第一篇:高中數(shù)學(xué)立體幾何常考證明題匯總
新課標(biāo)立體幾何常考證明題
1、已知四邊形ABCD是空間四邊形,E,F,G,H分別是邊AB,BC,CD,DA的中點(diǎn)
(1)求證:EFGH是平行四邊形
(2)若
BD=AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。
C D H證明:在?ABD中,∵E,H分別是AB,AD的中點(diǎn)∴EH//BD,EH?同理,F(xiàn)G//BD,FG?
(2)90°30 °
考點(diǎn):證平行(利用三角形中位線),異面直線所成的角 1BD 21BD∴EH//FG,EH?FG∴四邊形EFGH是平行四邊形。
22、如圖,已知空間四邊形ABCD中,BC?AC,AD?BD,E是AB的中點(diǎn)。求證:(1)AB?平面CDE;
(2)平面CDE?平面ABC。E BC?AC?證明:(1)??CE?AB AE?BE?
同理,AD?BD???DE?AB AE?BE?B C 又∵CE?DE?E∴AB?平面CDE
(2)由(1)有AB?平面CDE
又∵AB?平面ABC,∴平面CDE?平面ABC
考點(diǎn):線面垂直,面面垂直的判定
D3、如圖,在正方體ABCD?A1B1C1D1中,E是AA1的中點(diǎn),求證: AC1//平面BDE。
證明:連接AC交BD于O,連接EO,∵E為AA1的中點(diǎn),O為AC的中點(diǎn) ∴EO為三角形A1AC的中位線 ∴EO//AC1 又EO在平面BDE內(nèi),A1C在平面BDE外
∴AC1//平面BDE。考點(diǎn):線面平行的判定
4、已知?ABC中?ACB?90,SA?面ABC,AD?SC,求證:AD?面SBC. 證明:∵?ACB?90°?BC?AC
又SA?面ABC?SA?BC
?BC?面SAC?BC?AD
?
A
D
1B
C
D
C
S
A
C
B
又SC?AD,SC?BC?C?AD?面SBC考點(diǎn):線面垂直的判定
9、如圖P是?ABC所在平面外一點(diǎn),PA?PB,CB?平面PAB,M是PC的中點(diǎn),N是AB上的點(diǎn),AN?3NB(1)求證:MN?AB;(2)當(dāng)?APB?90,AB?2BC?4時(shí),求MN的長(zhǎng)。證明:(1)取PA的中點(diǎn)Q,連結(jié)MQ,NQ,∵M(jìn)是PB的中點(diǎn),M
?
P
∴MQ//BC,∵ CB?平面PAB,∴MQ?平面PAB∴QN是MN在平面PAB內(nèi)的射影,取 AB的中點(diǎn)D,連結(jié) PD,∵PA?PB,∴C
A
PD?AB,又AN?3NB,∴BN?ND
N ∴QN//PD,∴QN?AB,由三垂線定理得MN?AB B
1?
(2)∵?APB?90,PA?PB,∴PD?AB?2,∴QN?1,∵M(jìn)Q?平面PAB.∴MQ?NQ,且
MQ?BC?
1,∴MN?
2考點(diǎn):三垂線定理
12、已知ABCD是矩形,PA?平面ABCD,AB?2,PA?AD?4,E為BC的中點(diǎn).
(1)求證:DE?平面PAE;(2)求直線DP與平面PAE所成的角. 證明:在?ADE中,AD?AE?DE,?AE?DE ∵PA?平面ABCD,DE?平面ABCD,?PA?DE
又PA?AE?A,?DE?平面PAE(2)?DPE為DP與平面PAE所成的角
在Rt?
PAD,PD?Rt?
DCE中,DE?在Rt?DEP中,PD?2DE,??DPE?300 考點(diǎn):線面垂直的判定,構(gòu)造直角三角形
15、如圖2,在三棱錐A-BCD中,BC=AC,AD=BD,作BE⊥CD,E為垂足,作AH⊥BE于H.求證:AH⊥平面BCD.證明:取AB的中點(diǎn)F,連結(jié)CF,DF.∵AC?BC,∴CF?AB.
∵AD?BD,∴DF?AB.
又CF?DF?F,∴AB?平面CDF.∵CD?平面CDF,∴CD?AB.又CD?BE,BE?AB?B,∴CD?平面ABE,CD?AH.
∵AH?CD,AH?BE,CD?BE?E,∴ AH?平面BCD. 考點(diǎn):線面垂直的判定
第二篇:高中數(shù)學(xué)立體幾何常考證明題匯總 - 副本
立體幾何常考證明題匯總答案
1、已知四邊形ABCD是空間四邊形,E,F,G,H分別是邊AB,BC,CD,DA的中點(diǎn)(1)求證:EFGH是平行四邊形
(2)若
BD=AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。考點(diǎn):證平行(利用三角形中位線),異面直線所成的角
2、如圖,已知空間四邊形ABCD中,BC?AC,AD?BD,E是AB的中點(diǎn)。求證:(1)AB?平面CDE;
(2)平面CDE?平面ABC。證明:(1)
E
C
H D
BC?AC?
??CE?AB
AE?BE?
B
同理,AD?BD?
??DE?AB
AE?BE?
C
又∵CE?DE?E∴AB?平面CDE(2)由(1)有AB?平面CDE
又∵AB?平面ABC,∴平面CDE?平面ABC
B
考點(diǎn):線面垂直,面面垂直的判定
3、如圖,在正方體ABCD?A1B1C1D1中,E是AA1的中點(diǎn),A
D
D
1C
求證: AC1//平面BDE。
證明:連接AC交BD于O,連接EO,∵E為AA1的中點(diǎn),O為AC的中點(diǎn)
C
D
S
∴EO為三角形A1AC的中位線 ∴EO//AC1 又EO在平面BDE內(nèi),AC1在平面BDE外 ∴AC1//平面BDE。考點(diǎn):線面平行的判定
4、已知?ABC中?ACB?90,SA?面ABC,AD?SC,求證:AD?面SBC. 考點(diǎn):線面垂直的判定
5、已知正方體ABCD?A1B1C1D1,O是底ABCD對(duì)角線的交點(diǎn).?
A
C
B
D1A
1D
A
BBC1
?面AB1D1.求證:(1)C1O∥面AB1D1;(2)AC1
C
考點(diǎn):線面平行的判定(利用平行四邊形),線面垂直的判定
6、正方體ABCD?A'B'C'D'中,求證:(1)AC?平面B'D'DB;(2)BD'?平面ACB'.考點(diǎn):線面垂直的判定
7、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;(2)若E、F分別是AA1,CC1的中點(diǎn),求證:平面EB1D1∥平面FBD. 證明:(1)由B1B∥DD1,得四邊形BB1D1D是平行四邊形,∴B1D1∥BD,又BD ?平面B1D1C,B1D1?平面B1D1C,∴BD∥平面B1D1C. 同理A1D∥平面B1D1C.
而A1D∩BD=D,∴平面A1BD∥平面B1CD.
A
(2)由BD∥B1D1,得BD∥平面EB1D1.取BB1中點(diǎn)G,∴AE∥B1G.
從而得B1E∥AG,同理GF∥AD.∴AG∥DF.∴B1E∥DF.∴DF∥平面EB1D1.∴平面EB1D1∥平面FBD.
考點(diǎn):線面平行的判定(利用平行四邊形)
8、四面體ABCD中,AC?BD,E,F分別為AD,BC的中點(diǎn),且EF?
AC,2?BDC?90?,求證:BD?平面ACD
證明:取CD的中點(diǎn)G,連結(jié)EG,FG,∵E,F分別為AD,BC的中點(diǎn),∴EG
1//?AC 2
//1BD,又AC?BD,∴FG?1AC,∴在?EFG中,EG2?FG2?1AC2?EF2 FG?
222
?
∴EG?FG,∴BD?AC,又?BDC?90,即BD?CD,AC?CD?C∴BD?平面ACD
考點(diǎn):線面垂直的判定,三角形中位線,構(gòu)造直角三角形
9、如圖P是?ABC所在平面外一點(diǎn),PA?PB,CB?平面PAB,M是PC的中點(diǎn),N是AB上的點(diǎn),AN?3NB
P
?
(1)求證:MN?AB;(2)當(dāng)?APB?90,AB?2BC?4時(shí),求MN的長(zhǎng)。證明:(1)取PA的中點(diǎn)Q,連結(jié)MQ,NQ,∵M(jìn)是PB的中點(diǎn),M∴MQ//BC,∵ CB?平面PAB,∴MQ?平面PAB∴QN是MN在平面PAB內(nèi)的射影,取 AB的中點(diǎn)D,連結(jié) PD,∵PA?PB,∴CAPD?AB,又AN?3NB,∴BN?ND
N ∴QN//PD,∴QN?AB,由三垂線定理得MN?AB B
1?
(2)∵?APB?90,PA?PB,∴PD?AB?2,∴QN?1,∵M(jìn)Q?平面PAB.∴MQ?NQ,且
MQ?BC?
1,∴MN?
2考點(diǎn):三垂線定理
10、如圖,在正方體ABCD?A1B1C1D1中,E、F、G分別是AB、AD、C1D1的中點(diǎn).求證:平面D1EF∥平面BDG.證明:∵E、F分別是AB、AD的中點(diǎn),?EF∥BD 又EF?平面BDG,BD?平面BDG?EF∥平面BDG ∵D
1G
EB?四邊形D1GBE為平行四邊形,D1E∥GB
又D1E?平面BDG,GB?平面BDG?D1E∥平面BDG
EF?D1E?E,?平面D1EF∥平面BDG
考點(diǎn):線面平行的判定(利用三角形中位線)
11、如圖,在正方體ABCD?A1B1C1D1中,E是AA1的中點(diǎn).(1)求證:AC1//平面BDE;(2)求證:平面A1AC?平面BDE.證明:(1)設(shè)AC?BD?O,∵E、O分別是AA1、AC的中點(diǎn),?AC1∥EO
?平面BDE,EO?平面BDE,?AC又AC∥平面BDE 1
1(2)∵AA1?平面ABCD,BD?平面ABCD,AA1?BD 又BD?AC,AC?AA1?A,?BD?平面A1AC,BD?平面BDE,?平面BDE?平面A1AC
考點(diǎn):線面平行的判定(利用三角形中位線),面面垂直的判定
12、已知ABCD是矩形,PA?平面ABCD,AB?2,PA?AD?4,E為BC的中點(diǎn).
(1)求證:DE?平面PAE;(2)求直線DP與平面PAE所成的角. 證明:在?ADE中,AD?AE?DE,?AE?DE ∵PA?平面ABCD,DE?平面ABCD,?PA?DE 又PA?AE?A,?DE?平面PAE(2)?DPE為DP與平面PAE所成的角
在Rt?
PAD,PD?Rt?
DCE中,DE?在Rt?DEP中,PD?2DE,??DPE?30 考點(diǎn):線面垂直的判定,構(gòu)造直角三角形
13、如圖,在四棱錐P?ABCD中,底面ABCD是?DAB?60且邊長(zhǎng)為a的菱形,側(cè)面PAD是等邊三角形,且平面PAD垂直于底面ABCD.
(1)若G為AD的中點(diǎn),求證:BG?平面PAD;(2)求證:AD?PB;
(3)求二面角A?BC?P的大小. 證明:(1)?ABD為等邊三角形且G為AD的中點(diǎn),?BG?AD 又平面PAD?平面ABCD,?BG?平面PAD
(2)PAD是等邊三角形且G為AD的中點(diǎn),?AD?PG 且AD?BG,PG?BG?G,?AD?平面PBG,22
2PB?平面PBG,?AD?PB
(3)由AD?PB,AD∥BC,?BC?PB 又BG?AD,AD∥BC,?BG?BC ??PBG為二面角A?BC?P的平面角
在Rt?PBG中,PG?BG,??PBG?4
5考點(diǎn):線面垂直的判定,構(gòu)造直角三角形,面面垂直的性質(zhì)定理,二面角的求法(定義法)
?平面MBD.
14、如圖1,在正方體ABCD?A1B1C1D1中,M為CC1 的中點(diǎn),AC交BD于點(diǎn)O,求證:AO
1證明:連結(jié)MO,A1M,∵DB⊥A1A,DB⊥AC,A1A?AC?A,?平面A1ACC1 ∴DB⊥AO∴DB⊥平面A1ACC1,而AO1.1
設(shè)正方體棱長(zhǎng)為a,則AO?1
3a,MO2?a2. 2
4.在Rt△ACA1M2?11M中,9222
2OO?M∵AO,∴A?MO?A1Ma.11
∵OM∩DB=O,∴ AO1⊥平面MBD.
考點(diǎn):線面垂直的判定,運(yùn)用勾股定理尋求線線垂直 15、如圖2,在三棱錐A-BCD中,BC=AC,AD=BD,作BE⊥CD,E為垂足,作AH⊥BE于H.求證:AH⊥平面BCD.證明:取AB的中點(diǎn)F,連結(jié)CF,DF.∵AC?BC,∴CF?AB.
∵AD?BD,∴DF?AB.
又CF?DF?F,∴AB?平面CDF.∵CD?平面CDF,∴CD?AB.又CD?BE,BE?AB?B,∴CD?平面ABE,CD?AH.
∵AH?CD,AH?BE,CD?BE?E,∴ AH?平面BCD.
考點(diǎn):線面垂直的判定
A16、證明:在正方體ABCD-A1B1C1D1中,A1C⊥平面BC1DC證明:連結(jié)AC
⊥AC∵BD∴ AC為A1C在平面AC上的射影
?BD?A1C
?
??A1C?平面BC1D
同理可證A1C?BC1?
考點(diǎn):線面垂直的判定,三垂線定理
17、如圖,過(guò)S引三條長(zhǎng)度相等但不共面的線段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求證:平面ABC⊥平面BSC.
證明∵SB=SA=SC,∠ASB=∠ASC=60°∴AB=SA=AC取BC的中點(diǎn)O,連AO、SO,則AO⊥BC,SO⊥BC,∴∠AOS為二面角的平面角,設(shè)SA=SB=SC=a,又∠BSC=90°,∴BC=a,SO=2a,11
AO2=AC2-OC2=a2-2a2=2a2,∴SA2=AO2+OS2,∴∠AOS=90°,從而平面ABC⊥
平面BSC.
考點(diǎn):面面垂直的判定(證二面角是直二面角)
第三篇:高中數(shù)學(xué)立體幾何常考證明題匯總1
2、如圖,已知空間四邊形ABCD中,BC?AC,AD?BD,E是AB的中點(diǎn)。求證:(1)AB?平面CDE;
(2)平面CDE?平面ABC。證明:(1)
E
BC?AC?
??CE?AB
AE?BE?
B
AD?BD?同理,??DE?AB
AE?BE?
又∵CE?DE?E∴AB?平面CDE(2)由(1)有AB?平面CDE
C
D
又∵AB?平面ABC,∴平面CDE?平面ABC 考點(diǎn):線面垂直,面面垂直的判定
3、如圖,在正方體ABCD?A1B1C1D1中,E是AA1的中點(diǎn),求證: AC1//平面BDE。
證明:連接AC交BD于O,連接EO,∵E為AA1的中點(diǎn),O為AC的中點(diǎn) ∴EO為三角形A1AC的中位線 ∴EO//AC1 又EO在平面BDE內(nèi),A1C在平面BDE外
∴AC1//平面BDE。考點(diǎn):線面平行的判定
4、已知?ABC中?ACB?90,SA?面ABC,AD?SC,求證:AD?面SBC. 證明:∵?ACB?90°?BC?AC
又SA?面ABC?SA?BC?BC?面SAC?BC?AD
?
A
D
1B
C
D
C
S
A
C
B
又SC?AD,SC?BC?C?AD?面SBC考點(diǎn):線面垂直的判定
5、已知正方體ABCD?A1B1C1D1,O是底ABCD對(duì)角線的交點(diǎn).DA
D
A
BBC
1?面AB1D1.求證:(1)C1O∥面AB1D1;(2)AC1
證明:(1)連結(jié)A1C1,設(shè)
AC11?B1D1?O1,連結(jié)AO1
∵ ABCD?A1B1C1D1是正方體?A1ACC1是平行四邊形
∴A1C1∥AC且 AC11?AC又O1,O分別是AC11,AC的中點(diǎn),∴O1C1∥AO且O1C1?AO
C
?AOC1O1是平行四邊形
?C1O∥AO1,AO1?
面AB1D1,C1O?面AB1D1∴C1O∥面AB1D1
(2)?CC1?面A1B1C1D1?CC!1?B1D又
∵AC11?B1D1
同理可證
AC?AD11,?B1D1?面A1C1C即A1C?B 1D1,又
D1B1?AD1?D1
?面AB1D1?AC1
考點(diǎn):線面平行的判定(利用平行四邊形),線面垂直的判定
6、正方體ABCD?A'B'C'D'中,求證:(1)AC?平面B'D'DB;(2)BD'?平面ACB'.考點(diǎn):線面垂直的判定
7、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;(2)若E、F分別是AA1,CC1的中點(diǎn),求證:平面EB1D1∥平面FBD. 證明:(1)由B1B∥DD1,得四邊形BB1D1D是平行四邊形,∴B1D1∥BD,又BD ?平面B1D1C,B1D1?平面B1D1C,∴BD∥平面B1D1C. 同理A1D∥平面B1D1C.
而A1D∩BD=D,∴平面A1BD∥平面B1CD.
A
(2)由BD∥B1D1,得BD∥平面EB1D1.取BB1中點(diǎn)G,∴AE∥B1G.
從而得B1E∥AG,同理GF∥AD.∴AG∥DF.∴B1E∥DF.∴DF∥平面EB1D1.∴平面EB1D1∥平面FBD.
考點(diǎn):線面平行的判定(利用平行四邊形)
8、四面體ABCD中,AC?BD,E,F分別為AD,BC的中點(diǎn),且EF?
AC,2?BDC?90?,求證:BD?平面ACD
證明:取CD的中點(diǎn)G,連結(jié)EG,FG,∵E,F分別為AD,BC的中點(diǎn),∴EG
1//?AC 2
//1BD,又AC?BD,∴FG?1AC,∴在?EFG中,EG2?FG2?1AC2?EF2 FG?
222
?
∴EG?FG,∴BD?AC,又?BDC?90,即BD?CD,AC?CD?C∴BD?平面ACD
考點(diǎn):線面垂直的判定,三角形中位線,構(gòu)造直角三角形
考點(diǎn):三垂線定理
10、如圖,在正方體ABCD?A1B1C1D1中,E、F、G分別是AB、AD、C1D1的中點(diǎn).求證:平面D1EF∥平面BDG.證明:∵E、F分別是AB、AD的中點(diǎn),?EF∥BD 又EF?平面BDG,BD?平面BDG?EF∥平面BDG ∵D
1G
EB?四邊形D1GBE為平行四邊形,D1E∥GB
又D1E?平面BDG,GB?平面BDG?D1E∥平面BDG
EF?D1E?E,?平面D1EF∥平面BDG
考點(diǎn):線面平行的判定(利用三角形中位線)
11、如圖,在正方體ABCD?A1B1C1D1中,E是AA1的中點(diǎn).(1)求證:AC1//平面BDE;(2)求證:平面A1AC?平面BDE.證明:(1)設(shè)AC?BD?O,∵E、O分別是AA1、AC的中點(diǎn),?A1C∥EO
?平面BDE,EO?平面BDE,?A1C∥平面BDE 又AC
1(2)∵AA1?平面ABCD,BD?平面ABCD,AA1?BD 又BD?AC,AC?AA1?A,?BD?平面A1AC,BD?平面BDE,?平面BDE?平面A1AC
考點(diǎn):線面平行的判定(利用三角形中位線),面面垂直的判定
12、已知ABCD是矩形,PA?平面ABCD,AB?2,PA?AD?4,E為BC的中點(diǎn).
(1)求證:DE?平面PAE;(2)求直線DP與平面PAE所成的角. 證明:在?ADE中,AD?AE?DE,?AE?DE ∵PA?平面ABCD,DE?平面ABCD,?PA?DE
又PA?AE?A,?DE?平面PAE(2)?DPE為DP與平面PAE所成的角
在Rt?
PAD,PD?Rt?
DCE中,DE?在Rt?DEP中,PD?2DE,??DPE?300 考點(diǎn):線面垂直的判定,構(gòu)造直角三角形
13、如圖,在四棱錐P?ABCD中,底面ABCD是?DAB?600且邊長(zhǎng)為a的菱形,側(cè)面PAD是等邊三角形,且平面PAD垂直于底面ABCD.
(1)若G為AD的中點(diǎn),求證:BG?平面PAD;(2)求證:AD?PB;證明:(1)?ABD為等邊三角形且G為AD的中點(diǎn),?BG?AD 又平面PAD?平面ABCD,?BG?平面PAD
(2)PAD是等邊三角形且G為AD的中點(diǎn),?AD?PG 且AD?BG,PG?BG?G,?AD?平面PBG,PB?平面PBG,?AD?PB
?平面MBD.
14、如圖1,在正方體ABCD?A1B1C1D1中,M為CC1 的中點(diǎn),AC交BD于點(diǎn)O,求證:AO
1證明:連結(jié)MO,A1M,∵DB⊥A1A,DB⊥AC,A1A?AC?A,?平面A1ACC1 ∴DB⊥A1O.∴DB⊥平面A1ACC1,而AO1
2設(shè)正方體棱長(zhǎng)為a,則AO?1
3a,MO2?a2. 2
4.在Rt△ACA1M2?11M中,9222
2OO?M?MO?A1M∵AO,∴Aa.11
∵OM∩DB=O,∴ A1O⊥平面MBD.
考點(diǎn):線面垂直的判定,運(yùn)用勾股定理尋求線線垂直 15、如圖2,在三棱錐A-BCD中,BC=AC,AD=BD,作BE⊥CD,E為垂足,作AH⊥BE于H.求證:AH⊥平面BCD.證明:取AB的中點(diǎn)F,連結(jié)CF,DF.∵AC?BC,∴CF?AB.
∵AD?BD,∴DF?AB.
又CF?DF?F,∴AB?平面CDF.∵CD?平面CDF,∴CD?AB.又CD?BE,BE?AB?B,∴CD?平面ABE,CD?AH.
∵AH?CD,AH?BE,CD?BE?E,∴ AH?平面BCD. 考點(diǎn):線面垂直的判定
16、證明:在正方體ABCD-A1B1C1D1中,A1C⊥平面BC1D
A
C
證明:連結(jié)AC
⊥AC∵BD∴ AC為A1C在平面AC上的射影
?BD?A1C
?
??A1C?平面BC1D
同理可證A1C?BC1?
考點(diǎn):線面垂直的判定,三垂線定理
17、如圖,過(guò)S引三條長(zhǎng)度相等但不共面的線段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求證:平面ABC⊥平面BSC.
證明∵SB=SA=SC,∠ASB=∠ASC=60°∴AB=SA=AC取BC的中點(diǎn)O,連AO、SO,則AO⊥BC,SO⊥BC,∴∠AOS為二面角的平面角,設(shè)SA=SB=SC=a,又∠BSC=90°,∴BC=2a,SO=2a,11
AO2=AC2-OC2=a2-2a2=2a2,∴SA2=AO2+OS2,∴∠AOS=90°,從而平面ABC⊥
平面BSC.
考點(diǎn):面面垂直的判定(證二面角是直二面角)
第四篇:學(xué)生版 高中數(shù)學(xué)立體幾何常考證明題匯總
立體幾何常考證明題匯總
1、已知四邊形ABCD是空間四邊形,E,F,G,H分別是邊AB,BC,CD,DA的中點(diǎn)
(1)求證:EFGH是平行四邊形
(2)若
BD=AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。
C D H考點(diǎn):證平行(利用三角形中位線),異面直線所成的角
2、如圖,已知空間四邊形ABCD中,BC?AC,AD?BD,E是AB的中點(diǎn)。求證:(1)AB?平面CDE;
(2)平面CDE?平面ABC。
ABC E 考點(diǎn):線面垂直,面面垂直的判定
3、如圖,在正方體ABCD?A1B1C1D1中,E是AA1的中點(diǎn),求證: A1C//平面BDE。
考點(diǎn):線面平行的判定
?
4、已知?ABC中?ACB?90,SA?面ABC,AD?SC,求證:AD?面SBC. B C D1 D B CD C
證明:
考點(diǎn):線面垂直的判定
ASBC5、已知正方體ABCD?A1B1C1D1,O是底ABCD對(duì)角線的交點(diǎn).D
1求證:(1)C1O∥面AB1D1;(2)A1C?面AB1D1.證明:
考點(diǎn):線面平行的判定(利用平行四邊形),線面垂直的判定
A
D
O
A1
C1
BCB6、正方體ABCD?A'B'C'D'中,求證:(1)AC?平面B'D'DB;(2)BD'?平面ACB'.考點(diǎn):線面垂直的判定
7、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;(2)若E、F分別是AA1,CC1的中點(diǎn),求證:平面EB1D1∥平面FBD. 證明:.
考點(diǎn):線面平行的判定(利用平行四邊形)
8、四面體ABCD中,AC?BD,E,F分別為AD,BC的中點(diǎn),且EF?
?BDC?90,求證:BD?平面ACD
?
A
B
AC,考點(diǎn):線面垂直的判定,三角形中位線,構(gòu)造直角三角形
9、如圖P是?ABC所在平面外一點(diǎn),PA?PB,CB?平面PAB,M是PC的中點(diǎn),N是AB上的點(diǎn),AN?3NB(1)求證:MN?AB;(2)當(dāng)?APB?90?,AB?2BC?4時(shí),求MN的長(zhǎng)。
考點(diǎn):三垂線定理
C
N
P
M
A
B10、如圖,在正方體ABCD?A1B1C1D1中,E、F、G分別是AB、AD、C1D1的中點(diǎn).求證:平面D1EF∥平面BDG.考點(diǎn):線面平行的判定(利用三角形中位線)
11、如圖,在正方體ABCD?A1B1C1D1中,E是AA1的中點(diǎn).(1)求證:A1C//平面BDE;(2)求證:平面A1AC?平面BDE.考點(diǎn):線面平行的判定(利用三角形中位線),面面垂直的判定
12、已知ABCD是矩形,PA?平面ABCD,AB?2,PA?AD?4,E為BC的中點(diǎn).
(1)求證:DE?平面PAE;(2)求直線DP與平面PAE所成的角.
考點(diǎn):線面垂直的判定,構(gòu)造直角三角形
13、如圖,在四棱錐P?ABCD中,底面ABCD是?DAB?60且邊長(zhǎng)
為a的菱形,側(cè)面PAD是等邊三角形,且平面PAD垂直于底面ABCD.(1)若G為AD的中點(diǎn),求證:BG?平面PAD;(2)求證:AD?PB;
(3)求二面角A?BC?P的大小.
考點(diǎn):線面垂直的判定,構(gòu)造直角三角形,面面垂直的性質(zhì)定理,二面角的求法(定義法)
14、如圖1,在正方體ABCD?A1B1C1D1中,M為CC1 的中點(diǎn),AC交BD于點(diǎn)O,求證:A1O?平面MBD. 證
考點(diǎn):線面垂直的判定,運(yùn)用勾股定理尋求線線垂直
15、如圖2,在三棱錐A-BCD中,BC=AC,AD=BD,作BE⊥CD,E為垂足,作AH⊥BE于H.求證:AH⊥平面BCD.證明:取AB的中點(diǎn)F,連結(jié)CF,DF.
考點(diǎn):線面垂直的判定
16、證明:在正方體ABCD-A1B1C1D1中,A1C⊥平面BC1D
A
考點(diǎn):線面垂直的判定
第五篇:0709 高中數(shù)學(xué)立體幾何常考證明題匯總 題目
立體幾何常考證明題 0709
考點(diǎn):證平行(利用三角形中位線),異面直線所成的角
1、已知四邊形ABCD是空間四邊形,E,F,G,H分別是邊AB,BC,CD,DA的中點(diǎn)(1)求證:EFGH是平行四邊形
(2)若
BD=AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。
考點(diǎn):線面垂直,面面垂直的判定
2、如圖,已知空間四邊形ABCD中,BC?AC,AD?BD,E是AB的中點(diǎn)。求證:(1)AB?平面CDE;
(2)平面CDE?平面ABC。
考點(diǎn):線面平行的判定
D
B
E
C
D
H
C
BDE。
3、如圖,在正方體ABCD?A1B1C1D1中,E是AA1的中點(diǎn),求證: AC1//平面
C
D
D C
考點(diǎn):線面垂直的判定
4、已知?ABC中?ACB?90,SA?面ABC,AD?SC,求證:AD?面SBC.
S
D
A
C
考點(diǎn):線面平行的判定(利用平行四邊形),線面垂直的判定
5、已知正方體ABCD?A1BC11D1,O是底ABCD對(duì)角線的交點(diǎn).求證:(1)C1O∥面AB1D1;(2)AC?面AB1D1.
1B
D1AD
考點(diǎn):線面垂直的判定
6、正方體ABCD?A'B'C'D'中,求證:(1)AC?平面B'D'DB;(2)BD'?平面
ACB'.C
1BCB
考點(diǎn):線面平行的判定(利用平行四邊形)
7、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;
(2)若E、F分別是AA1,CC1的中點(diǎn),求證:平面EB1D1∥平面FBD.
A
考點(diǎn):線面垂直的判定,三角形中位線,構(gòu)造直角三角形
8、四面體ABCD中,AC?BD,E,F分別為AD,BC的中點(diǎn),且EF?
AC,2?BDC?90,求證:BD?平面ACD
考點(diǎn):三垂線定理
9、如圖P是?ABC所在平面外一點(diǎn),PA?PB,CB?平面PAB,M是PC的中點(diǎn),N是AB上的點(diǎn),AN?3NB
(1)求證:MN?AB;(2)當(dāng)?APB?90,AB?2BC?4時(shí),求MN的長(zhǎng)。
P
M
C
N
A
B
考點(diǎn):線面平行的判定(利用三角形中位線)
10、如圖,在正方體ABCD?A1B1C1D1中,E、F、G分別是AB、AD、C1D1的中點(diǎn).求證:平面D1EF∥平面BDG
.考點(diǎn):線面平行的判定(利用三角形中位線),面面垂直的判定
11、如圖,在正方體ABCD?A1B1C1D1中,E是AA1的中點(diǎn).BDE;(1)求證:AC1//平面
(2)求證:平面A1AC?平面BDE
.考點(diǎn):線面垂直的判定,構(gòu)造直角三角形
12、已知ABCD是矩形,PA?平面ABCD,AB?2,PA?AD?4,E為BC的中點(diǎn).(1)求證:DE?平面PAE;(2)求直線DP與平面PAE所成的角.
考點(diǎn):線面垂直的判定,構(gòu)造直角三角形,面面垂直的性質(zhì)定理,二面角的求法(定義法)
13、如圖,在四棱錐P?ABCD中,底面ABCD是?DAB?60且邊長(zhǎng)為a的菱形,側(cè)面PAD是等邊三角形,且平面PAD垂直于底面ABCD.
(1)若G為AD的中點(diǎn),求證:BG?平面PAD;(2)求證:AD?PB;
(3)求二面角A?BC?P的大小.
考點(diǎn):線面垂直的判定,運(yùn)用勾股定理尋求線線垂直
14、如圖1,在正方體ABCD?A1B1C1D1中,M為CC1 的中點(diǎn),AC交BD于點(diǎn)O,求證:AO?平面MBD.
1考點(diǎn):線面垂直的判定
15、如圖2,在三棱錐A-BCD中,BC=AC,AD=BD,作BE⊥CD,E為垂足,作AH⊥BE于H.求證:AH⊥平面BCD.
考點(diǎn):線面垂直的判定,三垂線定理
16、證明:在正方體ABCD-A1B1C1D1中,A1C⊥平面BC1D
A
C
考點(diǎn):面面垂直的判定(證二面角是直二面角)
17、如圖,過(guò)S引三條長(zhǎng)度相等但不共面的線段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求證:平面ABC⊥平面BSC.