第一篇:高二數學圓教案
競賽講座09
-圓
基礎知識
如果沒有圓,平面幾何將黯然失色.
圓是一種特殊的幾何圖形,應當掌握圓的基本性質,垂線定理,直線與圓的位置關系,和圓有關的角,切線長定理,圓冪定理,圓和圓的位置關系,多邊形與圓的位置關系.
圓的幾何問題不是獨立的,它與直線形結合起來,將構成許多豐富多彩的、漂亮的幾何問題,“三角形的心”,“幾何著名的幾何定理”,“共圓、共線、共點”,“直線形” 將構成圓的綜合問題的基礎.
本部分著重研究下面幾個問題: 1.角的相等及其和、差、倍、分; 2.線段的相等及其和、差、倍、分; 3.二直線的平行、垂直; 4.線段的比例式或等積式; 5.直線與圓相切;
6.競賽數學中幾何命題的等價性.
命題分析
例1.已知A為平面上兩個半徑不等的⊙O1和⊙O2的一個交點,兩圓的外公切線分別為P1P2,Q1Q2,M1、M2分別為P1Q1、P2Q2的中點,求證:?O1AO2??M1AM2.
例2.證明:唯一存在三邊長為連續整數且有一個角為另一個角的兩倍的三角形. 例3.延長AB至D,以AD為直徑作半圓,圓心為H,G是半圓上一點,?ABG為銳角.E在線段BH上,Z在半圓上,EZ∥BG,且EH?ED?EZ,BT∥HZ.求證:
21?TBG??ABG.
3例4.求證:若一個圓外切四邊形有兩條對邊相等,則圓心到另外兩邊的距離相等. 例5.設?A是△ABC中最小的內角,點B和C將這個三角形的外接圓分成兩段弧,U是落在不含A的那段弧上且不等于B與C的一個點,線段AB和AC的垂直平分線分別交線段AU于V和W,直線BV和CW相交于T.證明:AU?TB?TC.
例6.菱形ABCD的內切圓O與各邊分別切于E,F,G,H,在EF與GH上分別作⊙O切線交AB于M,交BC于N,交CD于P,交DA于Q,求證:MQ∥NP.
例7.⊙O1和⊙O2與△ABC的三邊所在直線都相切,E,F,G,H為切點,并且EG,FH的延長線交于點P.求證:直線PA與BC垂直.
例8.在圓中,兩條弦AB,CD相交于E點,M為弦AB上嚴格在E、B之間的點.過
⌒⌒D,E,M的圓在E點的切線分別交直線BC、AC于F,G.已知
AMCE?t,求(用t表ABEF示).
例9.設點D和E是△ABC的邊BC上的兩點,使得?BAD??CAE.又設M和N分
1111???. MBMDNCNE例10.設△ABC滿足?A?90?,?B??C,過A作△ABC外接圓W的切線,交直線BC于D,設A關于直線BC的對稱點為E,由A到BE所作垂線的垂足為X,AX的中點為Y,BY交W于Z點,證明直線BD為△ADZ外接圓的切線. 別是△ABD、△ACE的內切圓與BC的切點.求證:例11.兩個圓?1和?2被包含在圓?內,且分別現圓?相切于兩個不同的點M和N.?1經過?2的圓心.經過?1和?2的兩個交點的直線與?相交于點A和B,直線MA和直線MB分別與?1相交于點C和D.求證:CD與?2相切.
例12.已知兩個半徑不相等的⊙O1和⊙O2相交于M、N兩點,且⊙O1、⊙O2分別與⊙O內切于S、T兩點.求證:OM?MN的充要條件是S、N、T三點共線.
例13.在凸四邊形ABCD中,AB與CD不平行,⊙O1過A、B且與邊CD相切于點P,⊙O2過C、D且與邊AB相切于點Q.⊙O1和⊙O2相交于E、F,求證:EF平分線段PQ的充要條件是BC∥AD.
例14.設凸四邊形ABCD的兩條對角線AC與BD互相垂直,且兩對邊AB與CD不平行.點P為線段AB與CD的垂直平分線的交點,且在四邊形的內部.求證:A、B、C、D四點共圓的充要條件為S?PAB?S?PCD.
訓練題
1.△ABC內接于⊙O,?BAC?90?,過B、C兩點⊙O的切線交于P,M為BC的中點,求證:(1)AM?cos?BAC;(2)?BAM??PAC. AP⌒⌒⌒CA,AB的中點,BC2.已知A?,B?,C?分別是△ABC外接圓上不包含A,B,C的弧BC,分別和C?A?、A?B?相交于M、N兩點,CA分別和A?B?、B?C?相交于P、Q兩點,AB分別和B?C?、C?A?相交于R、S兩點.求證:MN?PQ?RS的充要條件是△ABC為等邊三角形.
CA分別 交于點D和E,3.以△ABC的邊BC為直徑作半圓,與AB、過D、E作BC的垂線,垂足分別為F、G.線段DG、EF交于點M.求證:AM?BC.
?C內的旁切圓與AB相切于E,4.在△ABC中,已知?B內的旁切圓與CA相切于D,過DE和BC的中點M和N作一直線,求證:直線MN平分△ABC的周長,且與?A的平分線平行.
5.在△ABC中,已知,過該三角形的內心I作直線平行于AC交AB于F.在BC邊上取點P使得3BP?BC.求證:?BFP?1?B. 26.半圓圓心為O,直徑為AB,一直線交半圓于C,D,交AB于M(MB?MA,MC?MD).設K是△AOC與△DOB的外接圓除點O外之另一交點.求證:?MKO為直角 .
7.已知,AD是銳角△ABC的角平分線,?BAC??,?ADC??,且co?s?co2s?.求證:AD2?BD?DC.
8.M為△ABC的邊AB上任一點,r1,r2,r分別為△AMC、△BMC、△ABC的內切圓半徑;?1,?2,?分別為這三個三角形的旁切圓半徑(在?ACB內部).
求證:r1?1?2?r2?r?.
9.設D是△ABC的邊BC上的一個內點,AD交△ABC外接圓于X,P、Q是X分別到AB和AC的垂足,O是直徑為XD的圓.證明:PQ與⊙O相切當且僅當AB?AC.
10.若AB是圓的弦,M是AB的中點,過M任意作弦CD和EF,連CD,DE分別交AB于X,Y,則MX?MY.
11.設H為△ABC的垂心,P為該三角形外接圓上的一點,E是高BH的垂足,并設PAQB與PARC都是平行四邊形,AQ與BR交于X.證明:EX∥AP.
12.在△ABC中,?C的平分線分別交AB及三角形的外接圓于D和K,I是內切圓圓心.證明:(1)111CIID????1. ;(2)IDIKCIIDIK
第二篇:高二數學圓的一般方程教案 人教版
高二數學圓的一般方程教案 人教版
一、教學目標
(一)知識教學點
使學生掌握圓的一般方程的特點;能將圓的一般方程化為圓的標準方程從而求出圓心的坐標和半徑;能用待定系數法,由已知條件導出圓的方程.
(二)能力訓練點
使學生掌握通過配方求圓心和半徑的方法,熟練地用待定系數法由已知條件導出圓的方法,熟練地用待定系數法由已知條件導出圓的方程,培養學生用配方法和待定系數法解決實際問題的能力.
(三)學科滲透點
通過對待定系數法的學習為進一步學習數學和其他相關學科的基礎知識和基本方法打下牢固的基礎.
二、教材分析
1.重點:(1)能用配方法,由圓的一般方程求出圓心坐標和半徑;(2)能用待定系數法,由已知條件導出圓的方程.
(解決辦法:(1)要求學生不要死記配方結果,而要熟練掌握通過配方求圓心和半徑的方法;(2)加強這方面題型訓練.)
2.難點:圓的一般方程的特點.
(解決辦法:引導學生分析得出圓的一般方程的特點,并加以記憶.)
3.疑點:圓的一般方程中要加限制條件D2+E2-4F>0.
(解決辦法:通過對方程配方分三種討論易得限制條件.)
三、活動設計 講授、提問、歸納、演板、小結、再講授、再演板.
四、教學過程
(一)復習引入新課
前面,我們已討論了圓的標準方程(x-a)2+(y-b)2=r2,現將展開可得x2+y2-2ax-2by+a2+b2-r2=0.可見,任何一個圓的方程都可以寫成x2+y2+Dx+Ey+F=0.請大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲線是不是圓?下面我們來深入研究這一方面的問題.復習引出課題為“圓的一般方程”.
(二)圓的一般方程的定義
1.分析方程x3+y2+Dx+Ey+F=0表示的軌跡
將方程x2+y2+Dx+Ey+F=0左邊配方得:(1)
(1)當D2+E2-4F>0時,方程(1)與標準方程比較,可以看出方程
第三篇:初三數學圓教案
初三數學 圓教案
一、本章知識框架
二、本章重點
1.圓的定義:
(1)線段OA繞著它的一個端點O旋轉一周,另一個端點A所形成的封閉曲線,叫做圓.
(2)圓是到定點的距離等于定長的點的集合. 2.判定一個點P是否在⊙O上. 設⊙O的半徑為R,OP=d,則有 d>r點P在⊙O 外; d=r點P在⊙O 上; d (1)圓心角:頂點在圓心的角叫圓心角. 圓心角的性質:圓心角的度數等于它所對的弧的度數. (2)圓周角:頂點在圓上,兩邊都和圓相交的角叫做圓周角. 圓周角的性質: ①圓周角等于它所對的弧所對的圓心角的一半. ②同弧或等弧所對的圓周角相等;在同圓或等圓中,相等的圓周角所對的弧相等. ③90°的圓周角所對的弦為直徑;半圓或直徑所對的圓周角為直角. ④如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形. ⑤圓內接四邊形的對角互補;外角等于它的內對角. (3)弦切角:頂點在圓上,一邊和圓相交,另一邊和圓相切的角叫弦切角. 弦切角的性質:弦切角等于它夾的弧所對的圓周角. 弦切角的度數等于它夾的弧的度數的一半. 4.圓的性質: (1)旋轉不變性:圓是旋轉對稱圖形,繞圓心旋轉任一角度都和原來圖形重合;圓是中心對稱圖形,對稱中心是圓心. 在同圓或等圓中,兩個圓心角,兩條弧,兩條弦,兩條弦心距,這四組量中的任意一組相等,那么它所對應的其他各組分別相等. (2)軸對稱:圓是軸對稱圖形,經過圓心的任一直線都是它的對稱軸. 垂徑定理及推論: (1)垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?/p> (2)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?。?3)弦的垂直平分線過圓心,且平分弦對的兩條?。?/p> (4)平分一條弦所對的兩條弧的直線過圓心,且垂直平分此弦.(5)平行弦夾的弧相等. 5.三角形的內心、外心、重心、垂心 (1)三角形的內心:是三角形三個角平分線的交點,它是三角形內切圓的圓心,在三角形內部,它到三角形三邊的距離相等,通常用“I”表示. (2)三角形的外心:是三角形三邊中垂線的交點,它是三角形外接圓的圓心,銳角三角形外心在三角形內部,直角三角形的外心是斜邊中點,鈍角三角形外心在三角形外部,三角形外心到三角形三個頂點的距離相等,通常用O表示.(3)三角形重心:是三角形三邊中線的交點,在三角形內部;它到頂點的距離是到對邊中點距離的2倍,通常用G表示.(4)垂心:是三角形三邊高線的交點. 6.切線的判定、性質:(1)切線的判定: ①經過半徑的外端并且垂直于這條半徑的直線是圓的切線. ②到圓心的距離d等于圓的半徑的直線是圓的切線.(2)切線的性質: ①圓的切線垂直于過切點的半徑. ②經過圓心作圓的切線的垂線經過切點. ③經過切點作切線的垂線經過圓心. (3)切線長:從圓外一點作圓的切線,這一點和切點之間的線段的長度叫做切線長. (4)切線長定理:從圓外一點作圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角. 7.圓內接四邊形和外切四邊形 (1)四個點都在圓上的四邊形叫圓的內接四邊形,圓內接四邊形對角互補,外角等于內對角. (2)各邊都和圓相切的四邊形叫圓外切四邊形,圓外切四邊形對邊之和相等. 8.直線和圓的位置關系: 設⊙O 半徑為R,點O到直線l的距離為d. (1)直線和圓沒有公共點直線和圓相離d>R. (2)直線和⊙O有唯一公共點直線l和⊙O相切d=R.(3)直線l和⊙O 有兩個公共點直線l和⊙O 相交d . (1)外離(2)含(3)外切(4)d 內有唯一公共點,除這個點外,每個圓上的點都在另一個圓外部d=R+r. 的每個點都在內部有唯一公共點,除這個點外,內切d=R-r. 相交(5)有兩個公共點R-r 10.兩圓的性質: (1)兩個圓是一個軸對稱圖形,對稱軸是兩圓連心線. (2)相交兩圓的連心線垂直平分公共弦,相切兩圓的連心線經過切點. 11.圓中有關計算: 圓的面積公式:,周長C=2πR. 圓心角為n°、半徑為R的弧長. 圓心角為n°,半徑為R,弧長為l的扇形的面積弓形的面積要轉化為扇形和三角形的面積和、差來計算. . 圓柱的側面圖是一個矩形,底面半徑為R,母線長為l的圓柱的體積為面積為2πRl,全面積為 .,側圓錐的側面展開圖為扇形,底面半徑為R,母線長為l,高為h的圓錐的側面積為πRl,全面積為【經典例題精講】 例1 如圖23-2,已知AB為⊙O直徑,C為上一點,CD⊥AB于D,∠OCD的平分線CP交⊙O于P,試判斷P點位置是否隨C點位置改變而改變?,母線長、圓錐高、底面圓的半徑之間有 . 分析:要確定P點位置,我們可采用嘗試的辦法,在上再取幾個符合條件的點試一試,觀察P點位置的變化,然后從中觀察規律. 解: 連結OP,P點為中點. 小結:此題運用垂徑定理進行推斷. 例2 下列命題正確的是()A.相等的圓周角對的弧相等 B.等弧所對的弦相等 C.三點確定一個圓 D.平分弦的直徑垂直于弦. 解: A.在同圓或等圓中相等的圓周角所對的劣弧相等,所以A不正確. B.等弧就是在同圓或等圓中能重合的弧,因此B正確. C.三個點只有不在同一直線上才能確定一個圓. D.平分弦(不是直徑)的直徑垂直于此弦. 故選B. 例3 四邊形ABCD內接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D. 分析:圓內接四邊形對角之和相等,圓外切四邊形對邊之和相等. 解: 設∠A=x,∠B=2x,∠C=3x,則∠D=∠A+∠C-∠B=2x. x+2x+3x+2x=360°,x=45°. ∴∠D=90°. 小結:此題可變形為:四邊形ABCD外切于⊙O,周長為20,且AB︰BC︰CD=1︰2︰3,求AD的長. 例4 為了測量一個圓柱形鐵環的半徑,某同學采用如下方法:將鐵環平放在水平桌面上,用一個銳角為30°的三角板和一個刻度尺,用如圖23-4所示方法得到相關數據,進而可以求得鐵環半徑.若測得PA=5cm,則鐵環的半徑是__________cm. 分析:測量鐵環半徑的方法很多,本題主要考查切線長性質定理、切線性質、解直角三角形的知識進行 合作解決,即過P點作直線OP⊥PA,再用三角板畫一個頂點為A、一邊為AP、大小為60°的角,這個角的另一邊與OP的交點即為圓心O,再用三角函數知識求解. 解: . 小結:應用圓的知識解決實際問題,應將實際問題變成數學問題,建立數學模型. 例5 已知 相交于A、B兩點,的半徑是10,的半徑是17,公共弦AB=16,求兩圓的圓心距. 解:分兩種情況討論:(1)若位于AB的兩側(如圖23-8),設 與AB交于C,連結又∵AB=16 ∴AC=8. 在在故(2)若,則垂直平分AB,∴ . 中,中,. . . 位于AB的同側(如圖23-9),設 . 的延長線與AB交于C,連結∵垂直平分AB,∴. 又∵AB=16,∴AC=8. 在在故中,中,. . . 注意:在圓中若要解兩不等平行弦的距離、兩圓相切、兩圓相離、一個點到圓上各點的最大距離和最小距離、相交兩圓圓心距等問題時,要注意雙解或多解問題. 三、相關定理: 1.相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等。(經過圓內一點引兩條線,各弦被這點所分成的兩段的積相等) 說明:幾何語言: 若弦AB、CD交于點P,則PA·PB=PC·PD(相交弦定理) 例1. 已知P為⊙O內一點,P任作一弦AB,設為。,⊙O半徑為,過,則關于的函數關系式解:由相交弦定理得,即,其中 2.切割線定理 推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項 說明:幾何語言:若AB是直徑,CD垂直AB于點P,則PC^2=PA·PB 例2. 已知PT切⊙O于T,PBA為割線,交OC于D,CT為直徑,若OC=BD=4cm,AD=3cm,求PB長。 解:設TD=,BP=,由相交弦定理得:即由切割線定理,理,∴ ∴,(舍)由勾股定∴ 四、輔助線總結 1.圓中常見的輔助線 1).作半徑,利用同圓或等圓的半徑相等. 2).作弦心距,利用垂徑定理進行證明或計算,或利用“圓心、弧、弦、弦心距”間的關系進行證明. 3).作半徑和弦心距,構造由“半徑、半弦和弦心距”組成的直角三角形進行計算. 4).作弦構造同弧或等弧所對的圓周角. 5).作弦、直徑等構造直徑所對的圓周角——直角. 6).遇到切線,作過切點的弦,構造弦切角. 7).遇到切線,作過切點的半徑,構造直角. 8).欲證直線為圓的切線時,分兩種情況:(1)若知道直線和圓有公共點時,常連結公共點和圓心證明直線垂直;(2)不知道直線和圓有公共點時,常過圓心向直線作垂線,證明垂線段的長等于圓的半徑. 9).遇到三角形的外心常連結外心和三角形的各頂點. 10).遇到三角形的內心,常作:(1)內心到三邊的垂線;(2)連結內心和三角形的頂點. 11).遇相交兩圓,常作:(1)公共弦;(2)連心線. 12).遇兩圓相切,常過切點作兩圓的公切線. 13).求公切線時常過小圓圓心向大圓半徑作垂線,將公切線平移成直角三角形的一條直角邊. 2、圓中較特殊的輔助線 1).過圓外一點或圓上一點作圓的切線. 2).將割線、相交弦補充完整. 3).作輔助圓. 例1如圖23-10,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=10,CD=8,那么AE的長為() A.2 B.3 C.4 D.5 分析:連結OC,由AB是⊙O的直徑,弦CD⊥AB知CD=DE.設AE=x,則在Rt△CEO中,則,(舍去).,即,答案:A. 例2如圖23-11,CA為⊙O的切線,切點為A,點B在⊙O上,如果∠CAB=55°,那么∠AOB等于() A.35° B.90° C.110° D.120° 分析:由弦切角與所夾弧所對的圓心角的關系可以知道∠AOB=2∠BAC=2×55°=110°.答案:C. 例3 如果圓柱的底面半徑為4cm,母線長為5cm,那么側面積等于()A. B. C. D. 分析:圓柱的側面展開圖是矩形,這個矩形的一邊長等于圓柱的高,即圓柱的母線長;另一邊長是底面圓的周長,所以圓柱的側面積等于底面圓的周長乘以圓柱的高,即 .答案:B. 例4 如圖23-12,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點,延長CM交⊙O于E,且EM>MC,連結OE、DE,求:EM的長. . 簡析:(1)由DC是⊙O的直徑,知DE⊥EC,于是則AM·MB=x(7-x),即 .所以 .設EM=x,.而EM>MC,即EM=4. 例5如圖23-13,AB是⊙O的直徑,PB切⊙O于點B,PA交⊙O于點C,PF分別交AB、BC于E、D,交⊙O于F、G,且BE、BD恰好是關于x的方程 (其中m為實數)的兩根. (1)求證:BE=BD;(2)若,求∠A的度數. 簡析:(1)由BE、BD是關于x的方程的兩根,得,則m=-2.所以,原方程為(2)由相交弦定理,得 .得,即 .故BE=BD. .而PB切⊙O于點B,AB為⊙O的直徑,得∠ABP=∠ACB=90°.又易證∠BPD=∠APE,所以△PBD∽△PAE,△PDC∽△PEB,則,所以,所以 .在Rt△ACB中,故∠A=60°. 圓 一、本章知識框架 二、本章重點 1.圓的定義: (1)線段OA繞著它的一個端點O旋轉一周,另一個端點A所形成的封閉曲線,叫做圓. (2)圓是到定點的距離等于定長的點的集合. 2.判定一個點P是否在⊙O上. 設⊙O的半徑為R,OP=d,則有 d>r點P在⊙O 外; d=r點P在⊙O 上; d (1)圓心角:頂點在圓心的角叫圓心角. 圓心角的性質:圓心角的度數等于它所對的弧的度數. (2)圓周角:頂點在圓上,兩邊都和圓相交的角叫做圓周角. 圓周角的性質: ①圓周角等于它所對的弧所對的圓心角的一半. ②同弧或等弧所對的圓周角相等;在同圓或等圓中,相等的圓周角所對的弧相等. ③90°的圓周角所對的弦為直徑;半圓或直徑所對的圓周角為直角. ④如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形. ⑤圓內接四邊形的對角互補;外角等于它的內對角. (3)弦切角:頂點在圓上,一邊和圓相交,另一邊和圓相切的角叫弦切角. 弦切角的性質:弦切角等于它夾的弧所對的圓周角. 弦切角的度數等于它夾的弧的度數的一半. 4.圓的性質:(1)旋轉不變性:圓是旋轉對稱圖形,繞圓心旋轉任一角度都和原來圖形重合;圓是中心對稱圖形,對稱中心是圓心. 在同圓或等圓中,兩個圓心角,兩條弧,兩條弦,兩條弦心距,這四組量中的任意一組相等,那么它所對應的其他各組分別相等. (2)軸對稱:圓是軸對稱圖形,經過圓心的任一直線都是它的對稱軸. 垂徑定理及推論: (1)垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?/p> (2)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條?。?3)弦的垂直平分線過圓心,且平分弦對的兩條?。?/p> (4)平分一條弦所對的兩條弧的直線過圓心,且垂直平分此弦.(5)平行弦夾的弧相等. 5.三角形的內心、外心、重心、垂心 (1)三角形的內心:是三角形三個角平分線的交點,它是三角形內切圓的圓心,在三角形內部,它到三角形三邊的距離相等,通常用“I”表示. (2)三角形的外心:是三角形三邊中垂線的交點,它是三角形外接圓的圓心,銳角三角形外心在三角形內部,直角三角形的外心是斜邊中點,鈍角三角形外心在三角形外部,三角形外心到三角形三個頂點的距離相等,通常用O表示.(3)三角形重心:是三角形三邊中線的交點,在三角形內部;它到頂點的距離是到對邊中點距離的2倍,通常用G表示.(4)垂心:是三角形三邊高線的交點. 6.切線的判定、性質:(1)切線的判定: ①經過半徑的外端并且垂直于這條半徑的直線是圓的切線. ②到圓心的距離d等于圓的半徑的直線是圓的切線.(2)切線的性質: ①圓的切線垂直于過切點的半徑. ②經過圓心作圓的切線的垂線經過切點. ③經過切點作切線的垂線經過圓心. (3)切線長:從圓外一點作圓的切線,這一點和切點之間的線段的長度叫做切線長. (4)切線長定理:從圓外一點作圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角. 7.圓內接四邊形和外切四邊形 (1)四個點都在圓上的四邊形叫圓的內接四邊形,圓內接四邊形對角互補,外角等于內對角. (2)各邊都和圓相切的四邊形叫圓外切四邊形,圓外切四邊形對邊之和相等. 8.直線和圓的位置關系: 設⊙O 半徑為R,點O到直線l的距離為d. (1)直線和圓沒有公共點直線和圓相離d>R. (2)直線和⊙O有唯一公共點直線l和⊙O相切d=R.(3)直線l和⊙O 有兩個公共點直線l和⊙O 相交d .(1)外離(2)含(3)外切(4)d 內有唯一公共點,除這個點外,每個圓上的點都在另一個圓外部d=R+r. 的每個點都在內部有唯一公共點,除這個點外,內切d=R-r. 相交(5)有兩個公共點R-r 10.兩圓的性質: (1)兩個圓是一個軸對稱圖形,對稱軸是兩圓連心線. (2)相交兩圓的連心線垂直平分公共弦,相切兩圓的連心線經過切點. 11.圓中有關計算: 圓的面積公式:,周長C=2πR. 圓心角為n°、半徑為R的弧長. 圓心角為n°,半徑為R,弧長為l的扇形的面積弓形的面積要轉化為扇形和三角形的面積和、差來計算. . 圓柱的側面圖是一個矩形,底面半徑為R,母線長為l的圓柱的體積為面積為2πRl,全面積為 .,側圓錐的側面展開圖為扇形,底面半徑為R,母線長為l,高為h的圓錐的側面積為πRl,全面積為,母線長、圓錐高、底面圓的半徑之間有 . 本文由:西安論壇http://www.tmdps.cn 西安婚紗攝影http://www.tmdps.cn 寶雞論壇http://www.tmdps.cn 共同整理 第二十四章“圓”簡介 課程教材研究所 李海東 與三角形、四邊形等一樣,圓也是基本的平面圖形,也是“空間與圖形”的主要研究對象,是人們生活中常見的圖形。本章將在學生前面學習了一些基本的直線形──三角形、四邊形等的基礎上,進一步研究一個基本的曲線形──圓,探索圓的有關性質,了解與圓有關的位置關系等,并結合一些圖形性質的證明,進一步發展學生的邏輯思維能力。本章共安排四個小節和兩個選學內容,教學時間大約需要17課時,具體安排如下(僅供參考): 24.1 圓 5課時 24.2 與圓有關的位置關系 6課時 24.3 正多邊形和圓 2課時 24.4 弧長和扇形的面積 2課時 數學活動 小結 2課時 一、教科書內容和課程學習目標 (一)本章知識結構框圖 本章知識結構如下圖所示: (二)教科書內容 本章是在學習了直線圖形的有關性質的基礎上,來研究一種特殊的曲線圖形──圓的有關性質。圓也是常見的幾何圖形之一,不僅日常生活中的許多物體是圓形的,而且在工農業生產、交通運輸、土木建筑等方面都可以看到圓。圓的有關性質,也被廣泛的應用。圓也是平面幾何中最基本的圖形之一,它不僅在幾何中有重要地位,而且是進一步學習數學以及其他科學的重要的基礎。圓的許多性質,比較集中地反映了事物內部量變與質變的關系、一般與特殊的關系、矛盾的對立統一關系等等。結合圓的有關知識,可以對學生進行辯證唯物主義世界觀的教育。所以這一章的教學,在初中的學習中也占有重要地位。 本章是在小學學過的一些圓的知識的基礎上,系統的研究圓的概念、性質、圓中有關的角、點與圓、直線與圓、圓與圓、圓與正多邊形之間的位置、數量關系。本章共分為四個小節,第1小節是“圓”,主要是圓的有關概念和性質,圓的概念和性質是進一步研究圓與其他圖形位置、數量關系的主要依據,是全章的基礎。這一節包括“圓”“垂直于弦的直徑”“弧、弦、圓心角”“圓周角”四個部分?!?4.1.1 圓”的主要內容是圓的定義和圓中的一些相關概念。圓的定義是研究圓的有關性質的基礎。在小學,學生接觸過圓,對它有一定的認識。教科書首先結合生活中一些圓的實際例子,在學生小學學過的畫圓的基礎上,通過設置一個觀察欄目,用“發生法”給出了圓的定義。進一步的教科書又分析了圓上每一個點與圓心的距離都等于定長,同時到定點的距離等于定長的點都在圓上,這樣實際上從點和集合的角度進一步認識圓,這樣再認識之后,學生對圓的 認識就加深了。接下來,是與圓有關的一些概念,如半徑、直徑、弦、弧等,對于這些概念要讓學生結合圖形進行認識,并多進行比較,以搞清他們的異同。在接下來的幾部分,教科書探究并證明了垂徑定理、弧、弦、圓心角的關系定理、圓周角定理。垂徑定理及其推論反映了圓的重要性質,是圓的軸對稱性的具體化,也是證明線段相等、角相等、垂直關系的重要依據,同時也為進行圓的計算和作圖提供了方法和依據;圓周角定理及其推論對于角的計算、證明角相等、弧、弦相等等問題提供了十分簡便的方法。所以垂徑定理及其推論、圓周角定理及其推論是本小節的重點,也是本章的重點內容。而垂徑定理及其推論的條件和結論比較復雜,容易混淆,圓周角定理的證明要用到完全歸納法,學生對與分類證明的必要性不易理解,所以這兩部分內容也是本節的難點。 “24.2 與圓有關的位置關系”包括三部分內容,點與圓的位置關系、直線與圓的位置關系、圓與圓的位置關系。在“點與圓的位置關系”中,教科書首先結合射擊問題,給出了點與圓的三種不同位置關系,接下來討論了過三點的圓,并結合“過同一直線上的三點不能作圓”介紹了反證法。在“直線與圓的位置關系”中,教科書首先討論了直線與圓的三種位置關系,然后重點研究了直線與圓相切的情況,給出了直線與圓相切的判定定理、性質定理、切線長定理,在此基礎上介紹了三角形的內切圓。在“圓與圓的位置關系”中,重點是討論圓與圓的不同位置關系。本小節中,直線與圓的位置關系是中心內容,切線的判定定理、性質定理、切線長定理等則是研究直線與圓的有關問題時常用的定理,是本節的重點內容。反證法的思想在前面章節有所滲透,在這一小節正式提出,它是一種間接證法,學生接受還是有一定的困難,所以對于反證法的教學是本節的一個難點;另外切線的判定定理和性質定理的題設和結論容易混淆,證明性質定理又要用到反證法,因此這兩個定理的教學也是本節的難點,這些也同時是本章的難點。正多邊形是一種特殊的多邊形,它有一些類似于圓的性質。例如,圓有獨特的對稱性,它不僅是軸對稱圖形、中心對稱圖形,而且它的任意一條直徑所在直線都是它的對稱軸,繞圓心旋轉任意一個角度都能和原來的圖形重合。正多邊形也是軸對稱圖形,正n邊形就有n條對稱軸,當n為偶數時,它也是中心對稱圖形,而且繞中心每旋轉,都能和原來的圖形重合,可見正多邊形和圓有很多內在的聯系。另外,正多邊形也在生產和生活中有著廣泛的應用,所以教科書接下來安排了“正多邊形和圓”的內容。教科書回顧學生已經了解的正多邊形概念的基礎上,以正五邊形為例,證明了利用等分圓周得到正五邊形的方法,接下來介紹了正多邊形的有關概念,如中心、半徑、中心角、邊心距等,并進一步介紹了畫正多邊形的方法。正多邊形的有關計算是本節的重點內容,這些計算都是幾何中的基礎知識,正確掌握它們也要綜合運用以前所學的知識,這些知識在生產和生活中也常要用到。本節的教學難點在學生對正n邊形中“n”的接受和理解上。學生對三角形、四邊形、圓等這些具體圖形比較習慣,對于泛指的n邊形 不習慣。為了降低難度,教科書涉及的證明、計算等問題都是結合具體的多邊形為例的,教學時要注意把這種針對具體圖形的結論和方法推廣,使學生實現由具體到抽象,特殊到一般的認識上的飛躍,提高學生的思維能力。 教科書接下來的24.4節的主要內容是一些與圓有關的計算,包括兩部分“弧長和扇形的面積”“圓錐的側面積和全面積”?!盎¢L和扇形的面積”是在小學學過的圓周長、面積公式的基礎上推導出來的,應用這些公式,就可以計算一些與圓有關的簡單組合圖形的周長和面積。由于圓錐的側面展開圖是扇形,所以教科書接下來介紹了圓錐的側面積和全面積的計算。這些計算不僅是幾何中基本的計算,也是日常生活中經常要用到的,運用這些知識也可以解決一些簡單的實際問題。圓錐的側面積的計算還可以培養學生的空間觀念,因此對這部分內容的教學也要重視。 (三)課程學習目標 1.理解圓及其有關概念,理解弧、弦、圓心角的關系,探索并了解點與圓、直線與圓、圓與圓的位置關系,探索并掌握圓周角與圓心角的關系、直徑所對的圓周角的特征。 2.了解切線的概念,探索并掌握切線與過切點的半徑之間的位置關系,能判定一條直線是否為圓的切線,會過圓上一點畫圓的切線。 3.了解三角形的內心和外心,探索如何過一點、兩點和不在同一直線上的三點作圓。 4.了解正多邊形的概念,掌握用等分圓周畫圓的內接正多邊形的方法;會計算弧長及扇形的面積、圓錐的側面積及全面積。 5.結合相關圖形性質的探索和證明,進一步培養學生的合情推理能力,發展學生的邏輯思維能力和推理論證的表達能力;通過這一章的教學,進一步培養學生綜合運用知識的能力,運用學過的知識解決問題的能力,同時對學生進行辯證唯物主義世界觀的教育。 二、本章編寫特點 (一)突出圖形性質的探索過程,重視直觀操作和邏輯推理的有機結合 圓是日常生活中常見的圖形之一,也是平面幾何中的基本圖形,本章重點研究了與圓有關的一些性質。教科書在編寫時,注意突出圖形性質的探索過程,重 視直觀操作和邏輯推理的有機結合,通過多種手段,如觀察度量、實驗操作、圖形變換、邏輯推理等來探索圖形的性質。 例如結合圓的軸對稱性,發現垂徑定理及其推論;利用圓的旋轉對稱性,發現圓中弧、弦、圓心角之間的關系;通過觀察、度量,發現圓心角與圓周角、圓周角之間的數量關系;利用直觀操作,發現點與圓、直線與圓、圓與圓之間的位置關系等等。在學生通過觀察、操作、變換探究出圖形的性質后,還要求學生能對發現的性質進行證明,使直觀操作和邏輯推理有機的整合在一起,使推理論證成為學生觀察、實驗、探究得出結論的自然延續。 (二)注意聯系實際 圓是人們日常生活和生產中應用較廣的一種幾何圖形,不僅日常生活中許多物體是圓形的,而且在工農業生產、交通運輸、土木建筑等方面都可以見到圓。這部分內容與實際聯系比較緊密。在教科書編寫時,也充分注意到這一點。例如,在引入圓、正多邊形等概念時,舉出了大量的實際生活中的例子;在介紹點與圓、直線與圓、圓與圓的位置關系時,也是注意從它們在實際生活中的應用引入;利用垂徑定理解決求趙州橋的主橋拱半徑的問題;根據海洋館中人們視野的關系引出研究圓周角與圓心角、圓周角之間的關系;利用正多邊形的有關計算求亭子的地基;實際問題中有關弧長、扇形的面積、圓錐的側面積和全面積的計算問題等等。教科書的例、習題中也有一些實際應用的例子等等。這些材料都是從實際中提煉出來的,要通過這些知識的教學,幫助學生從實際生活中發現數學問題、運用所學知識解決實際問題。教學時,還可以根據本地區的實際,選擇一些實際問題,引導學生加以解決,提高他們應用知識解決問題的能力。 (三)重視滲透數學思想方法 教學中不僅要教知識,更重要的是教方法,本章重涉及的數學思想方法也比較多。例如,圓周角定理證明中的通過分類討論,把一般問題轉化為特殊情況來證明;研究點與圓、直線與圓、圓與圓的位置關系時的分類的思想;研究正多邊形的有關問題是通過把問題轉化為解直角三角形來解決的;正多邊形的畫圖是通過等分圓來完成的;等等。通過這些知識的教學,使學生學會化未知為已知、化復雜為簡單、化一般為特殊或化特殊為一般的思考方法,提高學生分析問題和解決問題的能力。 另外,在本章,通過理論聯系實際,對學生進行唯物論認識論的教育;通過圓的許多性質之間的內在聯系,圓與其他圖形之間量變與質變的關系,一般與特殊之間的關系等,對學生進行辯證唯物主義觀點的教育;使學生增強民族的自豪感和振興中華的使命感,對他們進行學習目的的教育,培養他們良好的個性品質。 三、幾個值得關注的問題 (一)進一步培養推理論證能力 從培養學生的邏輯思維能力來說,“圓”這一階段處于學生初步掌握了推理論證方法的基礎上進一步鞏固和提高的階段,不僅要求學生能熟練地用綜合法證明命題,熟悉探索法的推理過程,而且要求了解反證法。教學中要重視推理論證的教學,進一步提高學生的思維能力。教科書在這方面也還是很重視的。在推理與證明的要求方面,除了要求學生對經過觀察、實驗、探究得出的結論進行證明以外,有一些圖形的性質是直接由已有的結論經過推理論證得出的。另外,為了鞏固并提高學生的推理論證能力,本章的定理證明中,除了采用了規范的證明方法外,還有一些采用了探索式的證明方法。這種方法不是先有了定理再去證明它,而是根據題設和已有知識,經過推理,得出結論。這些對激發學生的學習興趣,活躍學生的思維,對發展學生的思維能力有好處。教學中要注意啟發和引導,使學生在熟悉“規范證明”的基礎上,推理論證能力有所提高和發展。 另外,這部分內容所涉及的圖形很多是圓和直線形的組合,而且題目也相對以前比較復雜,教學時應注意多幫助學生復習有關直線形的知識,做到以新帶舊、新舊結合,而且要加強解題思路的分析,幫助學生樹立已知與未知、簡單與復雜、特殊與一般在一定條件下可以轉化的思想,使學生學會把未知化為已知,把復雜問題化為簡單問題,把一般問題化為特殊問題的思考方法。如對于圓周角定理的證明,可以先從最簡單的情況──角的一邊經過圓心時入手,再推廣到一般情形。通過這樣的訓練,可以提高學生邏輯思維能力和分析解決實際問題的能力。 (二)重視知識間的聯系與綜合 圓是學生學習的第一個曲線形。學生由學習直線形到曲線形,在認識上是一個飛躍。在教學時,應注意充分利用學生在小學學過的圓的知識,搞好銜接。同時要注意加強圓和直線形的聯系,把圓和直線形的有關問題對照講解。如在講“不在同一直線上的三個點確定一個圓”時,可以和“兩點確定一條直線”相對照,這樣可以加深學生對知識的理解。教科書在編寫時,也注意從學生學習的規律出發,加強新舊知識的聯系,發揮知識的遷移作用。例如,在講圓的定義時,先回顧小學學過的定義,在分析圓上的點的特征的基礎上,用集合語言重新給出描述;在學習圓及正多邊形的計算時,注意將新知識與直角三角形的知識、小學學過的圓的周長與面積的知識聯系起來,使新知識在學生眼里不陌生,容易接受。 圓是一種特殊曲線,它有獨特的對稱性。它不僅是軸對稱圖形、中心對稱圖形,而且它的任何一條直徑所在直線都是它的對稱軸。繞圓心旋轉任意一個角度都能與原來的圖形重合(旋轉對稱性)。圓的對稱性在日常生活和生產中有著廣泛的應用,因此應當讓學生很好地掌握。在研究圓的有關性質時,充分利用圓的 對稱性也是本章編寫的一個特點。如垂徑定理,弧、弦、圓心角的關系,切線長定理等,都是讓學生充分利用圓的這些對稱性,通過觀察、實驗等探究出性質,再進行證明,體現圖形的認識、圖形的變換、圖形的證明的有機結合。這些也是教學時應當重點注意的。 (三)注意把握好教學要求 本章教學內容與以往教材內容相比,刪減幅度比較大(原義教大綱教材53課時,現在17課時),教學時要注意把握好教學要求。教學內容應當限制在課標和教材所出現的范圍,按照課標要求刪減的內容,教學中不要再揀回,以免影響學生對基礎知識的學習。對于推理論證的要求,課程標準中在本章沒有明確規定。教科書中是按照整套教科書對于推理證明的要求來處理的。在本章,要求學生對于一些圓的有關性質進行證明,并利用這些性質去證明一些相關的結論。但要注意,這里的證明也要控制難度,對于一般學生,控制在教科書“綜合應用”的題目難度內,對于學有余力的學生,可以要求他們完成“拓廣探索”欄目的習題。 反證法的思想在七年級上冊教科書代數部分就有涉及,在后續的相關章節也有應用。但當時只是滲透反證法的思想,沒有作為一種方法提出。在本章,結合“過同一直線上的三點不能作圓”,正式提出了反證法,并且在后續內容,如“圓的切線垂直于過切點的半徑”的證明時也有應用。由于反證法是一種間接證法,學生接受起來有一定困難。因此,教科書主要是要求讓學生理解反證法的思想,后續習題也沒有安排相應的習題。這里也要注意把握好對反證法的要求,不要讓學生作過多過難的關于反證法的習題。 另外,圓有許多重要性質,其中最主要的是圓的對稱性(軸對稱和旋轉不變性),教科書在證明圓的許多重要性質時,都運用了它的對稱性。但是,因為用對稱的定義證明問題,對學生來說比較困難,所以在本章的教學中,一方面要重視利用圓的對稱性(教科書中在使用圓的對稱性);另一方面又不應要求學生嚴格地利用對稱性寫出證明過程。教學中要把握好這個要求。 (四)重視信息技術的應用 在本章的教學中,有條件的學校還是要重視信息技術工具的使用。利用信息技術工具,可以很方便地制作圖形,可以很方便地讓圖形動起來。許多計算機軟件還具有測量功能,這也有利于我們在圖形運動變化的過程中去發現其中不變的位置關系和數量關系,有利于發現圖形的性質。 例如,本章許多圖形的性質都可以利用計算機軟件設置一些探究活動,讓圖形動起來,在這種運動變化中發現圖形的性質。如弧、弦、圓心角之間的關系。 有許多計算機軟件具有測量功能,可以方便地測出角的大小和線段的長度,這也有利于在運動變化中觀察它們的關系,發現圖形的性質。如圓周角定理。另外還可以通過計算機軟件讓圖形動起來,在動態變化過程中去發現點與圓、直線與圓、圓與圓的位置關系,還可以通過測量,去發現這種位置關系所對應的數量關系,如直線與圓的位置關系中直線到圓心的距離與圓的半徑的關系,兩圓位置關系中圓心距與圓半徑的關系等。第四篇:初三數學 圓教案
第五篇:九年級數學圓教案4