久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

2014考研數學一大綱 復習資料

時間:2019-05-12 20:34:08下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《2014考研數學一大綱 復習資料》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《2014考研數學一大綱 復習資料》。

第一篇:2014考研數學一大綱 復習資料

Born to win

每3名成功跨校跨專業學員有2名來自跨考

2014考研數學一大綱 復習資料

文章來源:跨考考研

2014年考研數學一大綱揭曉,考研數學一復習資料,考研數學一大綱復習重點規劃,下面考試介紹2014年考研數學一大綱全部內容。

一、試卷滿分及考試時間(跨考教育)

試卷滿分為150分,考試時間為180分鐘.

二、試卷內容結構

線性代數約22%

高等教學約56%

概率論與數理統計 約22%

三、試卷題型結構

單選題:8小題,每小題4分,共32分

填空題:6小題,每小題4分,共24分

解答題(包括證明題):9小題,共94分

高等數學(跨考教育)

一、函數、極限、連續

考試內容

函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、分段函數和隱函數基本初等函數的性質及其圖形初等函數函數關系的建立

數列極限與函數極限的定義及其性質函數的左極限和右極限無窮小量和無窮大量的概念及其關系無窮小量的性質及無窮小量的比較極限的四則運算極限存在的兩個準則:單調有界準則和夾逼準則兩個重要極限:

函數連續的概念函數間斷點的類型初等函數的連續性閉區間上連續函數的性質二、一元函數微分學(跨考教育)

考試內容

每3名成功跨校跨專業學員有2名來自跨考

導數和微分的概念導數的幾何意義和物理意義函數的可導性與連續性之間的關系平面曲線的切線和法線導數和微分的四則運算基本初等函數的導數復合函數、反函數、隱函數以及參數方程所確定的函數的微分法高階導數 一階微分形式的不變性微分中值定理洛必達(L’Hospital)法則函數單調性的判別函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑三、一元函數積分學(跨考教育)

考試內容

原函數和不定積分的概念不定積分的基本性質基本積分公式定積分的概念和基本性質定積分中值定理積分上限的函數及其導數牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數、三角函數的有理式和簡單無理函數的積分反常(廣義)積分定積分的應用

四、向量代數和空間解析幾何

考試內容

向量的概念向量的線性運算向量的數量積和向量積

向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標表達式及其運算單位向量方向數與方向余弦曲面方程和空間曲線方程的概念平面方程直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點到平面和點到直線的距離球面柱面旋轉曲面常用的二次曲面方程及其圖形空間曲線的參數方程和一般方程空間曲線在坐標面上的投影曲線方程

五、多元函數微分學

考試內容

多元函數的概念二元函數的幾何意義二元函數的極限與連續的概念 有界閉區域上多元連續函數的性質多元函數的偏導數和全微分全微分存在的必要條件和充分條件

多元復合函數、隱函數的求導法二階偏導數方向導數和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數的二階泰勒公式多元函數的極值和條件極值多元函數的最大值、最小值及其簡單應用

六、多元函數積分學

考試內容

二重積分與三重積分的概念、性質、計算和應用兩類曲線積分的概念、性質及計算兩類曲線積分的關系格林(Green)公式平面曲線積分與路徑無關的條件二元函

每3名成功跨校跨專業學員有2名來自跨考

數全微分的原函數兩類曲面積分的概念、性質及計算兩類曲面積分的關系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應用

七、無窮級數

考試內容

常數項級數的收斂與發散的概念收斂級數的和的概念級數的基本性質與收斂的必要條件幾何級數與級數及其收斂性正項級數收斂性的判別法交錯級數與萊布尼茨定理任意項級數的絕對收斂與條件收斂函數項級數的收斂域與和函數的概念冪級數及其收斂半徑、收斂區間(指開區間)和收斂域冪級數的和函數冪級數在其收斂區間內的基本性質 簡單冪級數的和函數的求法初等函數的冪級數展開式函數的傅里葉(Fourier)系數與傅里葉級數狄利克雷(Dirichlet)定理函數在上的傅里葉級數函數在上的正弦級數和余弦級數

八、常微分方程

考試內容

常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡單的變量代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質及解的結構定理二階常系數齊次線性微分方程高于二階的某些常系數齊次線性微分方程簡單的二階常系數非齊次線性微分方程 歐拉(Euler)方程微分方程的簡單應用

九、行列式

考試內容

行列式的概念和基本性質行列式按行(列)展開定理

十、矩陣

考試內容

矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣

矩陣的秩矩陣的等價分塊矩陣及其運算

十一、向量

考試內容

向量的概念向量的線性組合與線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量空

每3名成功跨校跨專業學員有2名來自跨考

間及其相關概念維向量空間的基變換和坐標變換過渡矩陣向量的內積線性無關向量組的正交規范化方法 規范正交基正交矩陣及其性質

十二、線性方程組

考試內容

線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解解空間非齊次線性方程組的通解

十三、矩陣的特征值和特征向量

考試內容

矩陣的特征值和特征向量的概念、性質相似變換、相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特征值、特征向量及其相似對角矩陣十四、二次型

考試內容

二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標準形和規范形用正交變換和配方法化二次型為標準形 二次型及其矩陣的正定性 概率論與數理統計

一、隨機事件和概率

考試內容

隨機事件與樣本空間事件的關系與運算完備事件組概率的概念概率的基本性質古典型概率幾何型概率 條件概率概率的基本公式事件的獨立性獨立重復試驗

二、隨機變量及其分布

考試內容

隨機變量隨機變量分布函數的概念及其性質離散型隨機變量的概率分布連續型隨機變量的概率密度常見隨機變量的分布隨機變量函數的分布

三、多維隨機變量及其分布

考試內容

每3名成功跨校跨專業學員有2名來自跨考

多維隨機變量及其分布二維離散型隨機變量的概率分布、邊緣分布和條件分布二維連續型隨機變量的概率密度、邊緣概率密度和條件密度隨機變量的獨立性和不相關性常用二維隨機變量的分布兩個及兩個以上隨機變量簡單函數的分布

四、隨機變量的數字特征

考試內容

隨機變量的數學期望(均值)、方差、標準差及其性質隨機變量函數的數學期望矩、協方差、相關系數及其性質

五、大數定律和中心極限定理

考試內容

切比雪夫(Chebyshev)不等式切比雪夫大數定律伯努利(Bernoulli)大數定律辛欽(Khinchine)大數定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列維-林德伯格(Levy-Lindberg)定理

六、數理統計的基本概念

考試內容

總體 個體 簡單隨機樣本 統計量 樣本均值 樣本方差和樣本矩 分布 分布 分布 分位數 正態總體的常用抽樣分布

七、參數估計

考試內容

點估計的概念估計量與估計值矩估計法最大似然估計法估計量的評選標準區間估計的概念單個正態總體的均值和方差的區間估計兩個正態總體的均值差和方差比的區間估計

八、假設檢驗

考試內容

顯著性檢驗假設檢驗的兩類錯誤單個及兩個正態總體的均值和方差的假設檢驗

文章來源:跨考考研

第二篇:考研數學一復習計劃

數學復習時間安排

大三第二學期:仔細看課本總結知識點,熟練掌握書中例題(至少看完兩本高數和線代,概率可以留到暑假做參考書時再復習)。

8月-9月底:做李永樂的復習全書先看書中的知識點總結,遇到不清楚的地方注意翻看課本。這個階段主要是為了明確考研要考什么和考到什么程度,追求的是系統地復習第一遍,速度盡量要快一些(如果復習到后邊時感覺前邊的又忘了,這個時候不要發愁,只要自己還有印象就行,一直往后進行就好了)。注意做一些簡單總結,不需要太系統。

9月-10月中旬:看第二遍復習全書按參考書的章節復習,復習哪一章時注意再對應地看一遍這一章課本的內容。這個階段主要是為了明確每一章會考到的知識點、題型,需要系統的總結一下各個知識點會以哪些題型考查,每種題型的方法有哪些(切記方法不需要掌握的太多,熟練地掌握一兩種適用范圍較廣的即可)。

10月中旬-11月中旬:十年真題第一遍一定要限時做,鍛煉應試的能力(考試過程中遇到困難時解決困難的能力)。平時做題時氣氛較輕松,為了達到考試的要求可以適當比規定的考試時間少一些。每做完一套題仔細訂正,做錯的題和不會做的題一定找到原因,注意總結。11月中旬-12月中旬:十年真題第二遍分題型分知識點做真題,把每一個知識點在考研中出現過的題目仔細分析,明確出題思路。這個階段還要注意把真題做熟練,常見的題型一定不能出錯。

12月中旬-考試:復習以前做的總結和真題中做錯的題目,不熟的地方再看看課本和復習全書,目的就是要查缺補漏。注意每天要做一部分題目,不能把做題感覺丟了,考試前的兩周可以把真題再限時地做一下,模擬一下考試。

參考書:李永樂復習全書和與這本書配套的十年真題(這兩本書的封皮是一樣的)

不要急著做真題,其實復習全書中就已經有很多真題了,做真題的目的是為了在限時做的過程中評價自己的能力,在分析的過程中明確出題思路并找到自己的不足。最關鍵的還是打基礎的階段,基礎打牢了什么題不會做?既然復習全書里已經有很多真題,所以沒必要擔心自己的復習思路是不是跟考研真題有偏差,按部就班地來就行了。

以上僅是鄙人自己的一點看法,僅供參考!在復習過程中結合實際隨時做出調整,逐步找到的適合自己的方法才是最好的方法!

第三篇:【考研數學輔導班】考研數學一:高等數學考研大綱_啟道

www.tmdps.cn

【考研數學輔導班】考研數學一:高等數學考研大綱_啟道

考研數學是考研公共課中的必考科目,根據各學科、專業對碩士研究生入學所應具備的數學知識和能力的不同要求,碩士研究生入學統考數學試卷分為3種:其中針對工科類的為數學

一、數學二;針對經濟學和管理學類的為數學三。

對于很多考生來說,考研數學是一門比較難的科目,很多同學為了取得更好的分數都會選擇報考研數學輔導班!但面對市場上如此多的考研數學輔導機構,應該如何選擇呢?到底哪個考研數學輔導班比較好呢?考生又該如何選擇呢?小編只推薦啟道考研數學輔導班.距離2019考研大綱的發布還有幾個月,為了便于現階段各位考生的備考,啟道小編特此整理出2018考研數學一的大綱。基本上每年的大綱不會有太大的變動,各位2019考研er可以參照去年的大綱進行復習備考。

?考試科目:高等數學、線性代數、概率論與數理統計 ?考試形式和試卷結構

一、試卷滿分及考試時間

試卷滿分為150分,考試時間為180分鐘.

二、答題方式

答題方式為閉卷、筆試.

三、試卷內容結構 高等數學約56% 線性代數約22% 概率論與數理統計約22%

四、試卷題型結構

單選題8小題,每小題4分,共32分 填空題6小題,每小題4分,共24分 解答題(包括證明題)9小題,共94分 ?高等數學

一、函數、極限、連續 考試內容

函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、分段

www.tmdps.cn

函數和隱函數基本初等函數的性質及其圖形初等函數函數關系的建立

數列極限與函數極限的定義及其性質函數的左極限和右極限無窮小量和無窮大量的概念及其關系無窮小量的性質及無窮小量的比較極限的四則運算極限存在的兩個準則:單調有界準則和夾逼準則兩個重要極限:

函數連續的概念函數間斷點的類型初等函數的連續性閉區間上連續函數的性質 考試要求

1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系. 2.了解函數的有界性、單調性、周期性和奇偶性.

3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念. 4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.

5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左極限、右極限之間的關系.

6.掌握極限的性質及四則運算法則.

7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.

8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.

9.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型. 10.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質. 二、一元函數微分學 考試內容

導數和微分的概念導數的幾何意義和物理意義函數的可導性與連續性之間的關系平面曲線的切線和法線導數和微分的四則運算基本初等函數的導數復合函數、反函數、隱函數以及參數方程所確定的函數的微分法高階導數一階微分形式的不變性微分中值定理洛必達(L’Hospital)法則函數單調性的判別函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑

考試要求

1.理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面

www.tmdps.cn

曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系.

2.掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的導數公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分.

3.了解高階導數的概念,會求簡單函數的高階導數.

4.會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數. 5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理.

6.掌握用洛必達法則求未定式極限的方法.

7.理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用.

8.會用導數判斷函數圖形的凹凸性(注:在區間內,設函數具有二階導數.當時,的圖形是凹的;當時,的圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形.

9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑. 三、一元函數積分學 考試內容

原函數和不定積分的概念不定積分的基本性質基本積分公式定積分的概念和基本性質定積分中值定理積分上限的函數及其導數牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數、三角函數的有理式和簡單無理函數的積分反常(廣義)積分定積分的應用

考試要求

1.理解原函數的概念,理解不定積分和定積分的概念.

2.掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法.

3.會求有理函數、三角函數有理式和簡單無理函數的積分. 4.理解積分上限的函數,會求它的導數,掌握牛頓-萊布尼茨公式. 5.了解反常積分的概念,會計算反常積分.

6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、www.tmdps.cn

旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)及函數的平均值.

四、向量代數和空間解析幾何 考試內容

向量的概念向量的線性運算向量的數量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標表達式及其運算單位向量方向數與方向余弦曲面方程和空間曲線方程的概念平面方程直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點到平面和點到直線的距離球面柱面旋轉曲面常用的二次曲面方程及其圖形空間曲線的參數方程和一般方程空間曲線在坐標面上的投影曲線方程

考試要求

1.理解空間直角坐標系,理解向量的概念及其表示.

2.掌握向量的運算(線性運算、數量積、向量積、混合積),了解兩個向量垂直、平行的條件.

3.理解單位向量、方向數與方向余弦、向量的坐標表達式,掌握用坐標表達式進行向量運算的方法.

4.掌握平面方程和直線方程及其求法.

5.會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關系(平行、垂直、相交等))解決有關問題.

6.會求點到直線以及點到平面的距離. 7.了解曲面方程和空間曲線方程的概念.

8.了解常用二次曲面的方程及其圖形,會求簡單的柱面和旋轉曲面的方程. 9.了解空間曲線的參數方程和一般方程.了解空間曲線在坐標平面上的投影,并會求該投影曲線的方程.

五、多元函數微分學 考試內容

多元函數的概念二元函數的幾何意義二元函數的極限與連續的概念有界閉區域上多元連續函數的性質多元函數的偏導數和全微分全微分存在的必要條件和充分條件

多元復合函數、隱函數的求導法二階偏導數方向導數和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數的二階泰勒公式多元函數的極值和條件極值多元函數的最大值、www.tmdps.cn

最小值及其簡單應用

考試要求

1.理解多元函數的概念,理解二元函數的幾何意義.

2.了解二元函數的極限與連續的概念以及有界閉區域上連續函數的性質.

3.理解多元函數偏導數和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性.

4.理解方向導數與梯度的概念,并掌握其計算方法. 5.掌握多元復合函數一階、二階偏導數的求法. 6.了解隱函數存在定理,會求多元隱函數的偏導數.

7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程. 8.了解二元函數的二階泰勒公式.

9.理解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,并會解決一些簡單的應用問題.

六、多元函數積分學 考試內容

二重積分與三重積分的概念、性質、計算和應用兩類曲線積分的概念、性質及計算兩類曲線積分的關系格林(Green)公式平面曲線積分與路徑無關的條件二元函數全微分的原函數兩類曲面積分的概念、性質及計算兩類曲面積分的關系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應用

考試要求

1.理解二重積分、三重積分的概念,了解重積分的性質,了解二重積分的中值定理. 2.掌握二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱面坐標、球面坐標).

3.理解兩類曲線積分的概念,了解兩類曲線積分的性質及兩類曲線積分的關系. 4.掌握計算兩類曲線積分的方法.

5.掌握格林公式并會運用平面曲線積分與路徑無關的條件,會求二元函數全微分的原函數.

6.了解兩類曲面積分的概念、性質及兩類曲面積分的關系,掌握計算兩類曲面積分的www.tmdps.cn

方法,掌握用高斯公式計算曲面積分的方法,并會用斯托克斯公式計算曲線積分.

7.了解散度與旋度的概念,并會計算.

8.會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質量、質心、形心、轉動慣量、引力、功及流量等).

七、無窮級數 考試內容

常數項級數的收斂與發散的概念收斂級數的和的概念級數的基本性質與收斂的必要條件幾何級數與級數及其收斂性正項級數收斂性的判別法交錯級數與萊布尼茨定理任意項級數的絕對收斂與條件收斂函數項級數的收斂域與和函數的概念冪級數及其收斂半徑、收斂區間(指開區間)和收斂域冪級數的和函數冪級數在其收斂區間內的基本性質簡單冪級數的和函數的求法初等函數的冪級數展開式函數的傅里葉(Fourier)系數與傅里葉級數狄利克雷(Dirichlet)定理函數在上的傅里葉級數函數在上的正弦級數和余弦級數

考試要求

1.理解常數項級數收斂、發散以及收斂級數的和的概念,掌握級數的基本性質及收斂的必要條件.

2.掌握幾何級數與級數的收斂與發散的條件.

3.掌握正項級數收斂性的比較判別法和比值判別法,會用根值判別法. 4.掌握交錯級數的萊布尼茨判別法.

5.了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系. 6.了解函數項級數的收斂域及和函數的概念.

7.理解冪級數收斂半徑的概念,并掌握冪級數的收斂半徑、收斂區間及收斂域的求法. 8.了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求一些冪級數在收斂區間內的和函數,并會由此求出某些數項級數的和.

9.了解函數展開為泰勒級數的充分必要條件.

10.掌握及的麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數間接展開為冪級數.

11.了解傅里葉級數的概念和狄利克雷收斂定理,會將定義在上的函數展開為傅里葉級數,會將定義在上的函數展開為正弦級數與余弦級數,會寫出傅里葉級數的和函數的表達式.

八、常微分方程

www.tmdps.cn

考試內容

常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡單的變量代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質及解的結構定理二階常系數齊次線性微分方程高于二階的某些常系數齊次線性微分方程簡單的二階常系數非齊次線性微分方程歐拉(Euler)方程微分方程的簡單應用

考試要求

1.了解微分方程及其階、解、通解、初始條件和特解等概念. 2.掌握變量可分離的微分方程及一階線性微分方程的解法.

3.會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程.

4.會用降階法解下列形式的微分方程:和. 5.理解線性微分方程解的性質及解的結構.

6.掌握二階常系數齊次線性微分方程的解法,并會解某些高于二階的常系數齊次線性微分方程.

7.會解自由項為多項式、指數函數、正弦函數、余弦函數以及它們的和與積的二階常系數非齊次線性微分方程.

8.會解歐拉方程.

9.會用微分方程解決一些簡單的應用問題.

以上是高數一高等數學考研大綱,希望大家能將各個知識點一一掌握。最后,啟道考研數學輔導班,期待大家取得優異成績!

第四篇:2018年數學一考試大綱匯總

2018年數學一考試大綱

考試科目:高等數學、線性代數、概率論與數理統計

考試形式和試卷結構

一、試卷滿分及考試時間

試卷滿分為150分,考試時間為180分鐘.

二、答題方式 答題方式為閉卷、筆試

三、試卷內容結構 高等教學 約56% 線性代數 約22% 概率論與數理統計 約22%

四、試卷題型結構

單選題 8小題,每小題4分,共32分 填空題 6小題,每小題4分,共24分 解答題(包括證明題)9小題,共94分

高等數學

一、函數、極限、連續 考試內容

函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 復合函數、反函數、分段函數和隱函數 基本初等函數的性質及其圖形

初等函數 函數關系的建立

數列極限與函數極限的定義及其性質 函數的左極限和右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個準則:單調有界準則和夾逼準則 兩個重要極限:

函數連續的概念 函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質 考試要求

1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.

2.了解函數的有界性、單調性、周期性和奇偶性.

3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念. 4.掌握基本初等函數的性質及其圖形,了解初等函數的概念. 5.理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左極限、右極限之間的關系. 6.掌握極限的性質及四則運算法則.

7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.

8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.

9.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.

10.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),并會應用這些性質. 二、一元函數微分學 考試內容

導數和微分的概念 導數的幾何意義和物理意義 函數的可導性與連續性之間的關系平面曲線的切線和法線 導數和微分的四則運算 基本初等函數的導數 復合函數、反函數、隱函數以及參數方程所確定的函數的微分法 高階導數 一階微分形式的不變性 微分中值定理 洛必達(L'Hospital)法則 函數單調性的判別 函數的極值 函數圖形的凹凸性、拐點及漸近線 函數圖形的描繪 函數的最大值與最小值 弧微分 曲率的概念 曲率圓與曲率半徑 考試要求

1.理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系. 2.掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的導數公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分.

3.了解高階導數的概念,會求簡單函數的高階導數.

4.會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數.

5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理. 6.掌握用洛必達法則求未定式極限的方法.

7.理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用.

8.會用導數判斷函數圖形的凹凸性(注:在區間 內,設函數 具有二階導數.當 時,的圖形是凹的;當 時,的圖形是凸的),會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形. 9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑. 三、一元函數積分學 考試內容

原函數和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數及其導數 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數、三角函數的有理式和簡單無理函數的積分 反常(廣義)積分 定積分的應用 考試要求

1.理解原函數的概念,理解不定積分和定積分的概念.

2.掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法.

3.會求有理函數、三角函數有理式和簡單無理函數的積分. 4.理解積分上限的函數,會求它的導數,掌握牛頓-萊布尼茨公式.

5.了解反常積分的概念,會計算反常積分.

6.掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心、形心等)及函數的平均值.

四、向量代數和空間 解析幾何 考試內容

向量的概念 向量的線性運算 向量的數量積和向量積 向量的混合積 兩向量垂直、平行的條件 兩向量的夾角 向量的坐標表達式及其運算 單位向量 方向數與方向余弦 曲面方程和空間曲線方程的概念平面方程 直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點到平面和點到直線的距離 球面 柱面 旋轉曲常用的二次曲面方程及其圖形 空間曲線的參數方程和一般方程 空間曲線在坐標面上的投影曲線方程 考試要求

1.理解空間直角坐標系,理解向量的概念及其表示.

2.掌握向量的運算(線性運算、數量積、向量積、混合積),了解兩個向量垂直、平行的條件.

3.理解單位向量、方向數與方向余弦、向量的坐標表達式,掌握用坐標表達式進行向量運算的方法. 4.掌握平面方程和直線方程及其求法.

5.會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關系(平行、垂直、相交等))解決有關問題.

6.會求點到直線以及點到平面的距離. 7.了解曲面方程和空間曲線方程的概念.

8.了解常用二次曲面的方程及其圖形,會求簡單的柱面和旋轉曲面的方程.

9.了解空間曲線的參數方程和一般方程.了解空間曲線在坐標平面上的投影,并會求該投影曲線的方程.

五、多元函數微分學 考試內容

多元函數的概念 二元函數的幾何意義 二元函數的極限與連續的概念 有界閉區域上多元連續函數的性質 多元函數的偏導數和全微分 全微分存在的必要條件和充分條件

多元復合函數、隱函數的求導法 二階偏導數 方向導數和梯度 空間曲線的切線和法平面 曲面的切平面和法線 二元函數的二階泰勒公式 多元函數的極值和條件極值 多元函數的最大值、最小值及其簡單應用 考試要求

1.理解多元函數的概念,理解二元函數的幾何意義.

2.了解二元函數的極限與連續的概念以及有界閉區域上連續函數的性質.

3.理解多元函數偏導數和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性. 4.理解方向導數與梯度的概念,掌握其計算方法.

5.掌握多元復合函數一階、二階偏導數求法. 6.了解隱函數存在定理,會求多元隱函數的偏導數.

7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程.

8.了解二元函數的二階泰勒公式.

9.理解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,并會解決一些簡單的應用問題.

六、多元函數積分學 考試內容

二重積分與三重積分的概念、性質、計算兩類曲線積分的概念、性質及計算兩類曲線積分的關系 格林(Green)公式平面曲線積分與路徑無關的條件 二元函數全微分的原函數 兩類曲面積分的概念、性質及計算 兩類曲面積分的關系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及計算 曲線積分和曲面積分的應用 考試要求

1.理解二重積分、三重積分的概念,了解重積分的性質,了解二重積分的中值定理.

2.掌握二重積分的計算方法(直角坐標、極坐標),會計算三重積分(直角坐標、柱面坐標、球面坐標).

3.理解兩類曲線積分的概念,了解兩類曲線積分的性質及兩類曲線積分的關系.

4.掌握計算兩類曲線積分的方法.

5.掌握格林公式并會運用平面曲線積分與路徑無關的條件,會求二元函數全微分的原函數.

6.了解兩類曲面積分的概念、性質及兩類曲面積分的關系,掌握計算兩類曲面積分的方法,掌握用高斯公式計算曲面積分的方法,并會用斯托克斯公式計算曲線積分. 7.了解散度與旋度的概念,并會計算.

8.會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質量、質心、形心、轉動慣量、引力、功及流量等

七、無窮級數 考試內容

常數項級數的收斂與發散的概念 收斂級數的和的概念 級數的基本性質與收斂的必要條件 幾何級數與 級數及其收斂性 正項級數收斂性的判別法交錯級數與萊布尼茨定理任意項級數的絕對收斂與條件收斂 函數項級數的收斂域與和函數的概念 冪級數及其收斂半徑、收斂區間(指開區間)和收斂域 冪級數的和函數 冪級數在其收斂區間內的基本性質 簡單冪級數的和函數的求法 初等函數的冪級數展開式 函數的傅里葉(Fourier)系數與傅里葉級數 狄利克雷(Dirichlet)定理 函數在 上的傅里葉級數 函數在 上的正弦級

數和余弦級數 考試要求

1.理解常數項級數收斂、發散以及收斂級數的和的概念,掌握級數的基本性質及收斂的必要條件.

2.掌握幾何級數與 級數的收斂與發散的條件.

3.掌握正項級數收斂性的比較判別法和比值判別法,會用根值判別法.

4.掌握交錯級數的萊布尼茨判別法.

5.了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系.

6.了解函數項級數的收斂域的概念.

7.理解冪級數收斂半徑的概念,并掌握冪級數的收斂半徑、收斂區間及收斂域的求法.

8.了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求一些冪級數在收斂區間內的和函數,并會由此求出某些數項級數的和.

9.了解函數展開為泰勒級數的充分條件.

10.掌握麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數間接展開為冪級數.

八、常微分方程 考試內容

常微分方程的基本概念 變量可分離的微分方程 齊次微分方程

一階線性微分方程 伯努利(Bernoulli)方程 全微分方程 可用簡單的變量代換求解的某些微分方程 可降階的高階微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程 高于二階的某些常系數齊次線性微分方程 簡單的二階常系數非齊次線性微分方程 歐拉(Euler)方程 微分方程的簡單應用 考試要求

1.了解微分方程及其階、解、通解、初始條件和特解等概念. 2.掌握變量可分離的微分方程及一階線性微分方程的解法. 3.會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程.

4.會用降階法解下列形式的微分方程: 和 . 5.理解線性微分方程解的性質及解的結構.

6.掌握二階常系數齊次線性微分方程的解法,并會解某些高于二階的常系數齊次線性微分方程.

7.會解自由項為多項式、指數函數、正弦函數、余弦函數以及它們的和與積的二階常系數非齊次線性微分方程. 8.會解歐拉方程.

9.會用微分方程解決一些簡單的應用問題.

線性代數

一、行列式 考試內容

行列式的概念和基本性質 行列式按行(列)展開定理 考試要求

1.了解行列式的概念,掌握行列式的性質.

2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.

二、矩陣 考試內容

矩陣的概念 矩陣的線性運算 矩陣乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算 考試要求

1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質.

2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.

3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.

三、向量 考試內容

向量的概念 向量的線性組合與線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量空間及其相關概念 維向量空間的基變換和坐標變換 過渡矩陣 向量的內積 線性無關向量組的正交規范化方法 規范正交基 正交矩陣及其性質 考試要求

1.理解 維向量、向量的線性組合與線性表示的概念.

2.理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法.

3.理解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩.

4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系.

5.了解 維向量空間、子空間、基底、維數、坐標等概念. 6.了解基變換和坐標變換公式,會求過渡矩陣.

7.了解內積的概念,掌握線性無關向量組正交規范化的施密特(Schmidt)方法.

8.了解規范正交基、正交矩陣的概念以及它們的性質.

四、線性方程組 考試內容

線性方程組的克拉默(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有 解的充分必要條件 線性方程組解的性質和解的結構 齊次線性方程組的基礎解系和通解 解空間 非齊次線性方程組的通解 考試要求

1.會用克拉默法則.

2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.

3.理解齊次線性方程組的基礎解系、通解及解空間的概念,掌握齊次線性方程組的基礎解系和通解的求法.

4.理解非齊次線性方程組解的結構及通解的概念.

五、矩陣的特征值和特征向量 考試內容

矩陣的特征值和特征向量的概念相似變換、相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值、特征向量及其相似對角矩陣 考試要求

1.理解矩陣的特征值和特征向量的概念及性質,會求矩陣的特征值和特征向量.

2.理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法. 3.掌握實對稱矩陣的特征值和特征向量的性質 六、二次型 考試內容

二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標準形和規范形 用正交變換和配方法化二次型為標準形 二次型及其矩陣的正定性

考試要求

1.掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變換與合同矩陣的概念,了解二次型的標準形、規范形的概念以及慣性定理.

2.掌握用正交變換化二次型為標準形的方法,會用配方法化二次型為標準形

概率論與數理統計

一、隨機事件和概率 考試內容

隨機事件與樣本空間 事件的關系與運算 完備事件組 概率的概念 概率的基本性質 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復試驗 考試要求

1.了解樣本空間(基本事件空間)概念,理解隨機事件的概念,掌握事件的關系及運算.

2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式.

二、隨機變量及其分布 考試內容

隨機變量 隨機變量分布函數的概念及其性質 離散型隨機變量的概

率分布 連續型隨機變量的概率密度 常見隨機變量的分布 隨機變量函數的分布 考試要求

1.理解隨機變量的概念,理解分布函數概念及性質,會計算與隨機變量相聯系的事件的概率.

2.理解離散型隨機變量及其概率分布的概念,掌握0-1分布、二項分布、幾何分布、超幾何分布、泊松(Poisson)分布 及其應用. 3.了解泊松定理的結論和應用條件,會用泊松分布近似表示二項分布.

4.理解連續型隨機變量及其概率密度的概念,掌握均勻分布、正態分布、指數分布及其應用,其中參數為 的指數分布 的概率密度為

三、多維隨機變量及其分布 考試內容

多維隨機變量及其分布 二維離散型隨機變量的概率分布、邊緣分布和條件分布 二維連續型隨機變量的概率密度、邊緣概率密度和條件密度 隨機變量的獨立性和不相關性 常用二維隨機變量的分布 兩個及兩個以上隨機變量簡單函數的分布 考試要求

1.理解多維隨機變量的概念,理解多維隨機變量的分布的概念和性質,理解二維離散型隨機變量的概率分布、邊緣分布和條件分布,理解二維連續型隨機變量的概率密度、邊緣密度和條件密度,會求與二維隨機變量相關事件的概率.

2.理解隨機變量的獨立性及不相關性的概念,掌握隨機變量相互獨立的條件.

3.掌握二維均勻分布,了解二維正態分布 的概率密度,理解其中參數的概率意義.

4.會求兩個隨機變量簡單函數的分布,會求多個相互獨立隨機變量簡單函數的分布.

四、隨機變量的數字特征 考試內容

隨機變量的數學期望(均值)、方差、標準差及其性質 隨機變量函數的數學期望 矩、協方差、相關系數及其性質 考試要求

1.理解隨機變量數字特征(數學期望、方差、標準差、矩、協方差、相關系數)的概念,會運用數字特征的基本性質,并掌握常用分布的數字特征.

2.會求隨機變量函數的數學期望.

五、大數定律和中心極限定理 考試內容

切比雪夫(Chebyshev)不等式 切比雪夫大數定律 伯努利(Bernoulli)大數定律 辛欽(Khinchine)大數定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列維-林德伯格(Levy-Lindberg)定理 考試要求

1.了解切比雪夫不等式.

2.了解切比雪夫大數定律、伯努利大數定律和辛欽大數定律(獨立同分布隨機變量序列的大數定律).

3.了解棣莫弗-拉普拉斯定理(二項分布以正態分布為極限分布)和列維-林德伯格定理(獨立同分布隨機變量序列的中心極限定理).

六、數理統計的基本概念 考試內容

總體 個體 簡單隨機樣本 統計量 樣本均值 樣本方差和樣本矩 分布 分布 分布 分位數 正態總體的常用抽樣分布 考試要求

1.理解總體、簡單隨機樣本、統計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為

2.了解 分布、分布和 分布的概念及性質,了解上側 分位數的概念并會查表計算.

3.了解正態總體的常用抽樣分布.

七、參數估計 考試內容

點估計的概念 估計量與估計值 矩估計法 最大似然估計法 估計量的評選標準 區間估計的概念 單個正態總體的均值和方差的區間估計 兩個正態總體的均值差和方差比的區間估計 考試要求

1.理解參數的點估計、估計量與估計值的概念.

2.掌握矩估計法(一階矩、二階矩)和最大似然估計法.

3.了解估計量的無偏性、有效性(最小方差性)和一致性(相合性)的概念,并會驗證估計量的無偏性.

八、假設檢驗 考試內容

顯著性檢驗 假設檢驗的兩類錯誤 單個及兩個正態總體的均值和方差的假設檢驗 考試要求

1.理解顯著性檢驗的基本思想,掌握假設檢驗的基本步驟,了解假設檢驗可能產生的兩類錯誤.

2.掌握單個及兩個正態總體的均值和方差的假設檢驗.

第五篇:考研數學一線性代數公式

1、行列式

1.n行列式共有n2個元素,展開后有n!項,可分解為2n行列式; 2.行列式的重要公式:

①、主對角行列式:主對角元素的乘積;

n(n?1)

②、副對角行列式:副對角元素的乘積??(?1)③、上、下三角行列式(④、?◤?

?◥???◣?

2;):主對角元素的乘積;

n(n?1)

2和

?◢?

:副對角元素的乘積??(?1)

AC

OB?AO

CB

;、CB

AO

?OB

AC

?(?1)

m?n

⑤、拉普拉斯展開式:

?ABAB

⑥、范德蒙行列式:大指標減小指標的連乘積; 3.證明

①、A?0的方法:

;③構造齊次方程組Ax

?0

A??A,證明其有非零解;④證明r(A)?

n

⑤證明0是其特征值;

2、矩陣

1.是n階可逆矩陣:

?A?0(是非奇異矩陣);

A

??????

r(A)?n

A

(是滿秩矩陣)

有非零解;的行(列)向量組線性無關;

?0

齊次方程組Ax

?b?R

n,Ax

?b

總有唯一解;

A

與E等價;

可表示成若干個初等矩陣的乘積; 的特征值全不為0;

T

AA

????

AA

A

是正定矩陣;的行(列)向量組是Rn的一組基; 是Rn中某兩組基的過渡矩陣;

?AA?AE

*

A

2.對于n階矩陣A:AA*3.(A

?

1無條件恒成立;

?1)?(A)

T

T

**?1

(A

?1)

T

?(A)

*

*

T

(A)

*T

?(A)

?1

T*

?1

(AB)?BA

T

(AB)?BA

*

(AB)?B

?1

A

4.矩陣是表格,推導符號為波浪號或箭頭;行列式是數值,可求代數和; 5.關于分塊矩陣的重要結論,其中均A、B可逆:

?A1?A??

???

A

2?

?????As?

?

1,則:Ⅰ、A?A1A2?As

;Ⅱ、A

?

1?A1???????

?1

?1

A

2?

As

??O?

?1?1

?1

???????;

?A

②、?

?O?A

④、?

?O

O??B?C??B?

?

1?A???OO??1?B??A

?1

?O

;(主對角分塊)③、?

?BCB

?

1?1

A??O?

?1

?O??

?1?A

?1

B

;(副對角分塊)

O??1?B?

?1

?A???O

?1

B

????A

;(拉普拉斯)⑤、?

?CO??B??A??

?1?

1??BCA

;(拉普拉斯)

3、矩陣的初等變換與線性方程組

1.一個m

?n

矩陣A,總可經過初等變換化為標準形,其標準形是唯一確定的:F

?Er???OO??O?m?n;

等價類:所有與A等價的矩陣組成的一個集合,稱為一個等價類;標準形為其形狀最簡單的矩陣; 對于同型矩陣A、B,若r(A)

?r(B)?????A?B;

2.行最簡形矩陣:

①、只能通過初等行變換獲得;②、每行首個非0元素必須為1;③、每行首個非0元素所在列的其他元素必須為0;

3.初等行變換的應用:(初等列變換類似,或轉置后采用初等行變換)

①、若(A?,?E)???(E?,?X),則A可逆,且X②、對矩陣(A,B)做初等行變化,當

A

r

?A

E

?

1;

就變成A

?1

變為時,B

B,即:(A,B)???(E,A?1B);

r

c

③、求解線形方程組:對于n個未知數n個方程Ax

?b,如果(A,b)?(E,x),則A可逆,且x

?A

?

1b;

4.初等矩陣和對角矩陣的概念:

①、初等矩陣是行變換還是列變換,由其位置決定:左乘為初等行矩陣、右乘為初等列矩陣;

??1?

②、???

???

?

2?

??????n?,左乘矩陣A,?i乘A的各行元素;右乘,?i乘A的各列元素;

③、對調兩行或兩列,符號E(i,5.矩陣秩的基本性質:

①、0?r(Am?n)?min(m

⑥、r(A?

j),且E(i,j)

?

1??

?E(i,j),例如:1

???

???1??

?1

?

??1???

???1??;,n);②、r(A)?r(A)

T;③、若A

?B,則r(A)?r(B);④、若P、Q可逆,則

;(※)

r(A)?r(PA)?r(AQ)?r(PAQ)

;(可逆矩陣不影響矩陣的秩)⑤、max(r(A),r(B))?;(※)⑦、r(AB)?

min(r(A),r(B))

r(A,B)?r(A)?r(B)

B)?r(A)?r(B)

?n

;(※)

⑧、如果A是m矩陣,B是n?s矩陣,且AB

?0

n

?0,則:(※)

Ⅰ、B的列向量全部是齊次方程組AXⅡ、r(A)?r(B)?

解(轉置運算后的結論);;

⑨、若A、B均為n階方陣,則r(AB)?

r(A)?r(B)?n

6.三種特殊矩陣的方冪:

①、秩為1的矩陣:一定可以分解為列矩陣(向量)?行矩陣(向量)的形式,再采用結合律;

?1?

②、型如?0

?0?

a10

c??b?1??的矩陣:利用二項展開式;③、利用特征值和相似對角化:

7.伴隨矩陣:

?n

?

①、伴隨矩陣的秩:r(A*)??

1??0

r(A)?n?????r(A)?n?1r(A)?n?1

*

?1

*;

②、伴隨矩陣的特征值:

A

?

??(AX??X,A?AA???AX?

A

?

X)

;③、A*

?AA

?

1、A

*

?A

n?

18.關于A矩陣秩的描述:

①、r(A)?n,A中有n階子式不為0,n?1階子式全部為0;(兩句話)

②、r(A)?

n,A中有n階子式全部為0;③、r(A)?

n,A中有n階子式不為0;

9.線性方程組:Ax?b,其中A為m?n矩陣,則:

①、m與方程的個數相同,即方程組Ax?b有m個方程;

②、n與方程組得未知數個數相同,方程組Ax

?b

為n元方程;

10.線性方程組Ax?b的求解:

①、對增廣矩陣B進行初等行變換(只能使用初等行變換);②、齊次解為對應齊次方程組的解;

③、特解:自由變量賦初值后求得;

4、向量組的線性相關性

11.①、向量組的線性相關、無關 ?Ax?0有、無非零解;(齊次線性方程組)

②、向量的線性表出?Ax?b是否有解;(線性方程組)③、向量組的相互線性表示 ?AX?B是否有解;(矩陣方程)

12.矩陣Am?n與Bl?n行向量組等價的充分必要條件是:齊次方程組Ax?0和Bx?0同解;(P101例14)13.14.r(AA)?r(A)

n

T

;(P101例15)

???0

維向量線性相關的幾何意義:

;③、?,?,?線性相關 ?

?,?,?

①、?線性相關

②、?,?線性相關

共面;

??,?

坐標成比例或共線(平行);

15.線性相關與無關的兩套定理:

若?1,?2,?,?s線性相關,則?1,?2,?,?s,?s?1必線性相關;

若?1,?2,?,?s線性無關,則?1,?2,?,?s?1必線性無關;(向量的個數加加減減,二者為對偶)若r維向量組A的每個向量上添上n

?r

個分量,構成n維向量組B:

若A線性無關,則B也線性無關;反之若B線性相關,則A也線性相關;(向量組的維數加加減減)簡言之:無關組延長后仍無關,反之,不確定;

16.向量組A(個數為r)能由向量組B(個數為s)線性表示,且A線性無關,則r

向量組A能由向量組B線性表示,則r(A)?向量組A能由向量組B線性表示?

AX?B

r(B)

?s

(二版P74定理7);

;(P86定理3)

r(A)?r(A,B)

有解;?

(P85定理2)

向量組A能由向量組B等價??r(A)?①、矩陣行等價:A~

cr

r(B)?r(A,B)

(P85定理2推論)

?P1P2?Pl

17.方陣A可逆?存在有限個初等矩陣P1,P2,?,Pl,使A

B?PA?B;

?0

(左乘,P可逆)?

Ax?0

與Bx同解

18.19.20.21.②、矩陣列等價:A~B?AQ?B(右乘,Q可逆);③、矩陣等價:A~B?PAQ?B(P、Q可逆); 對于矩陣Am?n與Bl?n:

①、若A與B行等價,則A與B的行秩相等;

②、若A與B行等價,則Ax?0與Bx?0同解,且A與B的任何對應的列向量組具有相同的線性相關性; ④、矩陣A的行秩等于列秩; 若Am?sBs?n?Cm?n,則:

①、C的列向量組能由A的列向量組線性表示,B為系數矩陣;

②、C的行向量組能由B的行向量組線性表示,AT為系數矩陣;(轉置)

齊次方程組Bx?0的解一定是ABx?0的解,考試中可以直接作為定理使用,而無需證明;

①、ABx?0 只有零解???Bx?0只有零解;②、Bx?0 有非零解???ABx?0一定存在非零解; 設向量組Bn?r:b1,b2,?,br可由向量組An?s:a1,a2,?,as線性表示為:(P110題19結論)

(B?AK)

其中K為s?r,且A線性無關,則B組線性無關?r(K)?r;(B與K的列向量組具有相同線性相關性)(必要性:?r?r(B)?r(AK)?r(K),r(K)?r,?r(K)?r;充分性:反證法)

(b1,b2,?,br)?(a1,a2,?,as)K

?m

注:當r?s時,K為方陣,可當作定理使用; 22.①、對矩陣Am?n,存在Qn?m,AQ?Em ?r(A)

②、對矩陣Am?n,存在Pn?m,PA

?En、Q的列向量線性無關;(P87)、P的行向量線性無關;

?r(A)?n

23.若?*為Ax

?b的一個解,?1,?2,?,?n?r為Ax

?0的一個基礎解系,則?*,?1,?2,?,?n?r線性無關

5、相似矩陣和二次型

1.正交矩陣?

AA?E

T

或A?

1?A

T

(定義),性質:

?1???0

i?ji?j

(i,j?1,2,?n)

①、A的列向量都是單位向量,且兩兩正交,即aiTaj②、若A為正交矩陣,則A?

1?A

T;

也為正交陣,且

A??1;

③、若A、B正交陣,則AB也是正交陣;注意:求解正交陣,千萬不要忘記施密特正交化和單位化; 2.施密特正交化:(a1,a2,?,ar)

b1?a1;

b2?a2?

[b1,a2][b1,b1]

?b

1???

[b1,ar][b1,b1]

?b1?

[b2,ar][b2,b2]

?b2???

[br?1,ar][br?1,br?1]

?br?1

br?ar?

;

3.對于普通方陣,不同特征值對應的特征向量線性無關;對于實對稱陣,不同特征值對應的特征向量正交; 4.①、A與B等價 ?A經過初等變換得到B;

?PAQ?B,P、Q可逆; ?r(A)?r(B),A、B同型; ②、A與B合同 ?CTAC?B,其中可逆;

TT

?xAx與xBx有相同的正、負慣性指數; ③、A與B相似 ?P?1AP?B; 5.相似一定合同、合同未必相似;

若C為正交矩陣,則CTAC?B?A?B,(合同、相似的約束條件不同,相似的更嚴格); 6.n元二次型xTAx為正定:

T

?A的正慣性指數為n?A與E合同,即存在可逆矩陣C,使CAC?E?A的所有特征值均為正數;?A的各階順序主子式均大于0?aii?0,A?0;(必要條件)

下載2014考研數學一大綱 復習資料word格式文檔
下載2014考研數學一大綱 復習資料.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    2013考研數學一真題

    2013碩士研究生入學考試數學一試題x?arctanx?c,其中k,c為常數,且c?0,則 x?0xk1111A. k?2,c?? B. k?2,c? C. k?3,c?? D. k?3,c?22331. 已知極限lim2.曲面x2?cos(xy)?yz?x?0在點(0,1,?1)處的切平面方......

    考研數學一144分經驗之談

    去年的這個時候,我們也在為考研而焦灼,特別理解還處在水深火熱之中的后來者,希望我的經驗和教訓能給大家提供一些幫助。我考的是北郵通信專業,總分407,考的是數一,144分,關于考研數......

    2019考研數學一證明題答題技巧(模版)

    2019考研數學一證明題答題技巧 來源:智閱網 證明題是數學題型中考生比較頭疼的一類。所以,咱們從基礎復習開始,就需要大家多多總結,掌握方法技巧。所以,一起來看看強化階段時,應該......

    2011考研數學一149分的經驗之談

    2011考研數學一149分的經驗之談我是11年的考生,數學149分,來談一下我的復習經驗,不一定對所有人都適用,不過大家可以參考一下。在文章中我推薦了幾本書,不要以為我是賣書的托啊!......

    文都首發2014考研數學新大綱:數學一、二、三無變化

    文都首發2014考研數學新大綱:數學一、二、三均無變化 來源:文都教育 2014考研數學新大綱已經發布,廣大考生最關注的就是新大綱較上一年舊大綱的考試內容和考試要求有無變化、有......

    2019考研數學一復習之如何答證明題

    2019考研數學一復習之如何答證明題 來源:智閱網 證明題是數學題型中考生比較頭疼的一類,從基礎復習開始,就需要大家多多總結,掌握方法技巧。所以,一起來看看證明題的解題技巧吧! 1......

    地理信息系統考研復習資料(必備)

    華南師范大學 地理信息系統考研復習資料 1 地理信息的概念 定義:是指與研究對象的空間地理分布有關的信息,它表示地理系統諸要素的數量、質量、分布特征,相互聯系和變化規律......

    2019考研數學一證明題答題技巧介紹(合集五篇)

    2019考研數學一證明題答題技巧介紹 來源:智閱網 證明題是數學題型中考生比較頭疼的一類。所以,咱們從基礎復習開始,就需要大家多多總結,掌握方法技巧。所以,一起來看看沖刺階段時......

主站蜘蛛池模板: 精品无码人妻一区二区三区品| 亚洲日韩av一区二区三区四区| 99热久久最新地址| 亚洲精品无码专区在线播放| 337p日本欧洲亚洲大胆张筱雨| 成人亚洲a片v一区二区三区动漫| 久久中文字幕人妻熟女| 97久久国产亚洲精品超碰热| 色欲天天天综合网免费| 大肉大捧一进一出好爽视频mba| 亚洲精品国产av成拍色拍个| 欧美乱妇高清无乱码| 精品久久久久久无码人妻蜜桃| 国产成人精品优优av| 一二三四在线视频观看社区| 在线成人一区二区| 国精产品一区二区三区有限公司| 久久的爱久久久久的快乐| 亚洲人成中文字幕在线观看| 国产人成无码视频在线| 人人狠狠综合久久88成人| 狠狠色噜噜狠狠狠狠97首创麻豆| 国产人妻无码一区二区三区免费| 国产精品白浆精子像水合集| 丁香五月缴情综合网| 亚洲综合无码无在线观看| 少妇乱人伦无码视频| 风流少妇又紧又爽又丰满| 精品久久久久久无码中文野结衣| 无码精品人妻一区二区三区98| 偷看农村女人做爰毛片色| 国产精品爆乳奶水无码视频| 亚洲乱码中文字幕综合234| 天堂va欧美ⅴa亚洲va在线| 成人性做爰aaa片免费看| 性欧美长视频免费观看不卡| 亚洲国产精品久久久天堂不卡海量| 门国产乱子视频观看| 免费无码观看的av在线播放| 成人免费无码不卡毛片视频| 一本大道大臿蕉视频无码|