久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

李明波四點(diǎn)定理的平面幾何證明

時(shí)間:2019-05-12 05:27:08下載本文作者:會(huì)員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《李明波四點(diǎn)定理的平面幾何證明》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《李明波四點(diǎn)定理的平面幾何證明》。

第一篇:李明波四點(diǎn)定理的平面幾何證明

李明波四點(diǎn)定理的平面幾何證明

郝錫鵬

提要2009年9月19日,李明波導(dǎo)出和角余弦恒等式 cos2??cos2??cos2(???)?2cos?cos?cos(???)?1 并用此給出他四點(diǎn)定理的一個(gè)平面幾何證明。1和角余弦恒等式

2009年9月19日,李明波由和角三角函數(shù)公式

cos(???)?cos?cos??sin?sin?下推

cos(???)?cos?cos???cos2??cos2?,(1?cos2?)(1?cos2?)?[cos?cos??cos(???)]2,1?cos2??cos2??cos2?cos2?

?cos2?cos2??2cos?cos?cos(???)?cos2(???),從上式兩面消去cos2?cos2?再移項(xiàng)便得恒等式

cos2??cos2??cos2(???)?2cos?cos?cos(???)?12四點(diǎn)定理的證明

在圖1中,李明波根據(jù)余弦定理得

a2?c2?b

2cos??

12ac

b2?c2?a2

cos??1

2bc

cos(???)?a2?b2?c2

2ab(1)(2)3-1)3-2)3-3)(((B

B

a

A

c c1

a1

圖 1

b1 c1

b1

b

C

A c

D

C

a1

圖 2

D

將(3-1)、(3-2)、(3-3)代入(2式)得

a2?c2?b122b2?c2?a122a2?b2?c122()?()?()

2ac2bc2aba2?c2?b12b2?c2?a12a2?b2?c12

?2???1

2ac2bc2ab

上式兩面同乘4a2b2c2去分母得

b2(a2?c2?b12)2?a2(b2?c2?a12)2?c2(a2?b2?c12)2

?(a2?c2?b12)(b2?c2?a12)(a2?b2?c12)?4a2b2c2(4)

將(4)展開并進(jìn)行繁雜的整理便得四點(diǎn)定理:

a2a12(?a2?a12?b2?b12?c2?c12)?b2b12(a2?a12?b2?b12?c2?c12)

?c2c12(a2?a1?b2?b12?c2?c1)

2?a2b2c1?a2b12c2?a12b2c2?a12b12c12(5)

在圖2中,上述證明過程的(3-3)式可改寫為cos[360??(???)]

a2?b2?c12

?cos(???)?,所以(5)式同樣也適合于圖2。

2ab

第二篇:高中平面幾何定理

(高中)平面幾何基礎(chǔ)知識(shí)(基本定理、基本性質(zhì))

1. 勾股定理(畢達(dá)哥拉斯定理)(廣義勾股定理)(1)銳角對(duì)邊的平方,等于其他兩邊之平方和,減去

這兩邊中的一邊和另一邊在這邊上的射影乘積的兩倍.(2)鈍角對(duì)邊的平方等于其他兩邊的平方和,加上這兩邊中的一邊與另一邊在這邊上的射影乘積的兩倍.

2. 射影定理(歐幾里得定理)

3. 中線定理(巴布斯定理)設(shè)△ABC的邊BC的中點(diǎn)為P,則有AB2?AC2?2(AP2?BP2); 中線長:ma?2b?2c?a2222.

4. 垂線定理:AB?CD?AC2?AD2?BC2?BD2. 高線長:ha?2ap(p?a)(p?b)(p?c)?bc

asinA?csinB?bsinC.

5. 角平分線定理:三角形一個(gè)角的平分線分對(duì)邊所成的兩條線段與這個(gè)角的兩邊對(duì)應(yīng)成比例.

如△ABC中,AD平分∠BAC,則BD

DC?AB

AC;(外角平分線定理). cosA

2角平分線長:ta?

6. 正弦定理:a

sinA?2b?cb

sinB(p?a)?csinC2bcb?c(其中p為周長一半). ??2R,(其中R為三角形外接圓半徑).

7. 余弦定理:c2?a2?b2?2abcosC.

8. 張角定理:sin?BAC

AD? sin?BAD

AC?sin?DAC

AB.

9. 斯特瓦爾特(Stewart)定理:設(shè)已知△ABC及其底邊上B、C兩點(diǎn)間的一點(diǎn)D,則有AB2·DC+AC2·BD

-AD2·BC=BC·DC·BD.

10. 圓周角定理:同弧所對(duì)的圓周角相等,等于圓心角的一半.(圓外角如何轉(zhuǎn)化?)

11.12.

13. 弦切角定理:弦切角等于夾弧所對(duì)的圓周角. 圓冪定理:(相交弦定理:垂徑定理:切割線定理(割線定理):切線長定理:)布拉美古塔(Brahmagupta)定理: 在圓內(nèi)接四邊形ABCD中,AC⊥BD,自對(duì)角線的交點(diǎn)P向

一邊作垂線,其延長線必平分對(duì)邊.

2214. 點(diǎn)到圓的冪:設(shè)P為⊙O所在平面上任意一點(diǎn),PO=d,⊙O的半徑為r,則d-r就是點(diǎn)P對(duì)

于⊙O的冪.過P任作一直線與⊙O交于點(diǎn)A、B,則PA·PB= |d-r|.“到兩圓等冪的點(diǎn)的軌跡是與此二圓的連心線垂直的一條直線,如果此二圓相交,則該軌跡是此二圓的公共弦所在直線”這個(gè)結(jié)論.這條直線稱為兩圓的“根軸”.三個(gè)圓兩兩的根軸如果不互相平行,則它們交于一點(diǎn),這一點(diǎn)稱為三圓的“根心”.三個(gè)圓的根心對(duì)于三個(gè)圓等冪.當(dāng)三個(gè)圓兩兩相交時(shí),三條公共弦(就是兩兩的根軸)所在直線交于一點(diǎn).

15. 托勒密(Ptolemy)定理:圓內(nèi)接四邊形對(duì)角線之積等于兩組對(duì)邊乘積之和,即2

2AC·BD=AB·CD+AD·BC,(逆命題成立).(廣義托勒密定理)AB·CD+AD·BC≥AC·BD.

16. 蝴蝶定理:AB是⊙O的弦,M是其中點(diǎn),弦CD、EF經(jīng)過點(diǎn)M,CF、DE交AB于P、Q,求證:MP=QM.

17. 費(fèi)馬點(diǎn):定理1等邊三角形外接圓上一點(diǎn),到該三角形較近兩頂點(diǎn)距離之和等于到另一頂點(diǎn)的距離;不在等邊三角形外接圓上的點(diǎn),到該三角形兩頂點(diǎn)距離之和大于到另一點(diǎn)的距離.定理2 三角形每一內(nèi)角都小于120°時(shí),在三角形內(nèi)必存在一點(diǎn),它對(duì)三條邊所張的角都是120°,該點(diǎn)到三頂點(diǎn)距離和達(dá)到最小,稱為“費(fèi)馬點(diǎn)”,當(dāng)三角形有一內(nèi)角不小于120°時(shí),此角的頂點(diǎn)即為費(fèi)馬

點(diǎn).

18. 拿破侖三角形:在任意△ABC的外側(cè),分別作等邊△ABD、△BCE、△CAF,則AE、AB、CD三線

共點(diǎn),并且AE=BF=CD,這個(gè)命題稱為拿破侖定理.以△ABC的三條邊分別向外作等邊△ABD、△BCE、△CAF,它們的外接圓⊙C1、⊙A1、⊙B1的圓心構(gòu)成的△——外拿破侖的三角形,⊙C1、⊙A1、⊙B1三圓共點(diǎn),外拿破侖三角形是一個(gè)等邊三角形;△ABC的三條邊分別向△ABC的內(nèi)側(cè)作等邊△ABD、△BCE、△CAF,它們的外接圓⊙C2、⊙A2、⊙B2的圓心構(gòu)成的△——內(nèi)拿破侖三角形,⊙C2、⊙A2、⊙B2三圓共點(diǎn),內(nèi)拿破侖三角形也是一個(gè)等邊三角形.這兩個(gè)拿破侖三角形還具有相同的中心.

19. 九點(diǎn)圓(Nine point round或歐拉圓或費(fèi)爾巴赫圓):三角形中,三邊中心、從各頂點(diǎn)向其對(duì)

邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個(gè)點(diǎn)在同一個(gè)圓上,九點(diǎn)圓具有許多有趣的性質(zhì),例如:

(1)三角形的九點(diǎn)圓的半徑是三角形的外接圓半徑之半;

(2)九點(diǎn)圓的圓心在歐拉線上,且恰為垂心與外心連線的中點(diǎn);

(3)三角形的九點(diǎn)圓與三角形的內(nèi)切圓,三個(gè)旁切圓均相切〔費(fèi)爾巴哈定理〕. 20. 歐拉(Euler)線:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上. 21. 歐拉(Euler)公式:設(shè)三角形的外接圓半徑為R,內(nèi)切圓半徑為r,外心與內(nèi)心的距離為d,則d2=R2-2Rr. 22. 23.

G(銳角三角形的外接圓半徑與內(nèi)切圓半徑的和等于外心到各邊距離的和.

重心:三角形的三條中線交于一點(diǎn),并且各中線被這個(gè)點(diǎn)分成2:1的兩部分;

xA?xB?xC,yA?yB?yC)

重心性質(zhì):(1)設(shè)G為△ABC的重心,連結(jié)AG并延長交BC于D,則D為BC的中點(diǎn),則AG:GD?2:1;

(2)設(shè)G為△ABC的重心,則S?ABG?S?BCG?S?ACG?

DEBC

3S?ABC;

(3)設(shè)G為△ABC的重心,過G作DE∥BC交AB于D,交AC于E,過G作PF∥AC交AB于P,BC

?FPCA

?

F,過

KHAB

?

G作HK∥AB交AC于K,交BC于H,則

2DEFPKH

;???2; 3BCCAAB

(4)設(shè)G為△ABC的重心,則

①BC2?3GA2?CA2?3GB2?AB2?3GC2; ②GA2?GB

?GC

?

(AB

?BC

?CA);

③PA2?PB2?PC2?GA2?GB2?GC2?3PG2(P為△ABC內(nèi)任意一點(diǎn));

④到三角形三頂點(diǎn)距離的平方和最小的點(diǎn)是重心,即GA2?GB2?GC2最小;

⑤三角形內(nèi)到三邊距離之積最大的點(diǎn)是重心;反之亦然(即滿足上述條件之一,則G為△ABC的重心).

24.垂

aH(cosA

xA?

b

xB?

c

xC,形

acosA的yA?

b

yB?

c

yC)

線的交點(diǎn);

cosBcosC

abc

??

cosAcosBcosCcosBcosC

abc

??

cosAcosBcosC

垂心性質(zhì):(1)三角形任一頂點(diǎn)到垂心的距離,等于外心到對(duì)邊的距離的2倍;

(2)垂心H關(guān)于△ABC的三邊的對(duì)稱點(diǎn),均在△ABC的外接圓上;

(3)△ABC的垂心為H,則△ABC,△ABH,△BCH,△ACH的外接圓是等圓;(4)設(shè)O,H分別為△ABC的外心和垂心,則?BAO??HAC,?CBO??ABH,?BCO??HCA.

25.內(nèi)心:三角形的三條角分線的交點(diǎn)—內(nèi)接圓圓心,即內(nèi)心到三角形各邊距離相等;

I(axA?bxB?cxC

a?b?c,ayA?byB?cyC

a?b?c)

內(nèi)心性質(zhì):(1)設(shè)I為△ABC的內(nèi)心,則I到△ABC三邊的距離相等,反之亦然;(2)設(shè)I為△ABC的內(nèi)心,則?BIC?90??

2?A,?AIC?90??

?B,?AIB?90??

?C;

(3)三角形一內(nèi)角平分線與其外接圓的交點(diǎn)到另兩頂點(diǎn)的距離與到內(nèi)心的距離相等;反之,若?A平分線交△ABC外接圓于點(diǎn)K,I為線段AK上的點(diǎn)且滿足KI=KB,則I為△ABC的內(nèi)心;(4)設(shè)I為△ABC的內(nèi)心,BC?a,AC?b,AB?c, ?A平分線交BC于D,交△ABC外接圓于點(diǎn)K,則

AIID?AKKI

?IKKD

?b?ca;

(5)設(shè)I為△ABC的內(nèi)心,BC?a,AC?b,AB?c,I在BC,AC,AB上的射影分別為D,E,F,內(nèi)切圓

r,令

p?

(a?b?c),則①

S?ABC?pr

;②

AE?AF?p?a;BD?BF?p?b;CE?CD?p?c;③abcr?p?AI?BI?CI.

26. 外心:三角形的三條中垂線的交點(diǎn)——外接圓圓心,即外心到三角形各頂點(diǎn)距離相等;

O(sin2AxA?sin2BxB?sin2CxC

sin2A?sin2B?sin2C,sin2Ay

A

?sin2ByB?sin2CyC

sin2A?sin2B?sin2C)

外心性質(zhì):(1)外心到三角形各頂點(diǎn)距離相等;

(2)設(shè)O為△ABC的外心,則?BOC?2?A或?BOC?360??2?A;(3)R

和. 27.

旁心:一內(nèi)角平分線與兩外角平分線交點(diǎn)——旁切圓圓心;設(shè)△ABC的三邊

(a?b?c),分別與BC,AC,AB外側(cè)相切的旁切圓圓心記為

?

abc4S?

;(4)銳角三角形的外心到三邊的距離之和等于其內(nèi)切圓與外接圓半徑之

BC?a,AC?b,AB?c,令p?

IA,IB,IC,其半徑分別記為rA,rB,rC.

旁心性質(zhì):(1)?BIAC?90??(2)?IAIBIC?

?A,?BIBC??BICC?

?A,(對(duì)于頂角B,C也有類似的式子);

(?A??C);

(3)設(shè)AIA的連線交△ABC的外接圓于D,則DI

A

; ?DB?DC(對(duì)于BIB,CIC有同樣的結(jié)論)

(4)△ABC是△IAIBIC的垂足三角形,且△IAIBIC的外接圓半徑R'等于△ABC的直徑為2R. 28. 三角形面積公式

S?ABC?

12aha?

absinC?

a4R

c2b

?2RsinAsinBsinC?

a4(:

?b

?c

oC)o

o

tt

t

A?ccB?c

?pr?

p(p?a)(p?b)(p?c),其中ha表示BC邊上的高,R為外接圓半徑,r為內(nèi)切圓半徑,p?

(a?b?c).

29. 三角形中內(nèi)切圓,旁切圓和外接圓半徑的相互關(guān)系:

A2

rtan

B2tan

C2

r?4Rsinsin

B2

sin

C2

;ra?4Rsin

rtan

A2tan

C2

A2

cos

B2

cos

r

C2,rb?4Rcos

;1ra

?1rb

?

A2

sin

?

B2

1r.cos

C2,rc?4Rcos

A2

cos

B2

sin

C2

;

r

a

?,rb?,rc?

tan

1rc

A2

tan

B2

30. 梅涅勞斯(Menelaus)定理:設(shè)△ABC的三邊BC、CA、AB或其延長線和一條不經(jīng)過它們?nèi)我?/p>

BPPC

?CQQA

?ARRB

?1.(逆定理也成立)

頂點(diǎn)的直線的交點(diǎn)分別為P、Q、R則有

31. 梅涅勞斯定理的應(yīng)用定理1:設(shè)△ABC的∠A的外角平分線交邊CA于Q,∠C的平分線交邊AB

于R,∠B的平分線交邊CA于Q,則P、Q、R三點(diǎn)共線. 32. 33.

梅涅勞斯定理的應(yīng)用定理2:過任意△ABC的三個(gè)頂點(diǎn)A、B、C作它的外接圓的切線,分別和BC、CA、AB的延長線交于點(diǎn)P、Q、R,則P、Q、R三點(diǎn)共線.

塞瓦(Ceva)定理:設(shè)X、Y、Z分別為△ABC的邊BC、CA、AB上的一點(diǎn),則AX、BY、CZ所在直

AZBXCY

·.

ZBXCYA

34. 塞瓦定理的應(yīng)用定理:設(shè)平行于△ABC的邊BC的直線與兩邊AB、AC的交點(diǎn)分別是D、E,又設(shè)

BE和CD交于S,則AS一定過邊BC的中點(diǎn)M.

線交于一點(diǎn)的充要條件是35.

塞瓦定理的逆定理:(略)

36. 塞瓦定理的逆定理的應(yīng)用定理1:三角形的三條中線交于一點(diǎn),三角形的三條高線交于一點(diǎn),三角形的三條角分線交于一點(diǎn). 37.

塞瓦定理的逆定理的應(yīng)用定理2:設(shè)△ABC的內(nèi)切圓和邊BC、CA、AB分別相切于點(diǎn)R、S、T,則AR、BS、CT交于一點(diǎn).38. 西摩松(Simson)定理:從△ABC的外接圓上任意一點(diǎn)P向三邊BC、CA、AB或其延長線作垂線,設(shè)其垂足分別是D、E、R,則D、E、R共線,(這條直線叫西摩松線Simson line). 39. 西摩松定理的逆定理:(略)40.

關(guān)于西摩松線的定理1:△ABC的外接圓的兩個(gè)端點(diǎn)P、Q關(guān)于該三角形的西摩松線互相垂直,其交點(diǎn)在九點(diǎn)圓上.

41. 關(guān)于西摩松線的定理2(安寧定理):在一個(gè)圓周上有4點(diǎn),以其中任三點(diǎn)作三角形,再作其

余一點(diǎn)的關(guān)于該三角形的西摩松線,這些西摩松線交于一點(diǎn). 42. 史坦納定理:設(shè)△ABC的垂心為H,其外接圓的任意點(diǎn)P,這時(shí)關(guān)于△ABC的點(diǎn)P的西摩松線通

過線段PH的中心. 43.

史坦納定理的應(yīng)用定理:△ABC的外接圓上的一點(diǎn)P的關(guān)于邊BC、CA、AB的對(duì)稱點(diǎn)和△ABC的垂心H同在一條(與西摩松線平行的)直線上.這條直線被叫做點(diǎn)P關(guān)于△ABC的鏡象線. 44. 牛頓定理1:四邊形兩條對(duì)邊的延長線的交點(diǎn)所連線段的中點(diǎn)和兩條對(duì)角線的中點(diǎn),三點(diǎn)共

線.這條直線叫做這個(gè)四邊形的牛頓線.45. 46.

牛頓定理2:圓外切四邊形的兩條對(duì)角線的中點(diǎn),及該圓的圓心,三點(diǎn)共線.

笛沙格定理1:平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和

F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長線相交,則這三個(gè)交點(diǎn)共線. 47. 笛沙格定理2:相異平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長線相交,則這三個(gè)交點(diǎn)共線. 48. 波朗杰、騰下定理:設(shè)△ABC的外接圓上的三點(diǎn)為P、Q、R,則P、Q、R關(guān)于△ABC交于一點(diǎn)的充要條件是:弧AP+弧BQ+弧CR=0(mod2?).49. 波朗杰、騰下定理推論1:設(shè)P、Q、R為△ABC的外接圓上的三點(diǎn),若P、Q、R關(guān)于△ABC的西摩松線交于一點(diǎn),則A、B、C三點(diǎn)關(guān)于△PQR的的西摩松線交于與前相同的一點(diǎn). 50. 波朗杰、騰下定理推論2:在推論1中,三條西摩松線的交點(diǎn)是A、B、C、P、Q、R六點(diǎn)任取

三點(diǎn)所作的三角形的垂心和其余三點(diǎn)所作的三角形的垂心的連線段的中點(diǎn). 51. 波朗杰、騰下定理推論3:考查△ABC的外接圓上的一點(diǎn)P的關(guān)于△ABC的西摩松線,如設(shè)QR

為垂直于這條西摩松線該外接圓的弦,則三點(diǎn)P、Q、R的關(guān)于△ABC的西摩松線交于一點(diǎn). 52.

波朗杰、騰下定理推論4:從△ABC的頂點(diǎn)向邊BC、CA、AB引垂線,設(shè)垂足分別是D、E、F,且設(shè)邊BC、CA、AB的中點(diǎn)分別是L、M、N,則D、E、F、L、M、N六點(diǎn)在同一個(gè)圓上,這時(shí)L、M、N點(diǎn)關(guān)于關(guān)于△ABC的西摩松線交于一點(diǎn).

53. 卡諾定理:通過△ABC的外接圓的一點(diǎn)P,引與△ABC的三邊BC、CA、AB分別成同向的等角的直線PD、PE、PF,與三邊的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線. 54.

奧倍爾定理:通過△ABC的三個(gè)頂點(diǎn)引互相平行的三條直線,設(shè)它們與△ABC的外接圓的交點(diǎn)分別是L、M、N,在△ABC的外接圓上取一點(diǎn)P,則PL、PM、PN與△ABC的三邊BC、CA、AB或其延長線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線.

55. 清宮定理:設(shè)P、Q為△ABC的外接圓的異于A、B、C的兩點(diǎn),P點(diǎn)的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),QU、QV、QW和邊BC、CA、AB或其延長線的交點(diǎn)分別是D、E、F,則

D、E、F三點(diǎn)共線. 56. 他拿定理:設(shè)P、Q為關(guān)于△ABC的外接圓的一對(duì)反點(diǎn),點(diǎn)P的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)

分別是U、V、W,這時(shí),如果QU、QV、QW和邊BC、CA、AB或其延長線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線.(反點(diǎn):P、Q分別為圓O的半徑OC和其延長線的兩點(diǎn),如果OC2=OQ×OP 則稱P、Q兩點(diǎn)關(guān)于圓O互為反點(diǎn))57. 朗古來定理:在同一圓周上有A1、B1、C1、D1四點(diǎn),以其中任三點(diǎn)作三角形,在圓周取一點(diǎn)P,作P點(diǎn)的關(guān)于這4個(gè)三角形的西摩松線,再從P向這4條西摩松線引垂線,則四個(gè)垂足在同一條直

線上.58.

從三角形各邊的中點(diǎn),向這條邊所對(duì)的頂點(diǎn)處的外接圓的切線引垂線,這些垂線交于該三角形的九點(diǎn)圓的圓心.

59. 一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-1個(gè)點(diǎn)的重心,向該圓周的在其余一點(diǎn)處的切線所引的垂線都交于一點(diǎn). 60. 康托爾定理1:一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-2個(gè)點(diǎn)的重心向余下兩點(diǎn)的連線所引的垂線共點(diǎn). 61.

康托爾定理2:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N兩點(diǎn),則M和N點(diǎn)關(guān)于四個(gè)三角形△BCD、△CDA、△DAB、△ABC中的每一個(gè)的兩條西摩松線的交點(diǎn)在同一直線上.這條直線叫做M、N兩點(diǎn)關(guān)于四邊形ABCD的康托爾線. 62. 康托爾定理3:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N、L三點(diǎn),則M、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、L、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、M、L兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線

交于一點(diǎn).這個(gè)點(diǎn)叫做M、N、L三點(diǎn)關(guān)于四邊形ABCD的康托爾點(diǎn).

63. 康托爾定理4:一個(gè)圓周上有A、B、C、D、E五點(diǎn)及M、N、L三點(diǎn),則M、N、L三點(diǎn)關(guān)于四邊

形BCDE、CDEA、DEAB、EABC中的每一個(gè)康托爾點(diǎn)在一條直線上.這條直線叫做M、N、L三點(diǎn)關(guān)于五邊形A、B、C、D、E的康托爾線. 64. 65.

費(fèi)爾巴赫定理:三角形的九點(diǎn)圓與內(nèi)切圓和旁切圓相切.

莫利定理:將三角形的三個(gè)內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個(gè)交點(diǎn),則這樣的三個(gè)交點(diǎn)可以構(gòu)成一個(gè)正三角形.這個(gè)三角形常被稱作莫利正三角形.

66. 布利安松定理:連結(jié)外切于圓的六邊形ABCDEF相對(duì)的頂點(diǎn)A和D、B和E、C和F,則這三線

共點(diǎn). 67. 帕斯卡(Paskal)定理:圓內(nèi)接六邊形ABCDEF相對(duì)的邊AB和DE、BC和EF、CD和FA的(或

延長線的)交點(diǎn)共線. 68. 阿波羅尼斯(Apollonius)定理:到兩定點(diǎn)A、B的距離之比為定比m:n(值不為1)的點(diǎn)P,位于將線段AB分成m:n的內(nèi)分點(diǎn)C和外分點(diǎn)D為直徑兩端點(diǎn)的定圓周上.這個(gè)圓稱為阿波羅尼斯圓. 69. 庫立奇*大上定理:(圓內(nèi)接四邊形的九點(diǎn)圓)圓周上有四點(diǎn),過其中任三點(diǎn)作三角形,這四個(gè)

三角形的九點(diǎn)圓圓心都在同一圓周上,我們把過這四個(gè)九點(diǎn)圓圓心的圓叫做圓內(nèi)接四邊形的九點(diǎn)圓. 70. 密格爾(Miquel)點(diǎn): 若AE、AF、ED、FB四條直線相交于A、B、C、D、E、F六點(diǎn),構(gòu)成四

個(gè)三角形,它們是△ABF、△AED、△BCE、△DCF,則這四個(gè)三角形的外接圓共點(diǎn),這個(gè)點(diǎn)稱為密格爾點(diǎn). 71. 葛爾剛(Gergonne)點(diǎn):△ABC的內(nèi)切圓分別切邊AB、BC、CA于點(diǎn)D、E、F,則AE、BF、CD三線共點(diǎn),這個(gè)點(diǎn)稱為葛爾剛點(diǎn).72. 歐拉關(guān)于垂足三角形的面積公式:O是三角形的外心,M是三角形中的任意一點(diǎn),過M向三邊

作垂線,三個(gè)垂足形成的三角形的面積,其公式: S?DEF

S?ABC

?|R

?d

|

4R

第三篇:部分課外平面幾何定理證明

部分課外平面幾何定理證明

一.四點(diǎn)共圓

很有用的定理,下面的定理證明中部分會(huì)用到這個(gè),這也是我把它放在第一個(gè)的原因。

這個(gè)定理根據(jù)區(qū)域的不同,在中考有的地方能直接用,有的不能,據(jù)筆者所知,北京中考是可以直接用的。其余的還是問問老師比較好。起碼在選擇題是大有用處的。

二.三角形三垂線交于一點(diǎn)

四點(diǎn)共圓的一次運(yùn)用。很多人都知道三垂線交于一點(diǎn),在這里給出證明

三.三角形垂心是連接三垂直所得到新三角新的內(nèi)心

由三角形的三垂線可得多組四點(diǎn)共圓,一般有垂心的題都離不開四點(diǎn)共圓。

估計(jì)這個(gè)結(jié)論在中考是不能直接用的,如果地區(qū)允許四點(diǎn)共圓的話稍微證一下就行了。

四.圓冪定理(在這里只是一部分)

·為割線定理、切割線定理于相交弦定理的總稱。

這個(gè)應(yīng)該是很多地方都允許用的,如果不能用的話也是稍微證一下就行了。

五.射影定理(歐幾里得定理)

什么也不說了,初中幾何里應(yīng)該是比較常用的。目測考試隨便用

六.三角形切線長公式

·已知三角形三邊長可求內(nèi)切圓切點(diǎn)到頂點(diǎn)距離

可能是做的題比較少吧,很少見有這樣的中考題。推導(dǎo)也是很簡單的。

七.廣勾股定理

估計(jì)中考允許用的地方不多,除非你那允許“引理”這貨

八.弦切角定理

很簡單,估計(jì)每個(gè)地方都允許的。就算不把它當(dāng)定理,自己也能發(fā)現(xiàn)這個(gè)結(jié)論

九.燕尾定理(共邊比例定理)

面積法思想,出現(xiàn)中點(diǎn)時(shí)可以用來證線段相等(例如下一個(gè),重心),另外用于比例也是挺好使的。

中考的時(shí)候,直接用的話估計(jì)老師會(huì)認(rèn)為你跳躍度太大,考慮的時(shí)候想到這個(gè),證明的時(shí)候用面積法就行了。

十.海倫公式

已知三角形三邊可求其面積,可用余弦定理和正弦求面積公式推導(dǎo),但余弦定理是高中知識(shí)(在后面會(huì)放出

來)所以不用在這里。另外公式里帶根號(hào),若三邊中有根號(hào)的配湊一下應(yīng)該可以開根。這里是海倫公式的一個(gè)探討,推廣至n邊形面積。在第五頁有海倫公式的各種變形,其中變形⑤的個(gè)邊帶有平方,可以解決邊長帶根號(hào)的問題,缺點(diǎn)是過于冗繁。吧友可以根據(jù)自己的情況進(jìn)行探討。

中考嘛,一直不是很喜歡,過多的限制,不能發(fā)揮自己的能力。這個(gè)公式就不推薦考試的時(shí)候用了。

十一.重心

三中線交于一點(diǎn)。同垂心

十二.重心定理:重心把中線分為2:1兩部分。

總的來說這些定理考試能用否得問老師,不能用的話,作平行線把推導(dǎo)過程代進(jìn)證明過程就算是側(cè)面使用定理了,肯定不會(huì)扣分的。

十三.歐拉線

由重心定理簡單得出

估計(jì)中考題都不會(huì)考共線神馬的(起碼廣東這地方是不會(huì)考的)。

十四.托勒密定理

很好用的一個(gè)競賽定理。中考填空就能用這個(gè)解,作垂線設(shè)方程就得出來了,其他人還向外做了正三角形神馬的。所以個(gè)人感覺了解多點(diǎn)知識(shí)對(duì)于考試或?qū)τ谂d趣都是挺好的

十五.余弦定理

十六.正弦定理

十七.賽瓦定理(ceva定理)

十八.梅涅勞斯定理(簡稱梅氏定理menelaus定理)

如果一條直線與△ABC的三邊AB、BC、CA或其延長線交于F、D、E點(diǎn),那么(AF/FB)×(BD/DC)×(CE/EA)=1。

十九.調(diào)和點(diǎn)列

二十.中線定理

·表述了三角形三邊與中線長的關(guān)系

三角形一條中線兩側(cè)所對(duì)邊平方和等于底邊的一半平方與該邊中線平方和的2倍。即,對(duì)任意三角形△ABC,設(shè)I是線段BC的中點(diǎn),AI為中線,則有如下關(guān)系: AB^2+AC^2=2BI^2+2AI^2 或作AB^2+AC^2=1/2BC^2+2AI^2

二十一.角平分線定理

·角平分線的比例性質(zhì)

二十二.九點(diǎn)共園定理(歐拉圓、費(fèi)爾巴赫圓)

三角形三邊的中點(diǎn),三條高的垂足,垂心與各頂點(diǎn)連線的中點(diǎn)這九點(diǎn)共圓

二十三.張角定理

在△ABC中,D是BC上的一點(diǎn),連結(jié)AD。那么sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD。

逆定理: 如果sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD,那么B,D,C三點(diǎn)共線。

定理的推論:

在定理的條件下,且∠BAD=∠CAD,即AD平分∠BAC,則B D C共線的充要條件是:2cos∠BAD/AD=1/AB+1/AC

二十四.蝴蝶定理

由于其幾何圖形形象奇特、貌似蝴蝶,便以此命名,定理內(nèi)容:圓O中的弦PQ的中點(diǎn)M,過點(diǎn)M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點(diǎn)。

二十五.清宮定理

設(shè)P、Q為△ABC的外接圓上異于A、B、C的兩點(diǎn),P關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,且QU、QV、QW分別交三邊BC、CA、AB或其延長線于D、E、F,則D、E、F在同一直線上

二十六.西姆松定理(cave定理)

過三角形外接圓上異于三角形頂點(diǎn)的任意一點(diǎn)作三邊的垂線,則三垂足共線。(此線常稱為西姆松線)。西姆松定理的逆定理為:若一點(diǎn)在三角形三邊所在直線上的射影共線,則該點(diǎn)在此三角形的外接圓上。

二十七.角元塞瓦定理

設(shè)P為平面上一點(diǎn)(不在AB、BC、AC三條直線上),且(sinBAP/sinPAC)(sinACP/sinPCB)(sinCBP/sinPBA)=1則AD、BE、CF三線共點(diǎn)或互相平行. 推論若所引的三條線段都在△ABC 內(nèi)部,則這三條直線共點(diǎn)。

【暫時(shí)缺圖】

二十八.莫利定理

將三角形的三個(gè)內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個(gè)交點(diǎn),則這樣的三個(gè)交點(diǎn)可以構(gòu)成一個(gè)正三角形。這個(gè)三角形常被稱作莫利正三角形。

二十九.斯坦納定理

如果三角形中兩內(nèi)角平分線相等,則必為等腰三角形

三十.斯臺(tái)沃特定理(斯氏定理)

任意三角形ABC中,D是底邊BC上一點(diǎn),聯(lián)結(jié)AD,則有:AB^2×CD+AC^2×BD=(AD^2+BD×DC)×BC 也可以有另一種表達(dá)形式:設(shè)BD=u,DC=v,則有:AD^2=(b^2×u+c^2×v)/a-uv

三十一.笛沙格定理

平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長線相交,則這三個(gè)交點(diǎn)共線。

三十二.牛頓定理

牛頓定理1:四邊形兩條對(duì)邊的延長線的交點(diǎn)所連線段的中點(diǎn)和兩條對(duì)角線的中點(diǎn),三條共線。這條直線叫做這個(gè)四邊形的牛頓線。

牛頓定理2:圓外切四邊形的兩條對(duì)角線的中點(diǎn),及該圓的圓心,三點(diǎn)共線。

牛頓定理3 圓的外切四邊形的對(duì)角線的交點(diǎn)和以切點(diǎn)為頂點(diǎn)的四邊形對(duì)角線交點(diǎn)重合。.

第四篇:高中平面幾何60大定理

1、勾股定理(畢達(dá)哥拉斯定理)

2、射影定理(歐幾里得定理)

3、三角形的三條中線交于一點(diǎn),并且,各中線被這個(gè)點(diǎn)分成2:1的兩部分

4、四邊形兩邊中心的連線的兩條對(duì)角線中心的連線交于一點(diǎn)

5、間隔的連接六邊形的邊的中心所作出的兩個(gè)三角形的重心是重合的。

6、三角形各邊的垂直一平分線交于一點(diǎn)。

7、從三角形的各頂點(diǎn)向其對(duì)邊所作的三條垂線交于一點(diǎn)

8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足不L,則AH=2OL9、三角形的外心,垂心,重心在同一條直線上。

10、(九點(diǎn)圓或歐拉圓或費(fèi)爾巴赫圓)三角形中,三邊中心、從各頂點(diǎn)向其對(duì)邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個(gè)點(diǎn)在同一個(gè)圓上,11、歐拉定理:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上

12、庫立奇*大上定理:(圓內(nèi)接四邊形的九點(diǎn)圓)圓周上有四點(diǎn),過其中任三點(diǎn)作三角形,這四個(gè)三角形的九點(diǎn)圓圓心都在同一圓周上,我們把過這四個(gè)九點(diǎn)圓圓心的圓叫做圓內(nèi)接四邊形的九點(diǎn)圓。

13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點(diǎn),內(nèi)切圓的半徑公式:r=(s-a)(s-b)(s-c)ss為三角形周長的一半

14、(旁心)三角形的一個(gè)內(nèi)角平分線和另外兩個(gè)頂點(diǎn)處的外角平分線交于一點(diǎn)

15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點(diǎn)為P,則有AB2+AC2=2(AP2+BP2)

16、斯圖爾特定理:P將三角形ABC的邊BC內(nèi)分成m:n,則有

n×AB2+m×AC2=(m+n)AP2+mnBC17、波羅摩及多定理:圓內(nèi)接四邊形ABCD的對(duì)角線互相垂直時(shí),連接AB中點(diǎn)M和對(duì)角線交點(diǎn)E的直線垂直于CD18、阿波羅尼斯定理:到兩定點(diǎn)A、B的距離之比為定比m:n(值不為1)的點(diǎn)P,位于將線段AB分成m:n的內(nèi)分點(diǎn)C和外分點(diǎn)D為直徑兩端點(diǎn)的定圓周上

19、托勒密定理:設(shè)四邊形ABCD內(nèi)接于圓,則有AB×CD+AD×BC=AC20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形,21、愛爾可斯定理1:若△ABC和三角形△都是正三角形,則由線段AD、BE、CF的重心構(gòu)成的三角形也是正三角形。

22、愛爾可斯定理2:若△ABC、△DEF、△GHI都是正三角形,則由三角形△ADG、△BEH、△CFI的重心構(gòu)成的三角形是正三角形。

23、梅涅勞斯定理:設(shè)△ABC的三邊BC、CA、AB或其延長線和一條不經(jīng)過它們?nèi)我豁旤c(diǎn)的直線的交點(diǎn)分別為P、Q、R則有 BPPC×CQQA×ARRB=

124、梅涅勞斯定理的逆定理:(略)

27、塞瓦定理:設(shè)△ABC的三個(gè)頂點(diǎn)A、B、C的不在三角形的邊或它們的延長線上的一點(diǎn)S連接面成的三條直線,分別與邊BC、CA、AB或它們的延長線交于點(diǎn)P、Q、R,則BPPC×CQQA×ARRB()=1.32、西摩松定理:從△ABC的外接圓上任意一點(diǎn)P向三邊BC、CA、AB或其延長線作垂線,設(shè)其垂足分別是D、E、R,則D、E、R共線,(這條直線叫西摩松線)

34、史坦納定理:設(shè)△ABC的垂心為H,其外接圓的任意點(diǎn)P,這時(shí)關(guān)于△ABC的點(diǎn)P的西摩松線通過線段PH的中心。

36、波朗杰、騰下定理:設(shè)△ABC的外接圓上的三點(diǎn)為P、Q、R,則P、Q、R關(guān)于△ABC交于一點(diǎn)的充要條件是:弧AP+弧BQ+弧CR=0(mod2∏).不用掌握

37、波朗杰、騰下定理推論1:設(shè)P、Q、R為△ABC的外接圓上的三點(diǎn),若P、Q、R關(guān)于△ABC的西摩松線交于一點(diǎn),則A、B、C三點(diǎn)關(guān)于△PQR的的西摩松線交于與前相同的一點(diǎn)

38、波朗杰、騰下定理推論2:在推論1中,三條西摩松線的交點(diǎn)是A、B、C、P、Q、R六點(diǎn)任取三點(diǎn)所作的三角形的垂心和其余三點(diǎn)所作的三角形的垂心的連線段的中點(diǎn)。

39、波朗杰、騰下定理推論3:考查△ABC的外接圓上的一點(diǎn)P的關(guān)于△ABC的西摩松線,如設(shè)QR為垂直于這條西摩松線該外接圓珠筆的弦,則三點(diǎn)P、Q、R的關(guān)于△ABC的西摩松線交于一點(diǎn)

40、波朗杰、騰下定理推論4:從△ABC的頂點(diǎn)向邊BC、CA、AB引垂線,設(shè)垂足分別是

D、E、F,且設(shè)邊BC、CA、AB的中點(diǎn)分別是L、M、N,則D、E、F、L、M、N六點(diǎn)在同一個(gè)圓上,這時(shí)L、M、N點(diǎn)關(guān)于關(guān)于△ABC的西摩松線交于一點(diǎn)。

41、關(guān)于西摩松線的定理1:△ABC的外接圓的兩個(gè)端點(diǎn)P、Q關(guān)于該三角形的西摩松線互相垂直,其交點(diǎn)在九點(diǎn)圓上。

42、關(guān)于西摩松線的定理2(安寧定理):在一個(gè)圓周上有4點(diǎn),以其中任三點(diǎn)作三角形,再作其余一點(diǎn)的關(guān)于該三角形的西摩松線,這些西摩松線交于一點(diǎn)。

43、卡諾定理:通過△ABC的外接圓的一點(diǎn)P,引與△ABC的三邊BC、CA、AB分別成同向的等角的直線PD、PE、PF,與三邊的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線。

44、奧倍爾定理:通過△ABC的三個(gè)頂點(diǎn)引互相平行的三條直線,設(shè)它們與△ABC的外接圓的交點(diǎn)分別是L、M、N,在△ABC的外接圓取一點(diǎn)P,則PL、PM、PN與△ABC的三 邊BC、CA、AB或其延長線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線

45、清宮定理:設(shè)P、Q為△ABC的外接圓的異于A、B、C的兩點(diǎn),P點(diǎn)的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),QU、QV、QW和邊BC、CA、AB或其延長線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線

46、他拿定理:設(shè)P、Q為關(guān)于△ABC的外接圓的一對(duì)反點(diǎn),點(diǎn)P的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),如果QU、QV、QW與邊BC、CA、AB或其延長線的交點(diǎn)分別為ED、E、F,則D、E、F三點(diǎn)共線。(反點(diǎn):P、Q分別為圓O的半徑OC和其延長線的兩點(diǎn),如果OC2=OQ×OP 則稱P、Q兩點(diǎn)關(guān)于圓O互為反點(diǎn))

47、朗古來定理:在同一圓同上有A1B1C1D14點(diǎn),以其中任三點(diǎn)作三角形,在圓周取一點(diǎn)P,作P點(diǎn)的關(guān)于這4個(gè)三角形的西摩松線,再從P向這4條西摩松線引垂線,則四個(gè)垂足在同一條直線上。

48、九點(diǎn)圓定理:三角形三邊的中點(diǎn),三高的垂足和三個(gè)歐拉點(diǎn)[連結(jié)三角形各頂點(diǎn)與垂心所得三線段的中點(diǎn)]九點(diǎn)共圓[通常稱這個(gè)圓為九點(diǎn)圓[nine-point circle],或歐拉圓,費(fèi)爾巴哈圓.49、一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-1個(gè)點(diǎn)的重心,向該圓周的在其余一點(diǎn)處的切線所引的垂線都交于一點(diǎn)。

50、康托爾定理1:一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-2個(gè)點(diǎn)的重心向余下兩點(diǎn)的連線所引的垂線共點(diǎn)。

51、康托爾定理2:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N兩點(diǎn),則M和N點(diǎn)關(guān)于四個(gè)三角形△BCD、△CDA、△DAB、△ABC中的每一個(gè)的兩條西摩松的交點(diǎn)在同一直線上。這條直線叫做M、N兩點(diǎn)關(guān)于四邊形ABCD的康托爾線。

52、康托爾定理3:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N、L三點(diǎn),則M、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、L、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、M、L兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線交于一點(diǎn)。這個(gè)點(diǎn)叫做M、N、L三點(diǎn)關(guān)于四邊形ABCD的康托爾點(diǎn)。

53、康托爾定理4:一個(gè)圓周上有A、B、C、D、E五點(diǎn)及M、N、L三點(diǎn),則M、N、L三點(diǎn)關(guān)于四邊形BCDE、CDEA、DEAB、EABC中的每一個(gè)康托爾點(diǎn)在一條直線上。這條直線叫做M、N、L三點(diǎn)關(guān)于五邊形A、B、C、D、E的康托爾線。

54、費(fèi)爾巴赫定理:三角形的九點(diǎn)圓與內(nèi)切圓和旁切圓相切。

55、莫利定理:將三角形的三個(gè)內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個(gè)交點(diǎn),則這樣的三個(gè)交點(diǎn)可以構(gòu)成一個(gè)正三角形。這個(gè)三角形常被稱作莫利正三角形。

56、牛頓定理1:四邊形兩條對(duì)邊的延長線的交點(diǎn)所連線段的中點(diǎn)和兩條對(duì)角線的中點(diǎn),三條共線。這條直線叫做這個(gè)四邊形的牛頓線。

57、牛頓定理2:圓外切四邊形的兩條對(duì)角線的中點(diǎn),及該圓的圓心,三點(diǎn)共線。

58、笛沙格定理1:平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長線相交,則這三個(gè)交點(diǎn)共線。

59、笛沙格定理2:相異平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長線相交,則這三個(gè)交點(diǎn)共線。60、布利安松定理:連結(jié)外切于圓的六邊形ABCDEF相對(duì)的頂點(diǎn)A和D、B和E、C和F,則這三線共點(diǎn)。

第五篇:初中平面幾何重要定理匯總

初中平面幾何重要定理匯總

1、勾股定理(畢達(dá)哥拉斯定理)(直角三角形的兩直角邊分別是a、b,斜邊是c;則a*a+b*b=c*c)

2、射影定理(歐幾里得定理)(直角三角形中,斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng)。每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項(xiàng)。公式Rt△ABC中,∠BAC=90°,AD是斜邊BC上的高,則有射影定理如下:(1)(AD)^2;=BD·DC,(2)(AB)^2;=BD·BC ,(3)(AC)^2;=CD·BC。等積式(4)ABXAC=BCXAD(可用面積來證明))

3、三角形的三條中線交于一點(diǎn),并且,各中線被這個(gè)點(diǎn)分成2:1的兩部分

4、四邊形兩邊中心的連線的兩條對(duì)角線中心的連線交于一點(diǎn)

5、間隔的連接六邊形的邊的中心所作出的兩個(gè)三角形的重心是重合的。

6、三角形各邊的垂直一平分線交于一點(diǎn)。

7、三角形的三條高線交于一點(diǎn)

8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足為L,則AH=2OL

9、三角形的外心,垂心,重心在同一條直線(歐拉線)上。

10、(九點(diǎn)圓或歐拉圓或費(fèi)爾巴赫圓)三角形中,三邊中心、從各頂點(diǎn)向其對(duì)邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個(gè)點(diǎn)在同一個(gè)圓上,11、歐拉定理:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上

12、庫立奇*大上定理:(圓內(nèi)接四邊形的九點(diǎn)圓)

圓周上有四點(diǎn),過其中任三點(diǎn)作三角形,這四個(gè)三角形的九點(diǎn)圓圓心都在同一圓周上,我們把過這四個(gè)九點(diǎn)圓圓心的圓叫做圓內(nèi)接四邊形的九點(diǎn)圓。

13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點(diǎn),內(nèi)切圓的半徑公式:r=(s-a)(s-b)(s-c)s,s為三角形周長的一半

14、(旁心)三角形的一個(gè)內(nèi)角平分線和另外兩個(gè)頂點(diǎn)處的外角平分線交于一點(diǎn)

15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點(diǎn)為P,則有AB2+AC2=2(AP2+BP2)

16、斯圖爾特定理:P將三角形ABC的邊BC內(nèi)分成m:n,則有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2

17、波羅摩及多定理:圓內(nèi)接四邊形ABCD的對(duì)角線互相垂直時(shí),連接AB中點(diǎn)M和對(duì)角線交點(diǎn)E的直線垂直于CD

18、阿波羅尼斯定理:到兩定點(diǎn)A、B的距離之比為定比m:n(值不為1)的點(diǎn)P,位于將線段AB分成m:n的內(nèi)分點(diǎn)C和外分點(diǎn)D為直徑兩端點(diǎn)的定圓周上

19、托勒密定理:設(shè)四邊形ABCD內(nèi)接于圓,則有AB×CD+AD×BC=AC×BD

20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形,21、愛爾可斯定理1:若△ABC和△DEF都是正三角形,則由線段AD、BE、CF的中心構(gòu)成的三角形也是正三角形。

22、愛爾可斯定理2:若△ABC、△DEF、△GHI都是正三角形,則由三角形△ADG、△BEH、△CFI的重心構(gòu)成的三角形是正三角形。

23、梅涅勞斯定理:設(shè)△ABC的三邊BC、CA、AB或其延長線和一條不經(jīng)過它們?nèi)我豁旤c(diǎn)的直線的交點(diǎn)分別為P、Q、R則有BPPC×CQQA×ARRB=1

24、梅涅勞斯定理的逆定理:(略)

25、梅涅勞斯定理的應(yīng)用定理1:設(shè)△ABC的∠A的外角平分線交邊CA于Q、∠C的平分線交邊AB于R,、∠B的平分線交邊CA于Q,則P、Q、R三點(diǎn)共線。

26、梅涅勞斯定理的應(yīng)用定理2:過任意△ABC的三個(gè)頂點(diǎn)A、B、C作它的外接圓的切線,分別和BC、CA、AB的延長線交于點(diǎn)P、Q、R,則P、Q、R三點(diǎn)共線

27、塞瓦定理:設(shè)△ABC的三個(gè)頂點(diǎn)A、B、C的不在三角形的邊或它們的延長線上的一點(diǎn)S連接面成的三條直線,分別與邊BC、CA、AB或它們的延長線交于點(diǎn)P、Q、R,則BPPC×CQQA×ARRB()=1.28、塞瓦定理的應(yīng)用定理:設(shè)平行于△ABC的邊BC的直線與兩邊AB、AC的交點(diǎn)分別是D、E,又設(shè)BE和CD交于S,則AS一定過邊BC的中心M

29、塞瓦定理的逆定理:(略)

30、塞瓦定理的逆定理的應(yīng)用定理1:三角形的三條中線交于一點(diǎn)

31、塞瓦定理的逆定理的應(yīng)用定理2:設(shè)△ABC的內(nèi)切圓和邊BC、CA、AB分別相切于點(diǎn)R、S、T,則AR、BS、CT交于一點(diǎn)。

32、西摩松定理:從△ABC的外接圓上任意一點(diǎn)P向三邊BC、CA、AB或其延長線作垂線,設(shè)其垂足分別是D、E、R,則D、E、R共線,(這條直線叫西摩松線)

33、西摩松定理的逆定理:(略)

34、史坦納定理:設(shè)△ABC的垂心為H,其外接圓的任意點(diǎn)P,這時(shí)關(guān)于△ABC的點(diǎn)P的西摩松線通過線段PH的中心。

35、史坦納定理的應(yīng)用定理:△ABC的外接圓上的一點(diǎn)P的關(guān)于邊BC、CA、AB的對(duì)稱點(diǎn)和△ABC的垂心H同在一條(與西摩松線平行的)直線上。這條直線被叫做點(diǎn)P關(guān)于△ABC的鏡象線。

36、波朗杰、騰下定理:設(shè)△ABC的外接圓上的三點(diǎn)為P、Q、R,則P、Q、R關(guān)于△ABC交于一點(diǎn)的充要條件是:弧AP+弧BQ+弧CR=0(mod2∏).37、波朗杰、騰下定理推論1:設(shè)P、Q、R為△ABC的外接圓上的三點(diǎn),若P、Q、R關(guān)于△ABC的西摩松線交于一點(diǎn),則A、B、C三點(diǎn)關(guān)于△PQR的的西摩松線交于與前相同的一點(diǎn)

38、波朗杰、騰下定理推論2:在推論1中,三條西摩松線的交點(diǎn)是A、B、C、P、Q、R六點(diǎn)任取三點(diǎn)所作的三角形的垂心和其余三點(diǎn)所作的三角形的垂心的連線段的中點(diǎn)。

39、波朗杰、騰下定理推論3:考查△ABC的外接圓上的一點(diǎn)P的關(guān)于△ABC的西摩松線,如設(shè)QR為垂直于這條西摩松線該外接圓珠筆的弦,則三點(diǎn)P、Q、R的關(guān)于△ABC的西摩松線交于一點(diǎn)

40、波朗杰、騰下定理推論4:從△ABC的頂點(diǎn)向邊BC、CA、AB引垂線,設(shè)垂足分別是D、E、F,且設(shè)邊BC、CA、AB的中點(diǎn)分別是L、M、N,則D、E、F、L、M、N六點(diǎn)在同一個(gè)圓上,這時(shí)L、M、N點(diǎn)關(guān)于關(guān)于△ABC的西摩松線交于一點(diǎn)。

41、關(guān)于西摩松線的定理1:△ABC的外接圓的兩個(gè)端點(diǎn)P、Q關(guān)于該三角形的西摩松線互相垂直,其交點(diǎn)在九點(diǎn)圓上。

42、關(guān)于西摩松線的定理2(安寧定理):在一個(gè)圓周上有4點(diǎn),以其中任三點(diǎn)作三角形,再作其余一點(diǎn)的關(guān)于該三角形的西摩松線,這些西摩松線交于一點(diǎn)。

43、卡諾定理:通過△ABC的外接圓的一點(diǎn)P,引與△ABC的三邊BC、CA、AB分別成同向的等角的直線PD、PE、PF,與三邊的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線。

44、奧倍爾定理:通過△ABC的三個(gè)頂點(diǎn)引互相平行的三條直線,設(shè)它們與△ABC的外接圓的交點(diǎn)分別是L、M、N,在△ABC的外接圓取一點(diǎn)P,則PL、PM、PN與△ABC的三邊BC、CA、AB或其延長線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線

45、清宮定理:設(shè)P、Q為△ABC的外接圓的異于A、B、C的兩點(diǎn),P點(diǎn)的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),QU、QV、QW和邊BC、CA、AB或其延長線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線

46、他拿定理:設(shè)P、Q為關(guān)于△ABC的外接圓的一對(duì)反點(diǎn),點(diǎn)P的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),如果QU、QV、QW與邊BC、CA、AB或其延長線的交點(diǎn)分別為ED、E、F,則D、E、F三點(diǎn)共線。(反點(diǎn):P、Q分別為圓O的半徑OC和其延長線的兩點(diǎn),如果OC2=OQ×OP 則稱P、Q兩點(diǎn)關(guān)于圓O互為反點(diǎn))

47、朗古來定理:在同一圓同上有A1B1C1D14點(diǎn),以其中任三點(diǎn)作三角形,在圓周取一點(diǎn)P,作P點(diǎn)的關(guān)于這4個(gè)三角形的西摩松線,再從P向這4條西摩松線引垂線,則四個(gè)垂足在同一條直線上。

48、九點(diǎn)圓定理:三角形三邊的中點(diǎn),三高的垂足和三個(gè)歐拉點(diǎn)[連結(jié)三角形各頂點(diǎn)與垂心所得三線段的中點(diǎn)]九點(diǎn)共圓[通常稱這個(gè)圓為九點(diǎn)圓[nine-point circle],或歐拉圓,費(fèi)爾巴哈圓.49、一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-1個(gè)點(diǎn)的重心,向該圓周的在其余一點(diǎn)處的切線所引的垂線都交于一點(diǎn)。

50、康托爾定理1:一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-2個(gè)點(diǎn)的重心向余下兩點(diǎn)的連線所引的垂線共點(diǎn)。

51、康托爾定理2:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N兩點(diǎn),則M和N點(diǎn)關(guān)于四個(gè)三角形△BCD、△CDA、△DAB、△ABC中的每一個(gè)的兩條西摩松的交點(diǎn)在同一直線上。這條直線叫做M、N兩點(diǎn)關(guān)于四邊形ABCD的康托爾線。

52、康托爾定理3:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N、L三點(diǎn),則M、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、L、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、M、L兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線交于一點(diǎn)。這個(gè)點(diǎn)叫做M、N、L三點(diǎn)關(guān)于四邊形ABCD的康托爾點(diǎn)。

53、康托爾定理4:一個(gè)圓周上有A、B、C、D、E五點(diǎn)及M、N、L三點(diǎn),則M、N、L三點(diǎn)關(guān)于四邊形BCDE、CDEA、DEAB、EABC中的每一個(gè)康托爾點(diǎn)在一條直線上。這條直線叫做M、N、L三點(diǎn)關(guān)于五邊形A、B、C、D、E的康托爾線。

54、費(fèi)爾巴赫定理:三角形的九點(diǎn)圓與內(nèi)切圓和旁切圓相切。

55、莫利定理:將三角形的三個(gè)內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個(gè)交點(diǎn),則這樣的三個(gè)交點(diǎn)可以構(gòu)成一個(gè)正三角形。這個(gè)三角形常被稱作莫利正三角形。

56、牛頓定理1:四邊形兩條對(duì)邊的延長線的交點(diǎn)所連線段的中點(diǎn)和兩條對(duì)角線的中點(diǎn),三條共線。這條直線叫做這個(gè)四邊形的牛頓線。

57、牛頓定理2:圓外切四邊形的兩條對(duì)角線的中點(diǎn),及該圓的圓心,三點(diǎn)共線。

58、笛沙格定理1:平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長線相交,則這三個(gè)交點(diǎn)共線。

59、笛沙格定理2:相異平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長線相交,則這三個(gè)交點(diǎn)共線。

60、布利安松定理:連結(jié)外切于圓的六邊形ABCDEF相對(duì)的頂點(diǎn)A和D、B和E、C和F,則這三線共點(diǎn)。

60、巴斯加定理:圓內(nèi)接六邊形ABCDEF相對(duì)的邊AB和DE、BC和EF、CD和FA的(或延長線的)交點(diǎn)共線。

下載李明波四點(diǎn)定理的平面幾何證明word格式文檔
下載李明波四點(diǎn)定理的平面幾何證明.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    高中數(shù)學(xué)常用平面幾何名定理

    高中數(shù)學(xué)常用平面幾何名定理定理1 Ptolemy定理托勒密(Ptolemy)定理四邊形的兩對(duì)邊乘積之和等于其對(duì)角線乘積的充要條件是該四邊形內(nèi)接于一圓。定理2 Ceva定理定理3 Menelaus......

    初中平面幾何的60個(gè)定理

    1、勾股定理(畢達(dá)哥拉斯定理) 小學(xué)都應(yīng)該掌握的重要定理 2、射影定理(歐幾里得定理) 重要 3、三角形的三條中線交于一點(diǎn),并且,各中線被這個(gè)點(diǎn)分成2:1的兩部分重要 4、四邊形......

    高中數(shù)學(xué)聯(lián)賽平面幾何定理(五篇模版)

    ①雞爪定理:設(shè)△ABC的內(nèi)心為I,∠A內(nèi)的旁心為J,AI的延長線交三角形外接圓于K,則KI=KJ=KB=KC。 由內(nèi)心和旁心的定義可知∠IBC=∠ABC/2,∠JBC=(180°-∠ABC)/2 ∴∠IBC+∠JBC=∠ABC/......

    平面幾何證明習(xí)題專題

    平面幾何證明習(xí)題1. 如圖5所示,圓O的直徑AB?6,C為圓周上一點(diǎn),BC?3, 過C作圓的切線l,過A作l的垂線AD,垂足為D, 則?DAC?,線段AE的長為l線段CD的長為,線段AD的長為圖5PA?2.PB?1,AC是圓O的直徑,PC......

    2011高考平面幾何證明

    2011高考平面幾何證明試題選講1(2011安徽)如圖4,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分別為AD,BC上點(diǎn),且EF=3,EF∥AB,則梯形ABCD與梯形EFCD的面積比為2 (2011北京)如圖,AD,AE,BC分別與圓O切......

    數(shù)學(xué)家李明波詩歌字畫

    數(shù)學(xué)家李明波 詩歌字畫 劉兩手 在這兒說說數(shù)學(xué)家李明波,其實(shí)他是個(gè)還算有兩把刷子的高級(jí)工程師。 叫李明波的名人太多了,他曾為此風(fēng)趣地寫道: 網(wǎng)撈李明波 中國人,實(shí)在多,百度查,李......

    奧數(shù)平面幾何幾個(gè)重要定理(5篇范文)

    平面幾何中幾個(gè)重要定理及其證明 一、塞瓦定理 1.塞瓦定理及其證明 定理:在?ABC內(nèi)一點(diǎn)P,該點(diǎn)與?ABC的三個(gè)頂點(diǎn)相連所在的三條直線分別交?ABC三邊AB、BC、CA于點(diǎn)D、E、F,且D、E、F......

    認(rèn)識(shí)平面幾何的61個(gè)著名定理

    【認(rèn)識(shí)平面幾何的61個(gè)著名定理,自行畫出圖形來學(xué)習(xí),★部分要求證明出來】 ★1、勾股定理(畢達(dá)哥拉斯定理)★2、射影定理(歐幾里得定理)★3、三角形的三條中線交于一點(diǎn),并且,各中線被......

主站蜘蛛池模板: 午夜不卡av免费| 婷婷无套内射影院| 一本久久a久久精品vr综合| 亚洲ⅴ国产v天堂a无码二区| 日日碰狠狠躁久久躁96| 久久精品黄aa片一区二区三区| 狠狠噜天天噜日日噜视频麻豆| 午夜精品一区二区三区免费视频| 亚洲第一网站男人都懂| 精品亚洲国产成人蜜臀优播av| 国产操逼视频| 日韩插啊免费视频在线观看| 久久中文字幕人妻熟女凤间| 国产视频久久| 国产午夜不卡av免费| 国产精品久久久久久影视不卡| 少妇扒开毛茸茸的b自慰| 无码人妻aⅴ一区二区三区日本| 日韩精人妻无码一区二区三区| 18禁美女裸身无遮挡免费网站| 无码熟妇人妻av在线影院| 国产精品无码电影在线观看| 国产∨亚洲v天堂无码久久久| 加勒比一本heyzo高清视频| 66亚洲一卡2卡新区成片发布| 800av凹凸视频在线观看| 一线二线三线天堂| 特黄三级又爽又粗又大| 玩弄人妻少妇500系列网址| 最新色国产精品精品视频| 老子午夜理论影院理论| 鲁大师影院在线观看| 中文无码不卡的岛国片| 人与嘼交av免费| 精品无码一区二区三区在线| 国产精品久久久久无码av色戒| 精品无码国产一区二区三区av| 亚洲精品夜夜夜| 亚洲精品一区二区三区麻豆| 日韩电影久久久被窝网| 无码人妻久久一区二区三区|