)y=x’2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

IV.拋物線的性質(zhì)

1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

x=-b/2a。

對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

P(-b/2a,(4ac-b’2)/4a)

當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2-4ac=0時(shí),P在x軸上。

3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

拋物線與y軸交于(0,c)

6.拋物線與x軸交點(diǎn)個(gè)數(shù)

Δ=b’2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

Δ=b’2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

Δ=b’2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

V.二次函數(shù)與一元二次方程

特別地,二次函數(shù)(以下稱函數(shù))y=ax’2+bx+c,當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax’2+bx+c=0

此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。

函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

高中數(shù)學(xué)函數(shù)知識(shí)3

反比例函數(shù)

形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

反比例函數(shù)圖像性質(zhì):

反比例函數(shù)的圖像為雙曲線。

由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。

當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。

知識(shí)點(diǎn):

1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

對(duì)數(shù)函數(shù)

對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

可以看到對(duì)數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

(1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

(3)函數(shù)總是通過(1,0)這點(diǎn)。

(4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

(5)顯然對(duì)數(shù)函數(shù)無(wú)界。

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)

第二篇:高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

(1)高中函數(shù)公式的變量:因變量,自變量。

在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

(2)一次函數(shù):①若兩個(gè)變量,間的關(guān)系式可以表示成(為常數(shù),不等于0)的形式,則稱 是的一次函數(shù)。②當(dāng)=0時(shí),稱是的正比例函數(shù)。

(3)高中函數(shù)的一次函數(shù)的圖象及性質(zhì)

①把一個(gè)函數(shù)的自變量與對(duì)應(yīng)的因變量的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。

②正比例函數(shù)=的圖象是經(jīng)過原點(diǎn)的一條直線。

③在一次函數(shù)中,當(dāng)0,O,則經(jīng)2、3、4象限;當(dāng)0,0時(shí),則經(jīng)1、2、4象限;當(dāng)0,0時(shí),則經(jīng)1、3、4象限;當(dāng)0,0時(shí),則經(jīng)1、2、3象限。

④當(dāng)0時(shí),的值隨值的增大而增大,當(dāng)0時(shí),的值隨值的增大而減少。

(4)高中函數(shù)的二次函數(shù):

①一般式:(),對(duì)稱軸是

頂點(diǎn)是;

②頂點(diǎn)式:(),對(duì)稱軸是頂點(diǎn)是;

③交點(diǎn)式:(),其中(),()是拋物線與x軸的交點(diǎn)

(5)高中函數(shù)的二次函數(shù)的性質(zhì)

①函數(shù)的圖象關(guān)于直線對(duì)稱。

隨時(shí),在對(duì)稱軸()左側(cè),值隨值的增大而減少;在對(duì)稱軸()右側(cè);的值值的增大而增大。當(dāng)時(shí),取得最小值時(shí),在對(duì)稱軸()左側(cè),值隨值的增大而增大;在對(duì)稱軸()右側(cè);的值值的增大而減少。當(dāng)時(shí),取得最大值高中函數(shù)的圖形的對(duì)稱

(1)軸對(duì)稱圖形:①如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。②軸對(duì)稱圖形上關(guān)于對(duì)稱軸對(duì)稱的兩點(diǎn)確定的線段被對(duì)稱軸垂直平分。

(2)中心對(duì)稱圖形:①在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做他的對(duì)稱中心。②中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分。

2012高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):函數(shù)公式大全

9高中函數(shù)的圖形的對(duì)稱

(1)軸對(duì)稱圖形:①如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。②軸對(duì)稱圖形上關(guān)于對(duì)稱軸對(duì)稱的兩點(diǎn)確定的線段被對(duì)稱軸垂直平分。

(2)中心對(duì)稱圖形:①在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做他的對(duì)稱中心。②中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分

第三篇:高中數(shù)學(xué)知識(shí)點(diǎn)

高中數(shù)學(xué)知識(shí)點(diǎn) 必修1集合函數(shù)概念與基本初等函數(shù)Ⅰ必修2立體幾何初步平面解析幾何初步必修3算法初步統(tǒng)計(jì)概率

必修4

基本初等函數(shù)Ⅱ(三角函數(shù))平面向量三角恒等變形必修5

解三角形數(shù)列不等式

選修

常用邏輯用語(yǔ)圓錐曲線與方程空間向量與立體幾何導(dǎo)數(shù)及其應(yīng)用推理與證明數(shù)系的擴(kuò)充與復(fù)數(shù)的引入計(jì)數(shù)原理概率與統(tǒng)計(jì)幾何證明選講坐標(biāo)系與參數(shù)方程不等式選講

第四篇:高中數(shù)學(xué)知識(shí)點(diǎn)

高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析

一、集合與簡(jiǎn)易邏輯 1.集合的元素具有確定性、無(wú)序性和互異性. 2.對(duì)集合,時(shí),必須注意到“極端”情況: 或 ;求集合的子集時(shí)是否注意到 是任何集合的子集、是任何非空集合的真子集. 3.對(duì)于含有 個(gè)元素的有限集合,其子集、真子集、非空子集、非空真子集的個(gè)數(shù)依次為4.“交的補(bǔ)等于補(bǔ)的并,即 ”;“并的補(bǔ)等于補(bǔ)的交,即 ”. 5.判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”. 6.“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”. 7.四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”. 原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià).反證法分為三步:假設(shè)、推矛、得果. 注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結(jié)論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結(jié)論作為結(jié)論的所得命題” . 8.充要條件

第五篇:高中數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié):第三章 函數(shù)的應(yīng)用

高中數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)

第三章 函數(shù)的應(yīng)用

一、方程的根與函數(shù)的零點(diǎn)

1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)y?f(x)(x?D),把使f(x)?0成立的實(shí)數(shù)x叫做函數(shù)y?f(x)(x?D)的零點(diǎn)。

2、函數(shù)零點(diǎn)的意義:函數(shù)y?f(x)的零點(diǎn)就是方程f(x)?0實(shí)數(shù)根,亦即函數(shù)y?f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo)。即:

方程f(x)?0有實(shí)數(shù)根?函數(shù)y?f(x)的圖象與x軸有交點(diǎn)?函數(shù)y?f(x)有零點(diǎn).

3、函數(shù)零點(diǎn)的求法: 求函數(shù)y?f(x)的零點(diǎn):(代數(shù)法)求方程f(x)?0的實(shí)數(shù)根; ○2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)y?f(x)的圖象聯(lián)系起來,并利用函○數(shù)的性質(zhì)找出零點(diǎn).

4、二次函數(shù)的零點(diǎn):

二次函數(shù)y?ax2?bx?c(a?0).

1)△>0,方程ax?bx?c?0有兩不等實(shí)根,二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

2)△=0,方程ax?bx?c?0有兩相等實(shí)根(二重根),二次函數(shù)的圖象與x軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

3)△<0,方程ax?bx?c?0無(wú)實(shí)根,二次函數(shù)的圖象與x軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn). 222

下載高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)大全word格式文檔
下載高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)大全.doc
將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    高中數(shù)學(xué)二次函數(shù)教案

    二次函數(shù) 一、 知識(shí)回顧 1、 二次函數(shù)的解析式 (1) 一般式:頂點(diǎn)式:雙根式:求二次函數(shù)解析式的方法: 2、 二次函數(shù)的圖像和性質(zhì) 二次函數(shù)f?x??ax2?bx?c(a?0)的圖像是一條拋物線,對(duì)稱軸的方......

    高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

    高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1. 對(duì)于集合,一定要抓住集合的代表元素,及元素的"確定性、互異性、無(wú)序性"。 中元素各表示什么? A表示函數(shù)y=lgx的定義域,B表示的是值域,而C表示的卻是函數(shù)......

    高中數(shù)學(xué)知識(shí)點(diǎn)小結(jié)

    集合的交、并、補(bǔ),集合的包含即子集關(guān)系; 函數(shù)的單調(diào)性,奇偶性,基本函數(shù)模型(一次函數(shù),二次函數(shù),反比例函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù)),分?jǐn)?shù)指數(shù)冪的定義及運(yùn)算法則,對(duì)數(shù)的定義及運(yùn)算性質(zhì)與運(yùn)......

    高中數(shù)學(xué)知識(shí)點(diǎn)--立體幾何

    【高中數(shù)學(xué)知識(shí)點(diǎn)】立體幾何學(xué)習(xí)的幾點(diǎn)建議.txt 一 逐漸提高邏輯論證能力 立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證......

    函數(shù)是高中數(shù)學(xué)的主線

    函數(shù)是高中數(shù)學(xué)的主線,是高考考查的重點(diǎn)內(nèi)容,主要考查:函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)、函數(shù)的應(yīng)用等,在高考試卷中,一般以選擇題和填空題的形式考查......

    高中數(shù)學(xué)《函數(shù)的奇偶性》說課稿

    《函數(shù)的奇偶性》說課稿 老師、同學(xué)們,大家上午好。我是教育技術(shù)專業(yè)的鄧彩紅,今天我的說課題目是函數(shù)的奇偶性。下面開始我的說課。 一、教材分析 本節(jié)內(nèi)容選自人教A版高中......

    函數(shù)定義域的知識(shí)點(diǎn)

    1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記......

    初中函數(shù)知識(shí)點(diǎn)總結(jié)

    千承培訓(xùn)學(xué)校 函數(shù)知識(shí)點(diǎn)總結(jié)(掌握函數(shù)的定義、性質(zhì)和圖像) (一)平面直角坐標(biāo)系 1、定義:平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系 2、各個(gè)象......

主站蜘蛛池模板: 3d动漫精品啪啪一区二区下载| 日本一本之道高清不卡免费| 久久av青久久久av三区三区| 亚洲综合天堂av网站在线观看| 少妇无码太爽了在线播放| 亚洲综合憿情五月丁香五月网| 国产三级精品三级在线专1| 天天做天天爱夜夜爽毛片l| 婷婷俺也去俺也去官网| 国产a级毛片久久久精品毛片| 在线看片无码永久免费视频| 亚洲妓女综合网99| 亚洲人成在线观看网站不卡| 国产精品进线69影院| 99精品国产兔费观看久久| 搡老熟女老女人一区二区| 国产又粗又猛又爽又黄的视频在线观看动漫| 国产精品国产三级国av| 亚洲久久中文字幕www网站| 人妻无码一区二区三区四区| 久久久噜噜噜www成人网| 久久亚洲精品无码gv| 少妇av一区二区三区无码| 精品水蜜桃久久久久久久| 久久综合色一综合色88| 人人爽人人爽人人爽人人片av| 国产又滑又嫩又白| 国产成人av综合色| 久久久久亚洲av综合仓井空| 成人国产一区二区三区| 久久99精品久久久久久久久久| 中文幕无线码中文字夫妻| 久碰人妻人妻人妻人妻人掠| 亚洲最大天堂无码精品区| 国内少妇偷人精品视频| 美女扒开大腿让男人桶| 精品久久久无码人妻中文字幕豆芽| 女人高潮抽搐喷液30分钟视频| 免费无码又爽又刺激高潮软件| 久久免费精品国自产拍网站| 国产精品乱码久久久久久软件|