久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

初中數學教案:單項式

時間:2019-05-15 06:04:55下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《初中數學教案:單項式》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《初中數學教案:單項式》。

第一篇:初中數學教案:單項式

單項式(1)

教學目的

1、使學生理解同類項的意義。

2、使學生掌握合并同類項法則,并應用合并同類項。

3、通過合并同類項的學習,培養學生觀察與分類歸納能力。教學分析

重點:同類項的概念,合并同類項的方法。難點:多字母同類項的判別與合并。

突破:理解同類項的概念的兩個特性,合并同類項,就是合并它們的系數。

教學方法:自學、討論、質疑

教學過程

一、復習

1、回答下列單項式的系數

-4ab2,10x2,-2x,abc,-y3z,2?r

2、什么叫多項式?什么叫多項式的項?

3、列代數式:每本練習本x元,王強買5本,張華買2本,兩人一共花多少錢?王強比張華多花多少錢?

二、新授

1、引入

問:5x+2x=?

5x-2x=?

5x看成是x的5倍,2x看成是x的2倍,所以和是x的7倍,也可逆向運用分配律:5x+2x=(5+2)x,后面的也是一樣。

同樣,根據分配律有,-4ab+3 ab=(-4+3)ab

以上兩項,所含有的字母相同,相同字母的指數也相同。

2、給出同類項的概念

多項式中所含有的字母相同,并且相同字母的指數也相同的項,叫做同類項,幾個常數項也是同類項。

例1(P153練習1)回答

找出多項式2x2-5x+x2+4x-3x2-2中的同類項。

有兩個特征:(1)各項中所含有的字母相同,(2)相同字母的指數分別相同。(與系數無關,與字母的順序無關。)

3、合并同類項、合并同類項法則和根據。

(1)、把多項式中的同類項合并成一項,叫做合并同類項

(2)同類項的系數相加,所得的結果作為系數,字母和字母的指數不變。(3)根據:分配律 例2(P153例2)

合并多項式4x-8x+5-3x+6x-2的同類項。

22222(結果為x-2x+3,解見P153)例3(P153例3)

合并多項式4a2+3b2+2ab-4a2-3b2的同類項。

析:4 a與-4a這一對同類項的系數是互為相反數,合并后這兩項就互相抵消,結果為0。

解:(見教材P154)

三、練習

P153:3,4。

四、小結

要抓住同類項的特征,又要知道合并時只能合并系數。

五、作業

1、P156:A:4。B:1

2、基礎訓練同步練習1。單項式(1)

教學目的

1、使學生理解同類項的意義。

2、使學生掌握合并同類項法則,并應用合并同類項。

3、通過合并同類項的學習,培養學生觀察與分類歸納能力。教學分析

重點:同類項的概念,合并同類項的方法。

難點:多字母同類項的判別與合并。

突破:理解同類項的概念的兩個特性,合并同類項,就是合并它們的系數。

教學方法:自學、討論、質疑

教學過程

一、復習

1、回答下列單項式的系數

-4ab,10x,-2x,abc,-yz,2?r

2、什么叫多項式?什么叫多項式的項?

3、列代數式:每本練習本x元,王強買5本,張華買2本,兩人一共花多少錢?王強比張華多花多少錢?

二、新授

1、引入

問:5x+2x=?

5x-2x=?

5x看成是x的5倍,2x看成是x的2倍,所以和是x的7倍,也可逆向運用分配律:5x+2x=(5+2)x,后面的也是一樣。

同樣,根據分配律有,-4ab2+3 ab2=(-4+3)ab2

以上兩項,所含有的字母相同,相同字母的指數也相同。

2、給出同類項的概念

多項式中所含有的字母相同,并且相同字母的指數也相同的項,叫做同類項,幾個常數項也是同類項。2

23222例1(P153練習1)回答

222找出多項式2x-5x+x+4x-3x-2中的同類項。

有兩個特征:(1)各項中所含有的字母相同,(2)相同字母的指數分別相同。(與系數無關,與字母的順序無關。)

3、合并同類項、合并同類項法則和根據。

(1)、把多項式中的同類項合并成一項,叫做合并同類項

(2)同類項的系數相加,所得的結果作為系數,字母和字母的指數不變。(3)根據:分配律

例2(P153例2)

合并多項式4x2-8x+5-3x2+6x-2的同類項。(結果為x2-2x+3,解見P153)例3(P153例3)

合并多項式4a2+3b2+2ab-4a2-3b2的同類項。

析:4 a2與-4a2這一對同類項的系數是互為相反數,合并后這兩項就互相抵消,結果為0。

解:(見教材P154)

三、練習

P153:3,4。

四、小結

要抓住同類項的特征,又要知道合并時只能合并系數。

五、作業

1、P156:A:4。B:1

2、基礎訓練同步練習1。

第二篇:初中數學教案

初中數學教案1

復習目標:

(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)會解一元一次方程。

(3)會根據具體問題中的數量關系列出一元一次方程并求解。

重點、難點:

1.重點:

一元一次方程及方程的解的基本概念。

一元一次方程的解法。

會用一元一次方程解決實際問題。

2.難點:

一元一次方程的解法的靈活應用。

尋找實際問題中的等量關系。

【典型例題】

例1.

分析: 明確一元一次方程的概念。方程中含有一個未知數,未知數的次數是1,且含有未知數的式子為整式,未知數的系數不為0。

在這里特別注意:未知數的次數及系數。

這三個方程中含有兩個未知數x、y,要想成為一元一次方程就要使其中一個未知數的系數為0。

解:

例2.

分析: 此題要明確兩點:(1)當方程中含有多個字母時,指出關于哪個字母的方程,這個字母就是方程的未知數,而其它的字母是代替已知數的字母系數,這類方程也叫字母系數方程。(2)方程的解,即使方程左右兩邊相等的未知數的值。

此題從問題出發,求解關于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是關于y的方程的解,即關于y的方程中字母y=1,因此可將y=1代入方程,從而求出m的'值。

解:

將m=1代入關于x的方程,得:

例3.

解:

注意:解一元一次方程的一般步驟為以上五步,但在解方程時,要注意靈活運用。

例4.

分析: 此題的括號較多,如果按照一般的做法先去小括號,再去中括號,最后去大括號的方法比較麻煩,所以要觀察分析方程找一種比較簡單的方法。

解:

例5.

分析: 此題中分母出現小數,如果用一般的方法先去分母,則比較麻煩,公分母就不好找,所以采取一個巧妙的方法,先利用“分數的基本性質”將方程中分母中的小數化為整數,再用去分母……解之。

解:

注:用分數的基本性質化簡用的是分子、分母擴大相同倍數分數值不變,與去分母不同。

解:

例6.已知某鐵路橋長1000米,現有列火車從橋上通過,測得火車從開始上橋到完全過橋共用1分鐘,整個火車完全在橋上的時間為40秒,求火車的速度。

分析: 列方程解應用題的關鍵要找出題目中的等量關系,而由題意可知,此題有兩個不變的量,即車的速度和車身的長度。在題目中不變的量,即可為等量,從而列出方程。例如以車身長度為等量,可列方程,設車的速度為xm/s,60x-1000=1000-40x,以車的速度為等量,可列方程,設車身長為xm

解一: 設車的速度為xm/s

經檢驗,符合題意。

答: 車的速度為20m/s。

解二: 設車身的長度為xm

經檢驗,符合題意。

答: 車的速度為(1000+200)/60=20m/s

例7.某音樂廳五月初決定在暑假期間舉辦學生專場音樂會,入場券分為團體票和零售票

售票的一半。如果在六月份內,團體票按每張16元出售,并計劃在六月份售完全部余票,那么零售票應按每張多少元出售才能使兩個月的票款收入持平?

分析: 此題的等量關系比較好找,即五六月份的票款相等,但團體票及零售票的張數不知道,可用字母表示出來,設而不求。

解: 設團體票共2a張,零售票共a張,零售票價x元

經檢驗,符合題意。

答: 零售票價為19.2元。

初中數學教案2

教學建議

知識結構

重難點分析

本節的重點是的性質和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質和不同于平行四邊形的判定方法。的這些性質和判定定理即是平行四邊形性質與判定的延續,又是以后要學習的正方形的基礎。

本節的難點是性質的靈活應用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。如果得到一個平行四邊形是,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程中應給予足夠重視。

教法建議

根據本節內容的特點和與平行四邊形的關系,建議教師在教學過程中注意以下問題:

1.的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。

2.在現實中的實例較多,在講解的性質和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質和判定,既增加了學生的參與感又鞏固了所學的知識.

3.如果條件允許,教師在講授這節內容前,可指導學生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.

4.在對性質的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內進行整理、歸納.

5.由于和的性質定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.

6.在性質應用講解中,為便于理解掌握,教師要注意題目的層次安排。

一、教學目標

1.掌握概念,知道與平行四邊形的關系.

2.掌握的性質.

3.通過運用知識解決具體問題,提高分析能力和觀察能力.

4.通過教具的演示培養學生的學習興趣.

5.根據平行四邊形與矩形、的從屬關系,通過畫圖向學生滲透集合思想.

6.通過性質的學習,體會的圖形美.

二、教法設計

觀察分析討論相結合的方法

三、重點·難點·疑點及解決辦法

1.教學重點:的性質定理.

2.教學難點:把的性質和直角三角形的知識綜合應用.

3.疑點:與矩形的性質的區別.

四、課時安排

1課時

五、教具學具準備

教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動活動設計

教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

七、教學步驟

【復習提問】

1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?

2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角.

3.矩形的一個角的平分線把較長的.邊分成、,求矩形的周長.

【引入新課】

我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出概念.

【講解新課】

1.定義:有一組鄰邊相等的平行四邊形叫做.

講解這個定義時,要抓住概念的本質,應突出兩條:

(1)強調是平行四邊形.

(2)一組鄰邊相等.

2.的性質:

教師強調,既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質,此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質.

下面研究的性質:

師:同學們根據的定義結合圖形猜一下有什么性質(讓學生們討論,并引導學生分別從邊、角、對角線三個方面分析).

生:因為是有一組鄰邊相等的平行四邊形,所以根據平行四邊形對邊相等的性質可以得到.

性質定理1:的四條邊都相等.

由的四條邊都相等,根據平行四邊形對角線互相平分,可以得到

性質定理2:的對角線互相垂直并且每一條對角線平分一組對角.

引導學生完成定理的規范證明.

師:觀察右圖,被對角線分成的四個直角三角形有什么關系?

生:全等.

師:它們的底和高和兩條對角線有什么關系?

生:分別是兩條對角線的一半.

師:如果設的兩條對角線分別為、,則的面積是什么?

生:

教師指出當不易求出對角線長時,就用平行四邊形面積的一般計算方法計算面積.

例2已知:如右圖,是△的角平分線,交于,交于.

求證:四邊形是.

(引導學生用定義來判定.)

例3已知的邊長為,,對角線,相交于點,如右圖,求這個的對角線長和面積.

(1)按教材的方法求面積.

(2)還可以引導學生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計算的面積.

【總結、擴展】

1.小結:(打出投影)(圖4)

(1)、平行四邊形、四邊形的從屬關系:

(2)性質:圖5

①具有平行四邊形的所有性質.

②特有性質:四條邊相等;對角線互相垂直,且平分每一組對角.

八、布置作業

教材P158中6、7、8,P196中10

九、板書設計

標題

定義……

性質例2…… 小結:

性質定理1:……例3…… ……

性質定理2:……

十、隨堂練習

教材P151中1、2、3

補充

1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.

2.周長為80,一對角線為20,則相鄰兩角的度數為___________、____________.

初中數學教案3

問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發?

這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數能使兩邊的值相等,這個數就是這個方程的解。

把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,

因為左邊=右邊,所以x=3就是這個方程的解。

這種通過試驗的方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。

問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?

同學們動手試一試,大家發現了什么問題?

同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?

這正是我們本章要解決的問題。

三、鞏固練習

1、教科書第3頁練習1、2。

2、補充練習:檢驗下列各括號內的數是不是它前面方程的解。

(1)x-3(x+2)=6+x(x=3,x=-4)

(2)2y(y-1)=3(y=-1,y=2)

(3)5(x-1)(x-2)=0(x=0,x=1,x=2)

四、小結。本節課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

五、作業。教科書第3頁,習題6。1第1、3題。

解一元一次方程

1、方程的簡單變形

教學目的

通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數的值。

重點、難點

1、重點:方程的兩種變形。

2、難點:由具體實例抽象出方程的兩種變形。

教學過程

一、引入

上一節課我們學習了列方程解簡單的應用題,列出的.方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節課,我們將學習如何將方程變形。

二、新授

讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。

測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態時,顯然兩邊的質量相等。

如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。

如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯想到方程的變形嗎?

讓同學們觀察圖6.2.1的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。

初中數學教案4

圖樣,圖樣,還是圖樣。到處都是圖樣,有的用尖細的木片潦草地寫在滿是灰塵的大理石桌上,有的用一塊木炭涂在墻上,有的用粉筆畫在地上。阿基米德穿著一件白色的舊長袍,坐在桌子上思索起來。手指象發燒似的微微顫抖。豆大的汗珠裹著灰塵,從他極度疲倦的臉上落在手上,落到衣服上,落到隨手扔在桌子上的一卷草片紙上。

他沒有跑,沒有象一個無恥的膽小鬼那樣從戰場上逃跑。他竭盡全力,把全部的智慧和熱情都獻給了這座城市。多少個不眠之夜,多少個酷熱難耐的白天,他就是整個敘拉古防御陣地的大腦和心臟。一提到他的名字,羅馬人就驚恐地逃離城墻,他們唯恐躲避不及致命的投石炮,以及紛紛落下的熾熱的涂滿油脂的麻屑,標槍與長矛的驟雨。不就是他,不動咫尺就把接近城市海防工事的羅馬艦隊都燒毀了嗎?不就是他,一個人用他發明的一組復雜的滑車把羅馬的兵船吊在半空,再從高處把船拋向深海里去了嗎?但這對于一個人的獨創才能和精力來說,已經是極限了,他已經是一個衰弱的老人,他的手握不住戰劍。他堅持留在陣地上,直至敵人出現在城墻外邊。而這時戴著盔形帽的羅馬人已經開始在被歲月磨出來的馬路的石塊上晃動。希臘人竭盡最后的力量進行抵抗,肉搏戰當然沒有阿基米德參加的份。。。。。。

在中午被烈日曬的發燙的物體,現在讓令人愜意的涼爽的空氣溫柔地籠罩著。戰斗的喊聲透過厚實的門簾隱隱約約地傳進屋里。掛在兩個窗戶上的草簾子使得屋里稍微有點昏暗,但一點也不妨礙看清楚眼睛看慣的東西。 生命就要完結,這一生是漫長而又艱難的。在命運給予他的七十五年里,在不停的探索中,在持續的緊張中,在旅行中,在工作室,造船廠和采石場的不斷的爭論中,他從未能回顧過自己的人生,沒有考慮一下是否活得合理。伊壁鳩魯(前341—前270 古希臘唯物主義哲學家,在倫理觀上,主張人生的目的在于避免苦痛,使心身安寧,怡然自得,這才是人生最高的幸福)這位激進的老人如此忘情地說過的那種快樂,哪怕是一部分,阿基米德也沒有從生活中得到過。在他還是一個十七歲的青年人時,曾經站在這位偉大哲學家的墳墓上,思索著用自己的一生實現他富有人生樂趣的哲學。他實現了嗎?

還在青年時代,他就踏上了這條荊棘叢生的,曲折的,布滿無數坎坷的學者道路。學者的生活。。。。。。當生活道路開始的時候,他曾經把生活想象的很不實際。他用充滿甜蜜的幸福,普遍的崇敬和持久不變的,任憑什么也不能蒙蔽的榮譽來描繪自己青年時代雄心勃勃的夢想。但生活并非如此,他竟然是格外地嚴酷。他實際體驗到,這生活是一天一時也不停地,終身為一個神靈,一個偶像,一個各種思想和愿望的主宰服務。科學就是一個催眠術家,只要一次受到科學真理魔術般的誘惑,立刻就會為了科學而忘掉一切,直至最后進入墳墓。

榮譽是有的',但是這榮譽足以為不學無術者和嫉妒者們的大聲嘲笑所敗壞。是有許多狂熱的崇拜者,但也有許多惡毒的非難者,他們不錯過任何一個機會,通過假借的名義,公開和秘密地對他進行侮辱,詆毀和誹傍,以他為笑柄。。。。。。

他本人的生活是這樣,他父親的生活也是這樣。他父親叫做菲迪亞斯。供人參閱的備忘錄描述了他很早的童年時代的情形,小阿基米德似乎不得不讓每一個新認識的人相信,他的父親只是和奧利匹亞的<<宙斯>>像和雅典的女神像的著名的建造者,比阿基米德天文學家的父親早生一百多年的雕刻家菲迪亞斯同姓。奇怪的是,菲迪亞斯竟然不是國王亥厄洛的親戚,相反,完全出乎意料之外,阿基米德卻是國王亥厄洛的一個親戚,就是說,也是國王兒子格隆的一個親戚。。。。。。

這里是繁華的亞歷山大城。阿基米德花了許多時間沿著城市的石頭道散步,登上佛洛斯燈塔,從那里了望擁簇著似乎是從地球上所有有人居住的地方抵達到這里的希臘,羅馬,腓尼基,波斯和其它國家的船只的港灣。但是,比這多得多的時間,他是在著名的亞歷山大圖書館里度過的。世界上任何一個圖書館可能都要羨慕這家圖書館所收集的抄本和手稿。在圖書館里,集中了偉大的亞歷山大城所有最優秀的青年人。在和那些崇拜本國著名的歐幾里德的年輕人的熱烈爭論中,阿基米德對自己的科學立場的理解逐漸成熟,有些地方與亞歷山大人接近,有些地方則與他們截然不同。但是,盡管在觀點上有所不同,他剛一熟悉歐幾里德的著作,對已故的偉大學者歐幾里德的虔誠的敬意就完全征服了阿基米德。歐幾里德的<<幾何原本>>從此成為他整個漫長一生的必讀之書。。。。。。

戰斗的吶喊聲越來越大。厚實的窗簾已經擋不住獲勝的羅馬人狂喜的歡呼聲,戰劍打擊敘拉古最后一批保衛者的盾牌的叮當聲,還有那刺向他們被長時間的防御戰折磨得精疲力盡的身體的沉悶聲。獲勝的敵人已經占領了這座苦難的城市,又醉心于卑鄙無恥的,令人痛惡的殺掠,連兒童,婦女和老人也不放過。

非常奇怪的是,所以這一切————戰劍的叮當聲,垂死者的呻吟聲,羅馬人勝利的歡呼聲,都是這樣地遙遠,似乎是在半個多世紀以前發出的。阿基米德突然以一種可怕的清醒回想起自己乘一艘小船從亞歷山大到敘拉古所經歷的漫長而又十分危險的旅程。在危機四伏的不平靜的大海中,綠色的波濤的巔峰翻騰著白色的大理石般的泡沫,不停地撞擊著毫無保護的不堅固的小船,船上可憐的人們覺得好像無論是人,還是超人的力量都已經不能把他們從海神的懷抱里解救出來。 而就在這時,舵手使出全身的力氣掌穩沉重的船舵,高高地向上搬動舵尾,用力地沖向那轟隆作響的搖蕩的浪山。船象一匹戴上嚼子的馬,戰栗著,一會兒呆立在高高的浪峰上,一會兒又搖晃著跌進隨之而來的無底的深淵。。。。。。

船駛離亞歷山大之時,裝飾著色彩繽紛的船帆,宛如一位服裝時髦的美女,而抵達敘拉古時,卻遍體鱗傷,千瘡百孔,失去了桅桿和船帆,簡直就是一個衣衫襤褸的女乞丐了。。。。。。

一個羅馬兵兇惡的面孔突然出現在眼前,在他身后是一群形形色色的敘拉古人,正在走去迎接無數條載著有半死不活的航海者的戰船。這個外國的不速之客從哪里來?是怎么來的呢?這個人張牙舞爪,脖子上的青筋暴起,叫嚷者什么,阿基米德卻聽不見他的話。往事仍然把阿基米德死死地拖住不放,忘卻現實的銷魂的魔力還沒有退卻。。。。。。

幻影沒有消失。在它還沒有最后填滿整個房間,把整個古老的敘拉古陽光充足的港灣里毫無剩余地從房間里排擠出去之前,它在數學家視線模糊的眼睛里仍然在擴大,擴大。啊,原來這里還有個人。這時,一個強盜,殺人兇手找到了數學家阿基米德的住宅。這個殘忍的羅馬士兵————數學家以前幾乎沒有想過的死亡就這樣悄悄地向她逼近了。

“別動我的圖案!”老人聲音低微,但語氣卻強硬地命令道。這就是他說的最后一句話。一把寬大的雙刃劍用力地砍在這位偉大的世界公民頭發斑白,疲憊不堪的,但卻威嚴自豪,充滿靈感的頭顱上。。。。。。

據說,阿基米德就這樣在位于被羅馬人攻取并搶劫的敘拉古的一條街道上的房間里被殺害了。甚至羅馬主將馬爾采勒,這個長期徒勞地企圖占領這座城市的不共戴天的,陰險的敵人,在得知這位最偉大的學者和最熱情和無畏的愛國主義者的死訊之后,也感到極度的悲傷。

初中數學教案5

知識技能目標

1、理解反比例函數的圖象是雙曲線,利用描點法畫出反比例函數的圖象,說出它的性質;

2、利用反比例函數的圖象解決有關問題。

過程性目標

1、經歷對反比例函數圖象的觀察、分析、討論、概括過程,會說出它的性質;

2、探索反比例函數的圖象的性質,體會用數形結合思想解數學問題。

教學過程

一、創設情境

上節的練習中,我們畫出了問題1中函數的圖象,發現它并不是直線。那么它是怎么樣的曲線呢?本節課,我們就來討論一般的反比例函數(k是常數,k≠0)的圖象,探究它有什么性質。

二、探究歸納

1、畫出函數的圖象。

分析畫出函數圖象一般分為列表、描點、連線三個步驟,在反比例函數中自變量x≠0。

1、列表:這個函數中自變量x的取值范圍是不等于零的一切實數,列出x與y的對應值:

2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。

3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數的圖象。

上述圖象,通常稱為雙曲線(hyperbola)。

提問這兩條曲線會與x軸、y軸相交嗎?為什么?

學生試一試:畫出反比例函數的圖象(學生動手畫反比函數圖象,進一步掌握畫函數圖象的步驟)。

學生討論、交流以下問題,并將討論、交流的結果回答問題。

1、這個函數的圖象在哪兩個象限?和函數的圖象有什么不同?

2、反比例函數(k≠0)的圖象在哪兩個象限內?由什么確定?

3、聯系一次函數的性質,你能否總結出反比例函數中隨著自變量x的增加,函數y將怎樣變化?有什么規律?

反比例函數有下列性質:

(1)當k>0時,函數的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;

(2)當k<0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。

1、雙曲線的兩個分支與x軸和y軸沒有交點;

2、雙曲線的兩個分支關于原點成中心對稱。

以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?

在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮上的時間少。

在問題2中反映了在面積一定的情況下,飼養場的一邊越長,另一邊越小。

三、實踐應用

例1若反比例函數的圖象在第二、四象限,求m的值。

分析由反比例函數的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。

解由題意,得解得。

例2已知反比例函數(k≠0),當x>0時,y隨x的增大而增大,求一次函數y=kx—k的圖象經過的象限。

分析由于反比例函數(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。

解因為反比例函數(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數y=kx—k的圖象經過一、二、四象限。

例3已知反比例函數的圖象過點(1,—2)。

(1)求這個函數的解析式,并畫出圖象;

(2)若點A(—5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?

分析(1)反比例函數的圖象過點(1,—2),即當x=1時,y=—2。由待定系數法可求出反比例函數解析式;再根據解析式,通過列表、描點、連線可畫出反比例函數的圖象;

(2)由點A在反比例函數的圖象上,易求出m的值,再驗證點A關于兩坐標軸和原點的對稱點是否在圖象上。

解(1)設:反比例函數的解析式為:(k≠0)。

而反比例函數的圖象過點(1,—2),即當x=1時,y=—2。

所以,k=—2。

即反比例函數的解析式為:。

(2)點A(—5,m)在反比例函數圖象上,所以,

點A的坐標為。

點A關于x軸的對稱點不在這個圖象上;

點A關于y軸的對稱點不在這個圖象上;

點A關于原點的對稱點在這個圖象上;

例4已知函數為反比例函數。

(1)求m的值;

(2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?

(3)當—3≤x≤時,求此函數的.最大值和最小值。

解(1)由反比例函數的定義可知:解得,m=—2。

(2)因為—2<0,所以反比例函數的圖象在第二、四象限內,在各象限內,y隨x的增大而增大。

(3)因為在第個象限內,y隨x的增大而增大,

所以當x=時,y最大值=;

當x=—3時,y最小值=。

所以當—3≤x≤時,此函數的最大值為8,最小值為。

例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。

(1)寫出用高表示長的函數關系式;

(2)寫出自變量x的取值范圍;

(3)畫出函數的圖象。

解(1)因為100=5xy,所以。

(2)x>0。

(3)圖象如下:

說明由于自變量x>0,所以畫出的反比例函數的圖象只是位于第一象限內的一個分支。

四、交流反思

本節課學習了畫反比例函數的圖象和探討了反比例函數的性質。

1、反比例函數的圖象是雙曲線(hyperbola)。

2、反比例函數有如下性質:

(1)當k>0時,函數的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;

(2)當k<0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。

五、檢測反饋

1、在同一直角坐標系中畫出下列函數的圖象:

(1);(2)。

2、已知y是x的反比例函數,且當x=3時,y=8,求:

(1)y和x的函數關系式;

(2)當時,y的值;

(3)當x取何值時,?

3、若反比例函數的圖象在所在象限內,y隨x的增大而增大,求n的值。

4、已知反比例函數經過點A(2,—m)和B(n,2n),求:

(1)m和n的值;

(2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0

初中數學教案6

一、教學目標

1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;

2.培養學生觀察能力,提高他們分析問題和解決問題的能力;

3.使學生初步養成正確思考問題的良好習慣。

二、教學重點和難點

一元一次方程解簡單的應用題的方法和步驟。

三、課堂教學過程設計

(一)從學生原有的認知結構提出問題

在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優越性呢?

為了回答上述這幾個問題,我們來看下面這個例題。

例1 某數的3倍減2等于某數與4的和,求某數。

(首先,用算術方法解,由學生回答,教師板書)

解法1:(4+2)÷(3-1)=3。

答:某數為3。

(其次,用代數方法來解,教師引導,學生口述完成)

解法2:設某數為x,則有3x-2=x+4。

解之,得x=3。

答:某數為3。

縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數,列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一。

我們知道方程是一個含有未知數的等式,而等式表示了一個相等關系。因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程。

本節課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟。

(二)師生共同分析、研究一元一次方程解簡單應用題的方法和步驟

例2 某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原來有多少面粉?

師生共同分析:

1.本題中給出的已知量和未知量各是什么?

2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)

3.若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?

上述分析過程可列表如下:

解:設原來有x千克面粉,那么運出了15%x千克,由題意,得

x-15%x=42 500,

所以x=50 000。

答:原來有50 000千克面粉。

此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?

(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)

教師應指出:

(1)這兩種相等關系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質是一樣的,可以任意選擇其中的一個相等關系來列方程;

(2)例2的解方程過程較為簡捷,同學應注意模仿。

依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的情況,教師總結如下:

(1)仔細審題,透徹理解題意。即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數;

(2)根據題意找出能夠表示應用題全部含義的.一個相等關系。(這是關鍵一步);

(3)根據相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的代數式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;

(4)求出所列方程的解;

(5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義。

例3 (投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?

(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現的各種錯誤。并嚴格規范書寫格式。)

解:設第一小組有x個學生,依題意,得

3x+9=5x-(5-4),

解這個方程:2x=10,

所以x=5。

其蘋果數為3× 5+9=24。

答:第一小組有5名同學,共摘蘋果24個。

學生板演后,引導學生探討此題是否可有其他解法,并列出方程。

(設第一小組共摘了x個蘋果,則依題意,得)

(三)課堂練習

1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?

2.我國城鄉居民1988年末的儲蓄存款達到3 802億元,比1978年末的儲蓄存款的18倍還多4億元。求1978年末的儲蓄存款。

3.某工廠女工人占全廠總人數的35%,男工比女工多252人,求全廠總人數。

(四)師生共同小結

首先,讓學生回答如下問題:

1.本節課學習了哪些內容?

2.列一元一次方程解應用題的方法和步驟是什么?

3.在運用上述方法和步驟時應注意什么?

依據學生的回答情況,教師總結如下:

(1)代數方法的基本步驟是:全面掌握題意;恰當選擇變數;找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;

(2)以上步驟同學應在理解的基礎上記憶。

(五)作業

1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?

2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?

3.某廠去年10月份生產電視機20xx臺,這比前年10月產量的2倍還多150臺。這家工廠前年10月生產電視機多少臺?

4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?

5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元。求得到一等獎與二等獎的人數。

初中數學教案7

1.初中數學教案模板

1.課題

填寫課題名稱(初中代數類課題)

2.教學目標

(1)知識與技能:

通過本節課的學習,掌握......知識,提高學生解決實際問題的能力;

(2)過程與方法:

通過......(討論、發現、探究)的過程,提高......(分析、歸納、比較和概括)的能力;

(3)情感態度與價值觀:

通過本節課的學習,增強學生的學習興趣,將數學應用到實際生活中,增加學生數學學習的樂趣。

3.教學重難點

(1)教學重點:本節課的知識重點

(2)教學難點:易錯點、難以理解的知識點

4.教學方法(一般從中選擇3個就可以了)

(1)討論法

(2)情景教學法

(3)問答法

(4)發現法

(5)講授法

5.教學過程

(1)導入

簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節課的課題)

(2)新授課程(一般分為三個小步驟)

①簡單講解本節課基礎知識點(例:類比一元一次方程的解法,講解一元一次不等式的解法和步驟)。

②歸納總結該課題中的重點知識內容,尤其對該注意的一些情況設置易錯點,進行強調。可以設計分組討論環節(例:分組討論一元一次不等式的解法,歸納總結一元一次不等式的方法步驟,設置系數化為一,負號要變號的易錯點)。

③拓展延伸,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題(例:設置一元一次不等式的應用題,學生再次體會一元一次不等式解決實際問題,并且再次鞏固不等式的解法)。

(3)課堂小結

教師提問,學生回答本節課的收獲。

(4)作業提高

布置作業(盡量與實際生活相聯系,有所創新)。

6.教學板書

2.初中數學教案格式

課程編碼:______________________________________

總學時 / 周學時: /

開課時間: 年 月 日 第 周至第 周

授課年級、專業、班級:___________________________

使用教材:_______________________________________

授課教師:_______________________________________

1.章節名稱

2.教學目的

3.課時安排

4.教學重點、難點

5.教學過程(包括教學內容、教師活動、學生活動、教學方法等)

6.復習鞏固與作業要求

7.教學環境及教具準備

8.教學參考資料

9.教學后記

3.初中數學教案范文

教學目的

1.通過對多個實際問題的'分析,使學生體會到一元一次方程作為實際問題的數學模型的作用。

2.使學生會列一元一次方程解決一些簡單的應用題。

3.會判斷一個數是不是某個方程的解。

重點、難點

1.重點:會列一元一次方程解決一些簡單的應用題。

2.難點:弄清題意,找出“相等關系”。

教學過程

一、復習提問

一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?

解:設小紅能買到工本筆記本,那么根據題意,得1.2x=6

因為1.2×5=6,所以小紅能買到5本筆記本。

二、新授

問題1:某校初中一年級328名 師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?(讓學生思考后,回答,教師再作講評)

算術法:(328-64)÷44=264÷44=6(輛)

列方程:設需要租用x輛客車,可得44x+64=328

解這個方程,就能得到所求的結果。

問:你會解這個方程嗎?試試看?

問題2:在課外活動中,張老師發現同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”

通過分析,列出方程:13+x=(45+x)

問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發?

把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,

因為左邊=右邊,所以x=3就是這個方程的解。

這種通過試驗的方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。

問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發現了什么問題?

同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?

三、鞏固練習

教科書第3頁練習1、2。

四、小結

本節課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

五、作業

教科書第3頁,習題6.1第1、3題。

初中數學教案8

一、素質教育目標

(一)知識教學點

1.理解畫兩個角的差,一個角的幾倍、幾分之一的方法.

2.掌握用量角器畫兩個角的和差,一個角的幾倍、幾分之一的畫法.用三角板畫一些特殊角的畫法.

(二)能力訓練點

通過畫角的和、差、倍、分,三角板和量角器的使用,培養學生動手能力和操作技巧.

(三)德育滲透點

通過利用三角板畫特殊角的方法,說明幾何知識常用來解決實際問題,進行幾何學在生產、生活中起著重要作用的教育,鼓勵他們努力學習。

(四)美育滲透點

通過學生動手操作,使學生體會到簡單幾何圖形組合的多樣性,領會幾何圖形美.

二、學法引導

1.教師教法:嘗試指導,以學生操作為主.

2.學生學法:在教師的指導下,積極動手參與,認真思考領會歸納.

三、重點、難點、疑點及解決辦法

(一)重點

用量角器畫角的和、差、倍、分及用三角板畫特殊角.

(二)難點

準確使用量角器畫一個角的幾分之一.

(三)疑點

量角器的正確使用.

(四)解決辦法

通過正確指導,規范操作,使學生掌握畫法要領,并以練習加以鞏固,從而解決重難點及疑點.

四、課時安排

1課時

五、教具學具準備

一副三角板、量角器.

六、師生互動活動設計

1.通過教師設,學生動手及思考創設出情境,引出課題.

2.通過學生嘗試解決、教師把握幾何語言美的方法,放手由學生自己解決有關角的畫法.

3.通過提問的形式完成小結.

七、教學步驟

(一)明確目標

使學生會用量角器畫角及角的和、差、倍、分,培養學生動手能力和操作能力.

(二)整體感知

通過教師指導,學生動手操作完成對畫圖能力和操作能力的掌握.

圖1

(三)教學過程

創設情境,引出課題

教師在黑板上畫出(如圖1).

師:現有工具量角器和三角板,誰到黑板上畫一個角等于呢?請同學們觀察他的操作,老師要找同學說明他的畫法.

【教法說明】有上節課的基礎,學生會先用量角器測量的度數,再畫一個度數等于這個度數的角,學生也會敘述其畫法.

提出問題:若老師想畫的余角、補角呢?

學生會想到畫、減去的度數后的角,即為的余角、補角.

師:是否還有別的方法?

這時學生一定會積極思考,立刻回答還有困難.教師抓住時機點明課題:同學們不用著急,今天我們就研究角的畫法,學習用三角板、量角器畫角的和、差、倍、分以及一些特殊角.老師提出的問題你們會解決的.另外,角的畫法在我們日常生活中應用廣泛,希望同學們認真學習.(板書課題……)

[板書]1.7角的畫法

探究新知

1.畫一個角等于已知角

找學生再次敘述方法:用量角器量出已知角的度數,再畫一個等于這個度數的角.

操作:略.

注意:量角器使用三要素:對中、重合、讀數.

2.用三角板畫特殊角

師:請同學們準備好練習本和一副三角板,再找同學說出一副三角板中各角度數.

學生活動:用三角板在練習本上畫出直角、角、角、角.

提出問題:你能利用一副三角板畫出、的角嗎?

學生活動:討論畫、的角的方法,在練習本上畫出圖形,同桌可相互交換檢查,找學生到黑板上畫.

【教法說明】有前一節角的和、差的理解和、、角的畫法,學生對畫、的'角不會有困難.因此,教師要敢于放手,讓學生自己去嘗試解決問題的方法,也培養他們的動手操作的能力,但對于畫法學生不會敘述得太嚴密,教師要把關,培養學生幾何語言的嚴密性.

教師根據前面學生所畫圖形,引導學生寫出畫法.(以角的畫法為例,與例題相符.)

圖1

畫法如圖l,①利用三角板,畫

②在的外部,再畫就是要畫的的角.

反饋練習:用三角板畫、的角.

【教法說明】由學生獨立完成以上三個角的畫圖.教師不給任何提示,只要求寫出畫角的方法,注意觀察畫法,是否寫出了“在角的內部畫的角”.區別例題中兩角和的畫法.

提出問題:由一副三角板可以畫出多少度的角?

學生討論得出可以畫出的角.

這些角都是的倍數,用三角板也只限畫這樣的角.由此得出:由量角器畫任意角的和、差、倍、分角.

3.畫任意兩個角的和差及一個角的幾倍、幾分之一.

問題:如圖1,已知、,如何畫出與的和?與的差?

圖1

學生活動:討論畫,的方法,并在練習本上根據自己的想法畫圖.

根據學生的討論回答,老師歸納以下方法:

(1)用量角器量出、的度數,計算出它們度數的和、差,再用量角器畫出等于它們度數和、差的角.

(2)用量角器把移到上,如果本方法.

圖1

教師示范,寫出兩種畫法:

畫法一:(1)用量角器量得,.

(2)畫,就是要畫的角如圖1.

圖2

畫法二:(1)用量角器畫.

(2)以點為頂點,射為一邊,在的外部畫.

就是要畫的角如圖2.

學生活動:敘述用兩種方法畫的畫法.出示例1由學生完成,要求用兩種方法,找同學板演.

例1?已知,畫出它們的余角.

畫法一:(1)量得.

圖1圖2

(2)畫,就是所要畫的角,見圖1.

畫法二:利用三角板,以的頂點為頂點,一邊為邊,畫直角,使的另一邊在直角的內部,如圖2,就是所要畫的角.

【教法說明】第二種畫法學生可能敘述或書寫不太完整,教師要注意其嚴密性.

反饋練習

1.已知,畫出它的補角.

2.已知,畫它們的角平分線.

3.畫的角,并把它分成三等份.

【教法說明】本練習只要求圖形正確即可,不要求寫出畫法.

(四)總結、擴展

以提問的形式歸納出以下知識脈絡:

八、布置作業

課本第46頁習題1.5A組第2、3題.

初中數學教案9

教學目標:

1.在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角.

2.理解對頂角相等,并能運用它解決一些問題.

重點:

鄰補角、對頂角的概念,對頂角的性質與應用.

難點:

理解對頂角相等的性質的探索.

教學過程:

一、創設情境,引入新課

引導語:

我們生活的世界中,蘊涵著大量的相交線和平行線.

本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質,研究平行線的性質和平行線的判定以及圖形的平移問題.

二、嘗試活動,探索新知

教師出示一塊布片和一把剪刀,表演剪刀剪布的過程.

教師提出問題:剪布時,用力握緊把手,發生了什么變化?進而使什么也發生了變化?

學生觀察、思考、回答,得出:

握緊把手時,隨著兩個把手之間的角逐漸變小,剪刀刀刃之間的角相應變小.如果改變用力方向,隨著兩個把手之間的角逐漸變大,剪刀刀刃之間的角也相應變大.

教師提問:我們可以把剪刀抽象成什么簡單的圖形?

學生回答:畫成兩條相交的直線,學生畫直線AB、CD相交于點O,并說出圖中4個角.

教師提問:兩兩相配共能組成幾對角?各對角的.位置關系如何?根據不同的位置怎么將它們分類?

學生用量角器分別量一量各角的度數,發現各對角的度數有什么關系?(學生得出結論:相鄰的兩個角互補,對頂的兩個角相等)

學生根據觀察和度量完成下表:

兩條直線相交、所形成的角、分類、位置關系、數量關系

教師提問:

如果改變∠AOC的大小,會改變它與其他角的位置關系和數量關系嗎?

學生思考回答:

只會改變數量關系而不會改變位置關系.

師生共同定義鄰補角、對頂角:

有一條公共邊,而且另一邊互為反向延長線的兩個角叫做鄰補角.

如果兩個角有一個公共頂點,而且一個角的兩邊分別是另一個角的兩邊的反向延長線,那么這兩個角叫做對頂角.

教師提問:

你同意下列說法嗎?如果錯誤,如何訂正?

1.鄰補角的“鄰”就是“相鄰”,就是它們有一條“公共邊”,“補”就是“互補”,就是這兩個角的另一條邊在同一條直線上.

2.鄰補角可看成是平角被過它的頂點的一條射線分成的兩個角.

3.鄰補角是互補的兩個角,互補的兩個角也是鄰補角.

學生思考回答:1、2是對的,3是錯的.

第3個應改成:鄰補角是互補的兩個角,互補的兩個角不一定是鄰補角.

教師讓學生說一說在學習對頂角的概念后,通過實際操作獲得的直觀體驗.

教師把說理過程規范地板書:

在右圖中,∠AOC的鄰補角是∠BOC和∠AOD,所以∠AOC與∠BOC互補,∠AOC與∠AOD互補,根據“同角的補角相等”,可以得出∠AOD=∠BOC,類似地有∠AOC=∠BOD.

教師板書對頂角的性質:

對頂角相等.

強調對頂角的概念與對頂角的性質不能混淆:

對頂角的概念是確定兩角的位置關系,對頂角的性質是確定互為對頂角的兩角的數量關系.

三、例題講解

【例】 如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數.

【答案】 由鄰補角的定義,得∠2=180°-∠1=180°-40°=140°;由對頂角相等,得∠3=∠1=40°,∠4=∠2=140°.

四、鞏固練習

1.判斷下列圖中是否存在對頂角.

2.按要求完成下列各題.

(1)兩條直線相交,構成哪兩種特殊位置關系的角?指出下圖中具有這兩種位置關系的角.

eq o(sup7(,圖(1)) ,圖(2))

(2)如圖,若∠AOD= 90°,那么直線AB與CD的位置關系如何?

【答案】

1.都不存在對頂角.

2.(1)對頂角,鄰補角.

對頂角:∠AOC和∠BOD,∠AOD和∠BOC.

鄰補角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.

(2)垂直.

五、課堂小結

教師引導學生進行本節課的小結并強調對頂角的概念與對頂角的性質不能混淆:對頂角的概念是確定兩角的位置關系,對頂角的性質是確定互為對頂角的兩角的數量關系.

教學反思

通過本節課的學習,大部分學生能積極主動地參與到學習活動中來,并能積極主動地提出各類問題并解決問題,達到了基本的教學效果.但是由于對新概念的理解不是很深刻,所以在應用方面存在不足,針對這一情況,教師應選擇典型的例題,詳細講解,指導學生探求解題的思路和方法,加深對概念的理解,做到熟練的應用。

初中數學教案10

一、主題分析與設計

本節課是蘇科版義務教育課程標準實驗教科書七年級數學(下冊)第七章第2節內容——探索平行線的性質,它是直線平行的繼續,是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分。

《數學課程標準》強調:數學教學是數學活動的教學,是師生之間、生生之間交往互動與共同發展的過程;動手實踐,自主探索,合作交流是孩子學習數學的重要方式;合作交流的學習形式是培養孩子積極參與、自主學習的有效途徑。本節課將以“生活·數學”、“活動·思考”、“表達·應用”為主線開展課堂教學,以學生看得到、感受得到的基本素材創設問題情境,引導學生活動,并在活動中激發學生認真思考、積極探索,主動獲取數學知識,從而促進學生研究性學習方式的形成,同時通過小組內學生相互協作研究,培養學生合作性學習精神。

二、教學目標

1、知識與技能:掌握平行線的性質,能應用性質解決相關問題。

2、數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程。初中數學教育敘事

3、解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創新意識和創新精神。

4、情感態度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和團結合作、勇于探索、鍥而不舍的精神。

三、教學重、難點

1、重點:對平行線性質的掌握與應用

2、難點:對平行線性質1的探究

四、教學用具

1、教具:多媒體平臺及多媒體課件

2、學具:三角尺、量角器、剪刀

五、教學過程

(一)創設情境,設疑激思

1、播放一組幻燈片。

內容:

①供火車行駛的鐵軌上;

②游泳池中的泳道隔欄;

③橫格紙中的線。

2、提問溫故:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?

3、學生活動:針對問題,學生思考后回答——①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;

4、教師肯定學生的回答并提出新問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?從而引出課題:7。2探索平行線的性質(板書)

(二)數形結合,探究性質

1、畫圖探究,歸納猜想

教師提要求,學生實踐操作:任意畫出兩條平行線(a ∥ b),畫一條截線c與這兩條平行線相交,標出8個角。(統一采用阿拉伯數字標角)

教師提出研究性問題一:

指出圖中的同位角,并度量這些角,把結果填入下表:

教師提出研究性問題二:

將畫出圖中的同位角任先一組剪下后疊合。

學生活動一:畫圖————度量————填表————猜想

學生活動二:畫圖————剪圖————疊合

讓學生根據活動得出的數據與操作得出的結果歸納猜想:兩直線平行,同位角相等。

教師提出研究性問題三:

再畫出一條截線d,看你的'猜想結論是否仍然成立?

學生活動:探究、按小組討論,最后得出結論:仍然成立。

2、教師用《幾何畫板》課件驗證猜想,讓學生直觀感受猜想

3、教師展示平行線性質1:兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)

(三)引申思考,培養創新

教師提出研究性問題四:

請判斷兩條平行線被第三條直線所截,內錯角、同旁內角各有什么關系?

學生活動:獨立探究————小組討論————成果展示。

教師活動:評價學生的研究成果,并引導學生說理

因為a ∥ b(已知)

所以∠ 1= ∠ 2(兩直線平行,同位角相等)

又∠ 1= ∠ 3(對頂角相等)

∠ 1+ ∠ 4=180°(鄰補角的定義)

所以∠ 2= ∠ 3(等量代換)

∠ 2+ ∠ 4=180°(等量代換)

教師展示:

平行線性質2:兩條平行線被第三條直線所截,內錯角相等。(兩直線平行,內錯角相等)

平行線性質2:兩條平行線被第三條直線所截,同旁內角互補。(兩直線平行,同旁內角互補)

(四)實際應用,優勢互補

1、(搶答)課本P13練一練1、2及習題7。2 1、5

2、(討論解答)課本P13習題7。2 2、3、4

(五)課堂總結:這節課你有哪些收獲?

1、學生總結:平行線的性質1、2、3

2、教師補充總結:

⑴用“運動”的觀點觀察數學問題;(如我們前面將同位角剪下疊合后分析問題)

⑵用數形結合的方法來解決問題;(如我們前面將同位角測量后分析問題)

⑶用準確的語言來表達問題;(如平行線的性質1、2、3的表述)

⑷用邏輯推理的形式來論證問題。(如我們前面對性質2和3的說理過程)

(六)作業

學習與評價P5 1、2、3(填空);4、5、6(選擇);7、8(拓展與延伸)

六、教學反思:

數學課要注重引導學生探索與獲取知識的過程而不單注重學生對知識內容的認識,因為“過程”不僅能引導學生更好地理解知識,還能夠引導學生在活動中思考,更好地感受知識的價值,增強應用數學知識解決問題的意識;感受生活與數學的聯系,獲得“情感、態度、價值觀”方面的體驗。這節課的教學實現了三個方面的轉變:

①教的轉變:本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者。教師成為了學生的導師、伙伴、甚至成為了學生的學生,在課堂上除了導引學生活動外,還要認真聆聽學生“教”你他們活動的過程和通過活動所得的知識或方法。

②學的轉變:學生的角色從學會轉變為會學,跟老師學轉變為自主去學。本節課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境,不是簡單地“學”數學,而是深入地“做”數學。

③課堂氛圍的轉變:整節課以“流暢、開放、合作、‘隱'導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節課學生與學生、學生與教師之間以“對話”、“討論”為出發點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環境中自主選擇獲得成功的方向,判斷發現的價值。

總之,在數學教學的花園里,教師只要為學生布置好和諧的場景和明晰的路標,然后就讓他們自由地快活地去跳舞吧

初中數學教案11

教學目標

1.使學生在了解代數式概念的基礎上,能把簡單的與數量有關的詞語用代數式表示出來;

2.初步培養學生觀察、分析和抽象思維的能力.

教學重點和難點

重點:列代數式.

難點:弄清楚語句中各數量的意義及相互關系.

課堂教學過程設計

一、從學生原有的認知結構提出問題

1庇么數式表示乙數:(投影)

(1)乙數比x大5;(x+5)

(2)乙數比x的2倍小3;(2x-3)

(3)乙數比x的倒數小7;(-7)

(4)乙數比x大16%((1+16%)x)

(應用引導的方法啟發學生解答本題)

2痹詿數里,我們經常需要把用數字或字母敘述的一句話或一些計算關系式,列成代數式,正如上面的練習中的問題一樣,這一點同學們已經比較熟悉了,但在代數式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數式北窘誑撾頤薔屠匆黃鷓習這個問題

二、講授新課

例1用代數式表示乙數:

(1)乙數比甲數大5;(2)乙數比甲數的2倍小3;

(3)乙數比甲數的倒數小7;(4)乙數比甲數大16%

分析:要確定的乙數,既然要與甲數做比較,那么就只有明確甲數是什么之后,才能確定乙數,因此寫代數式以前需要把甲數具體設出來,才能解決欲求的乙數

解:設甲數為x,則乙數的代數式為

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x

(本題應由學生口答,教師板書完成)

最后,教師需指出:第4小題的答案也可寫成x+16%x

例2用代數式表示:

(1)甲乙兩數和的2倍;

(2)甲數的與乙數的的差;

(3)甲乙兩數的平方和;

(4)甲乙兩數的和與甲乙兩數的差的積;

(5)乙甲兩數之和與乙甲兩數的差的積

分析:本題應首先把甲乙兩數具體設出來,然后依條件寫出代數式

解:設甲數為a,乙數為b,則

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)

(本題應由學生口答,教師板書完成)

此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律鋇玜與b的差指的是(a-b),而b與a的差指的.是(b-a)繃秸咼饗圓煌,這就是說,用文字語言敘述的句子里應特別注意其運算順序

例3用代數式表示:

(1)被3整除得n的數;

(2)被5除商m余2的數

分析本題時,可提出以下問題:

(1)被3整除得2的數是幾?被3整除得3的數是幾?被3整除得n的數如何表示?

(2)被5除商1余2的數是幾?如何表示這個數?商2余2的數呢?商m余2的數呢?

解:(1)3n;(2)5m+2

(這個例子直接為以后讓學生用代數式表示任意一個偶數或奇數做準備)

例4設字母a表示一個數,用代數式表示:

(1)這個數與5的和的3倍;(2)這個數與1的差的;

(3)這個數的5倍與7的和的一半;(4)這個數的平方與這個數的的和

分析:啟發學生,做分析練習比緄1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數式“a+5”再將“和的3倍”列成代數式“3(a+5)”

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a

(通過本例的講解,應使學生逐步掌握把較復雜的數量關系分解為幾個基本的數量關系,培養學生分析問題和解決問題的能力)

例5設教室里座位的行數是m,用代數式表示:

(1)教室里每行的座位數比座位的行數多6,教室里總共有多少個座位?

(2)教室里座位的行數是每行座位數的,教室里總共有多少個座位?

分析本題時,可提出如下問題:

(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(3)通過上述問題的解答結果,你能找出其中的規律嗎?(總座位數=每行的座位數×行數)

解:(1)m(m+6)個;(2)(m)m個

三、課堂練習

1鄙杓資為x,乙數為y,用代數式表示:(投影)

(1)甲數的2倍,與乙數的的和;(2)甲數的與乙數的3倍的差;

(3)甲乙兩數之積與甲乙兩數之和的差;(4)甲乙的差除以甲乙兩數的積的商

2庇么數式表示:

(1)比a與b的和小3的數;(2)比a與b的差的一半大1的數;

(3)比a除以b的商的3倍大8的數;(4)比a除b的商的3倍大8的數

3庇么數式表示:

(1)與a-1的和是25的數;(2)與2b+1的積是9的數;

(3)與2x2的差是x的數;(4)除以(y+3)的商是y的數

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄

四、師生共同小結

首先,請學生回答:

1痹躚列代數式?2繃寫數式的關鍵是什么?

其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數量關系,應按下述規律列代數式:

(1)列代數式,要以不改變原題敘述的數量關系為準(代數式的形式不唯一);

(2)要善于把較復雜的數量關系,分解成幾個基本的數量關系;

(3)把用日常生活語言敘述的數量關系,列成代數式,是為今后學習列方程解應用題做準備幣求學生一定要牢固掌握

五、作業

1庇么數式表示:

(1)體校里男生人數占學生總數的60%,女生人數是a,學生總數是多少?

(2)體校里男生人數是x,女生人數是y,教練人數與學生人數之比是1∶10,教練人數是多?

2幣閻一個長方形的周長是24厘米,一邊是a厘米,

求:(1)這個長方形另一邊的長;(2)這個長方形的面積.

學法探究

已知圓環內直徑為acm,外直徑為bcm,將100個這樣的圓環一個接著一個環套環地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

分析:先深入研究一下比較簡單的情形,比如三個圓環接在一起的情形,看有沒有規律.

當圓環為三個的時候,如圖:

此時鏈長為,這個結論可以繼續推廣到四個環、五個環、…直至100個環,答案不難得到:

解:=99a+b(cm)

今天的內容就介紹到這里了。

初中數學教案12

教學目標

1.使學生認識字母表示數的意義,了解字母表示數是數學的一大進步;

2.了解代數式的概念,使學生能說出一個代數式所表示的數量關系;

3.通過對用字母表示數的講解,初步培養學生觀察和抽象思維的能力;

4.通過本節課的教學,使學生深刻體會從特殊到一般的的數學思想方法。

教學建議

1. 知識結構:本小節先回顧了小學學過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數的優越性,進而引出代數式的概念。

2.教學重點分析:教科書,介紹了小學用字母表示數的實例,一個是運算律,一個是常用公式,上述兩種例子應用廣泛,且能很好地體現用字母表示數所具有的簡明、普遍的優越性,用字母表示是數學從算術到代數的一大進步,是代數的顯著特點。運用算術的方法解決問題,是小學學生的思維方法 ,現在,從具體的數過渡到用字母表示數,滲透了抽象概括的思維方法,在認識上是一個質的飛躍。對代數式的概念課文沒有直接給出,而是用實例形象地說明了代數式的概念。對代數式的概念可以從三個方面去理解:

(1)從具體的數到用字母表示數,是抽象思維的開始,體現了特殊與一般的辨證關系,用字母表示數具有簡明、普遍的優越性.

(2)代數式中并不要求數和表示數的字母同時出現,單獨的一個數和字母也是代數式.如:2,m都是代數式.

等都不是代數式.

3.教學難點分析:能正確說出一個代數式的數量關系,即用語言表達代數式的意義,一定要理清代數式中含有的各種運算及其順序。用語言表達代數式的意義,具體說法沒有統一規定,以簡明而不引起誤會為出發點。

如:說出代數式7(a-3)的意義。

分析 7(a-3)讀成7乘a減3,這樣就產生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數式7(a-3)的最后運算是積,應把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。

4.書寫代數式的注意事項:

(1)代數式中數字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數字應寫在字母前面.

如3×a ,應寫作3.a 或寫作3a ,a×b 應寫作3.a 或寫作ab .帶分數與字母相乘,應把帶分數化成假分數,

#FormatImgID_0#

.數字與數字相乘一般仍用“×”號.

(2)代數式中有除法運算時,一般按照分數的寫法來寫.

(3)含有加減運算的代數式需注明單位時,一定要把整個式子括起來.

5.對本節例題的分析:

例1是用代數式表示幾個比較簡單的數量關系,這些小學都學過.比較復雜一些的數量關系的'代數式表示,課文安排在下一節中專門介紹.

例2是說出一些比較簡單的代數式的意義.因為代數式中用字母表示數,所以把字母也看成數,一種特殊的數,就可以像看待原來比較熟悉的數式一樣,說出一個代數式所表示的數量關系,只是另外還要考慮乘號可能省略等新規定而已.

6.教法建議

(1)因為這一章知識大部分在小學學習過,講授新課之前要先復習小學學過的運算律,在學生原有的認知結構上,提出新的問題。這樣即復習了舊知識,又引出了新知識,能激發學生的學習興趣。在教學中,一定要注意發揮本章承上啟下的作用,搞好小學數學與初中代數的銜接,使學生有一個良好的開端。

(2)在本節的學習過程中,要使學生理解代數式的概念,首先要給學生多舉例子(學生比較熟悉、貼近現實生活的例子),使學生從感性上認識什么是代數式,理清代數式中的運算和運算順序,才能正確說出一個代數式所表示的數量關系,從而認識字母表示數的意義——普遍性、簡明性,也為列代數式做準備。

(3)條件比較好的學校,老師可選用一些多媒體課件,激發學生的學習興趣,增強學生自主學習的能力。

(4)老師在講解第一節之前,一定要對全章內容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學生系統的而不是一些零散的知識,久而久之,學生頭腦中自然會形成一個完整的知識體系。

(5)因為是新學期代數的第一節課,老師一定要給學生一個好印象,好的開端等于成功了一半。那么,怎么才能給學生留下好印象呢?首先,你要盡量在學生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學生說一段祝福語。第二,上課時盡量使用多種語言與學生交流,其中包括情感語言(眉目語言、手勢語言等),讓學生感受到老師對他的關心。

7.教學重點、難點:

重點:用字母表示數的意義

難點:學會用字母表示數及正確說出一個代數式所表示的數量關系。

教學設計示例

課堂教學過程設計

一、從學生原有的認知結構提出問題

1在小學我們曾學過幾種運算律?都是什么?如可用字母表示它們?

(通過啟發、歸納最后師生共同得出用字母表示數的五種運算律)

(1)加法交換律 a+b=b+a;

(2)乘法交換律 a·b=b·a;

(3)加法結合律 (a+b)+c=a+(b+c);

(4)乘法結合律 (ab)c=a(bc);

(5)乘法分配律 a(b+c)=ab+ac

指出:(1)“×”也可以寫成“·”號或者省略不寫,但數與數之間相乘,一般仍用“×”;

(2)上面各種運算律中,所用到的字母a,b,c都是表示數的字母,它代表我們過去學過的一切數

2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0.25小時,試問步行、騎車、乘汽車的速度分別是多少?

3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?

4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?

(用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)

此時,教師應指出:(1)用字母表示數可以把數或數的關系,簡明的表示出來;(2)在公式與中,用字母表示數也會給運算帶來方便;(3)像上面出現的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代數式.那么究竟什么叫代數式呢?代數式的意義又是什么呢?這正是本節課我們將要學習的內容.

三、講授新課

1代數式

單獨的一個數字或單獨的一個字母以及用運算符號把數或表示數的字母連接而成的式子叫代數式.學習代數,首先要學習用代數式表示數量關系,明確代數上的意義

2舉例說明

例1 填空:

(1)每包書有12冊,n包書有__________冊;

(2)溫度由t℃下降到2℃后是_________℃;

(3)棱長是a厘米的正方體的體積是_____立方厘米;

(4)產量由m千克增長10%,就達到_______千克

(此例題用投影給出,學生口答完成)

解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

例2 說出下列代數式的意義:

解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;

(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方

說明:(1)本題應由教師示范來完成;

(2)對于代數式的意義,具體說法沒有統一規定,以簡明而不致引起誤會為出發點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等

例3 用代數式表示:

(1)m與n的和除以10的商;

(2)m與5n的差的平方;

(3)x的2倍與y的和;

(4)ν的立方與t的3倍的積

分析:用代數式表示用語言敘述的數量關系要注意:①弄清代數式中括號的使用;②字母與數字做乘積時,習慣上數字要寫在字母的前面

四、課堂練習

1填空:(投影)

(1)n箱蘋果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;

(3)底為a,高為h的三角形面積是______;

(4)全校學生人數是x,其中女生占48%?則女生人數是____,男生人數是____

2說出下列代數式的意義:(投影)

3用代數式表示:(投影)

(1)x與y的和; (2)x的平方與y的立方的差;

(3)a的60%與b的2倍的和; (4)a除以2的商與b除3的商的和

五、師生共同小結

首先,提出如下問題:

1本節課學習了哪些內容?2用字母表示數的意義是什么?

3什么叫代數式?

教師在學生回答上述問題的基礎上,指出:①代數式實際上就是算式,字母像數字一樣也可以進行運算;②在代數式和運算結果中,如有單位時,要正確地使用括號

六、作業

1一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長

2張強比王華大3歲,當張強a歲時,王華的年齡是多少?

3飛機的速度是汽車的40倍,自行車的速度是汽車的1/3 ,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?

4a千克大米的售價是6元,1千克大米售多少元?

5圓的半徑是R厘米,它的面積是多少?

6用代數式表示:

(1)長為a,寬為b米的長方形的周長;

(2)寬為b米,長是寬的2倍的長方形的周長;

(3)長是a米,寬是長的1/3 的長方形的周長;

(4)寬為b米,長比寬多2米的長方形的周長

初中數學教案13

教學 建議

一、知識結構

二、重點、難點分析

本節 教學 的重點是不等式的解集的概念及在數軸上表示不等式的解集的方法.難點為不等式的解集的概念.

1.不等式的解與方程的解的意義的異同點

相同點:定義方式相同(使方程成立的未知數的值,叫做方程的解);解的表示方法也相同.

不同點:解的個數不同,一般地,一個不等式有無數多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當 取大于 的數時,不等式 都成立,所以不等式 有無數多個解.

2.不等式的解與解集的區別與聯系

不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數的某個值,而不等式的解集,是指滿足這個不等式的未知數的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.

注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數值,都能使不等式成立;第二,解集外的任何一個數值,都不能使不等式成立.

3.不等式解集的表示方法

(1)用不等式表示

一般地,一個含未知數的不等式有無數多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .

(2)用數軸表示

如不等式 的解集 ,可以用數軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.

如不等式 的解集 ,可以用數軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.

注意:在數軸上,右邊的點表示的數總比左邊的點表示的數大,所以在數軸上表示不等式的解集時應牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.

一、素質 教育 目標

(一)知識 教學

1.使學生了解不等式的解集、解不等式的概念,會在數軸上表示出不等式的解集.

2.知道不等式的“解集”與方程“解”的不同點.

(二)能力訓練點

通過 教學 ,使學生能夠正確地在數軸上表示出不等式的解集,并且能把數軸上的某部分數集用相應的不等式表示.

(三)德育滲透點

通過講解不等式的“解集”與方程“解”的關系,向學生滲透對立統一的辯證觀點.

(四)美育滲透點

通過本節課的學習,讓學生了解不等式的解集可利用圖形來表達,滲透數形結合的數學美.

二、學法引導

1. 教學 方法:類比法、引導發現法、實踐法.

2.學生學法:明確不等式的解與解集的區別和聯系,并能熟練地用數軸表示不等式的解集,在數軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.

三、重點·難點·疑點及解決辦法

(一)重點

1.不等式解集的概念.

2.利用數軸表示不等式的解集.

(二)難點

正確理解不等式解集的概念.

(三)疑點

弄不清不等式的解集與方程的解的區別、聯系.

(四)解決辦法

弄清楚不等式的解與解集的概念.

四、課時安排

一課時.

五、教具學具準備

投影儀或電腦、自制膠片、直尺.

六、師生互動活動設計

(一)明確目標

本節課重點學習不等式的解集,解不等式的概念并會用數軸表示不等式的解集.

(二)整體感知

通過枚舉法來形象直觀地推出不等式的解集,再給出不等式解集的概念,從而更準確地讓學生掌握該概念.再通過師生的互動學習用數軸表示不等式的解集,從而為今后求不等式組的解集打下良好的基礎.

(三) 教學 過程

1.創設情境,復習引入

(1)根據不等式的基本性質,把下列不等式化成 或 的形式.

① ②

(2)當 取下列數值時,不等式 是否成立?

l,0,2,-2.5,-4,3.5,4,4.5,3.

學生活動:獨立思考并說出答案:(1)① ② .(2)當 取1,0,2,-2.5,-4時,不等式 成立;當 取3.5,4,4.5,3時,不等式 不成立.

大家知道,當 取1,2,0,-2.5,-4時,不等式 成立.同方程類似,我們就說1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3這些使不等式 不成立的數就不是不等式 的解.

對于不等式 ,除了上述解外,還有沒有解?解的個數是多少?將它們在數軸上表示出來,觀察它們的分布有什么規律?

學生活動:思考討論,嘗試得出答案,指名板演如下:

【教法說明】啟發學生用試驗方法,結合數軸直觀研究,把已說出的不等式 的`解2,0,1,-2.5,-4用“實心圓點”表示,把不是 的解的數值3.5,4,4.5,3用“空心圓圈”表示,好像是“挖去了”.

師生歸納:觀察數軸可知,用“實心圓點”表示的數都落在3的左側,3和3右側的數都用空心圓圈表示,從而我們推斷,小于3的每一個數都是不等式 的解,而大于或等于3的任何一個數都不是 的解.可以看出,不等式 有無限多個解,這無限多個解既包括小于3的正整數、正小數、又包括0、負整數、負小數;把不等式 的無限多個解集中起來,就得到 的解的集會,簡稱不等式 的解集.

2.探索新知,講授新課

(1)不等式的解集

一般地,一個含有未知數的不等式的所有的解,組成這個不等式的解的集合,簡稱這個不等式的解集.

①以方程 為例,說出一元一次方程的解的情況.

②不等式 的解的個數是多少?能一一說出嗎?

(2)解不等式

求不等式的解集的過程,叫做解不等式.

解方程 求出的是方程的解,而解不等式 求出的則是不等式的解集,為什么?

學生活動:觀察思考,指名回答.

教師 歸納:正是因為一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有無限多個,無法一一列舉出來,因而只能用不等式 或 揭示這些解的共同屬性,也就是求出不等式的解集.實際上,求某個不等式的解集就是運用不等式的基本性質,把原不等式變形為 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .

【教法說明】學生對一元一次方程的解印象較深,而不等式與方程的相同點較多,因而易將“不等式的解集”與“方程的解”混為一談,這里設置上述問題,目的是使學生弄清“不等式的解集”與“方程的解”的關系.

(3)在數軸上表示不等式的解集

①表示不等式 的解集:( )

分析:因為未知數的取值小于3,而數軸上小于3的數都在3的左邊,所以就用數軸上表示3的點的左邊部分來表示解集 .注意未知數 的取值不能為3,所以在數軸上表示3的點的位置上畫空心圓圈,表示不包括3這一點,表示如下:

②表示 的解集:( )

學生活動:獨立思考,指名板演并說出分析過程.

分析:因為未知數的取值可以為-2或大于-2的數,而數軸上大于-2的數都在-2右邊,所以就用數鋼上表示-2的點和它的右邊部分來表示.如下圖所示:

注意問題:在數軸上表示-2的點的位置上,應畫實心圓心,表示包括這一點.

【教法說明】利用數軸表示不等式解的解集,增強了解集的直觀性,使學生形象地看到不等式的解有無限多個,這是數形結合的具體體現. 教學 時,要特別講清“實心圓點”與“空心圓圈”的不同用法,還要反復提醒學生弄清到底是“左邊部分”還是“右邊部分”,這也是學好本節內容的關鍵.

3.嘗試反饋,鞏固知識

(1)不等式的解集 與 有什么不同?在數軸上表示它們時怎樣區別?分別在數軸上把這兩個解集表示出來.

(2)在數軸上表示下列不等式的解集.

① ② ③ ④

(3)指出不等式 的解集,并在數軸上表示出來.

師生活動:首先學生在練習本上完成,然后 教師 抽查,最后與出示投影的正確答案進行對比.

【教法說明】 教學 時,應強調2.(4)題的正確表示為:

我們已經能夠在數軸上準確地表示出不等式的解集,反之若給出數軸上的某部分數集,還要會寫出與之對應的不等式的解集來.

4.變式訓練,培養能力

(1)用不等式表示圖中所示的解集.

【教法說明】強調“· ”“ °”在使用、表示上的區別.

(2)單項選擇:

①不等式 的解集是()

A. B. C. D.

②不等式 的正整數解為()

A.1,2B.1,2,3C.1D.2

③用不等式表示圖中的解集,正確的是()

A. B. C. D.

④用數軸表示不等式的解集 正確的是()

學生活動:分析思考,說出答案.( 教師 給予糾正或肯定)

【教法說明】此題以搶答形式茁現,更能激發學生探索知識的熱情.

(四)總結、擴展

學生小結, 教師 完善:

1.? 本節重點:

(1)了解不等式的解集的概念.

(2)會在數軸上表示不等式的解集.

2.注意事項:

弄清“ · ”還是“ °”,是“左邊部分”還是“右邊部分”.

七、布置作業

初中數學教案14

一、素質教育目標

(一)知識教學點

1.使學生理解多項式的概念.

2.使學生能準確地確定一個多項式的次數和項數.

3.能正確區分單項式和多項式.

(二)能力訓練點

通過區別單項式與多項式,培養學生發散思維.

(三)德育滲透點

在本節教學中向學生滲透數學知識來源于生活,又為生活而服務的辯證思想.

(四)美育滲透點

單項式和多項式在前二章,特別是第一章已有新接觸,本節課來研究多項式的概念可謂水到渠成,體現了數學的結構美

二、學法引導

1.教學方法:采用對比法,以訓練為主,注重嘗試指導.

2.學生學法:觀察分析→多項式有關概念→練習鞏固

三、重點、難點、疑點及解決辦法

1.重點:多項式的概念及單項式的聯系與區別.

2.難點:多項式的次數的確定,以及多項式與單項式的聯系與區別.

3.疑點:多項式中各項的符號問題.

四、課時安排

1課時

五、教具學具準備

投影儀或電腦、自制膠片.

六、師生互動活動設計

教師出示探索性練習,學生分析討論得出多項式有關概念,教師出示鞏固性練習,學生多種形式完成.

七、教學步驟

(一)復習引入,創設情境

師:上節課我們學習了單項式的有關概念,同學們看下面一些問題.

(出示投影1)

1.下列代數式中,哪些是單項式?是單項式的請指出它的系數與次數.

, , ,2, , , ,

2.圓的半徑為 ,則半圓的面積為_____________,半圓的總長為_____________.

學生活動:回答上述兩個問題,可以進行搶答,看誰想的全面,回答的準確,教師對回答準確、速度快的給予表揚和鼓勵.

【教法說明】讓學生通過1題回顧有關單項式的一些知識點,再通過2題中半圓周長為 很自然地引出本節內容.

師:上述2題中,表示半圓面積的代數式是單項式嗎?為什么?表示半圓的周長的式子呢?

學生活動:同座進行討論,然后選代表回答.

師:誰能把1題中不是單項式的式子讀出來?(師做相應板書)

學生活動:小組討論, 、, , 對于這些代數式的`結構特點,由小組選代表說明,若不完整,其他同學可做補充.

(二)探索新知,講授新課

師:像以上這樣的式子叫多項式,這節課我們就研究多項式,上面幾個式子都是多項式.

[板書]3.1整式(多項式)

學生活動:討論歸納什么叫多項式.可讓學生互相補充.

教師概括并板書

[板書]多項式:幾個單項式的和叫多項式.

師:強調每個單項式的符號問題,使學生引起注意.

(出示投影2)

練習:下裂代數式 , , , , , ,

, , 中,是多項式的有:

___________________________________________________________.

學生活動:學生搶答以上問題,然后每個學生在練習本上寫出兩個多項式,同桌互相交換打分,有疑問的提出再討論.

【教法說明】通過觀察式子特點,討論歸納多項式的概念,體現了學生的主體作用和參與意識.多項式的概念是本節教學重點,為使學生對概念真正理解,讓學生每個人寫出兩個多項式,可及時反饋學生掌握知識中存在的問題,以便及時糾正.

師:提出問題,多項式 、, , 各是由幾個單項式相加而得到的?每個單項式各指的是誰?各是幾次單項式?引導學生回答,教師根據學生回答,給予肯定、否定與糾正.

師:在 中,是兩個單項式相加得到,就叫做二項式,兩個單項式中, 次數是1, 次數是1,最高次數是一次,所以我們說這個多項式的次數是一次,整個式子叫做一次二項式.

[板書]

學生活動:同桌討論,, , ,應怎樣稱謂,然后找學生回答.

師:給予歸納,并做適當板書:

[板書]

學生活動:通過上例,學生討論多項式的項、次數,然后選代表回答.

根據學生回答,師歸納:

在多項式中,每個單項式叫多項式的項,是幾個單項式的和就叫做幾項式.每一項包含它的符號,如 中, 這一項不是 .多項式里次數最高的項的次數,就叫做多項式次數,即最高次項是幾次,就叫做幾次多項式,不含字母的項叫做常數項.

[板書]

【教法說明】通過學生對以上幾個多項式的感知,學生對多項式的特片已有了一定的了解,教師可逐步引導,讓學生自己總結歸納一些結論,以訓練學生的口頭表達能力和歸納能力.

(三)嘗試反饋,鞏固練習

(出示投影3)

1.填空:

2.填空:

(1) 是_________次__________項式; 是_________次_________項式; 的常數項是___________.

(2) 是_________次________項式,最高次數是___________,最高次項的系數是__________,常數項是___________.

學生活動:1題搶答,同桌同學給予肯定或否定,且肯定地說出依據,否定的再說出正確答案;2題學生觀察后,在練習本或投影膠片上完成,部分膠片打出投影,師生一起分析、討論,對所做答案給予肯定或更正.

【教法說明】在此組練習題中,1題目的是以填表的形式感知一個多項式就是單項式的和,多項式的項就是單項式;使學生能進一步了解多項式與單項式的關系,避免死記硬背概念,而不能準確應用于解題中的弊病.2題是在理解概念和完成1題單一問題的基礎上進行綜合訓練,使學生逐步學會使用數學語言.

(四)歸納小結

師:今天我們學習了《整式》一節中“多項式”的有關概念;在掌握多項式概念時,要注意它的項數和次數.前面我們還學習了單項式,掌握單項式時要注意它的系數和次數.

歸納:單項式和多項式統稱為整式.

[板書]

說明:教師邊小結邊板書出多項式、單項式,然后再提出它們統稱為整式,并做了述板書,使所學知識納入知識系統.

鞏固練習:

(出示投影4)

下列各代數式:0, , , , , , 中,單項式有__________,多項式有____________,整式有_____________.

學生活動:觀察后學生回答,互相補充、糾正,提醒學生不能遺漏.

【教法說明】數學要領重在于應用,通過上題的訓練,可使學生很清楚地了解單項式、多項式的區別與聯系,它們與整式的關系.

(五)變式訓練,培養能力

(出示投影5)

1.單項式 , , 的和_________,它是__________次__________項式.

2. 是_______次________項式 是__________次_________項式,它的常數項_________.

3. 是________次________項式,最高次項是_________,最高次項的系數是_________,常數項是__________.

4. 的2倍與 的平方的 的和,用代數式表示__________,它是__________(填單項式或多項式).

學生活動:每個學生先獨立在練習本上完成,然后小組互相交流補充,最后小組選出代表發言.

師:做肯定或否定,強調3題中最高次項的系數是 , 是一個數字,不是字母,因為它只能代表圓周率這一個數值,而一個字母是可以取不同的值的.

【教法說明】本組是在前面掌握了本節課基本知識后安排的一組訓練題,目的是使學生進一步理解多項式的次數與項數,特別是對 這個數字要有一個明確的認識.

自編題目練習:

每個學生寫出6個整式,并要求既有單項式,又有多項式,然后交給同桌的同學,完成以下任務,①先找出單項式、多項式,②是單項式的寫出系數與次數,是多項式的寫出是幾次幾項式,最高次數是什么?常數項是什么,然后再互相討論對方的解答是否正確.

【教學說明】自編題目的訓練,一是可活躍課堂氣氛,增強了學生的參與意識;二是可以培養學生的發散思維和逆向思維能力.

師:通過上面編題、解題練習,同學們對整式的概念有了清楚的理解,下面再按老師的要求編題,編一個四次三項式,看誰編的又快又準確,再編一個不高于三次的多項式.

學生活動:學生邊回答師邊板書,然后學生討論是否符合要求.

【教法說明】通過上面訓練,使學生進一步鞏固多項式項數、次數的概念,同時也可以培養學生逆向思維的能力.

八、隨堂練習

1.判斷題

(1)-5不是多項式( )

(2) 是二次二項式( )

(3) 是二次三項式( )

(4) 是一次三項式( )

(5) 的最高次項系數是3( )

2.填空題

(1)把上列代數式分別填在相應的括號里

, , ,0, , ,

; ;

; ;

(2)如果代數式 是關于 的三次二項式則 , .

九、布置作業

(一)必做題:課本第149頁習題3.1A組12.

(二)選做題:課本第150頁習題3.1B組3.

十、板書設計

隨堂練習答案

1.√ × × √ ×

2.(1)單項式 ,多項式 ;

整式 ;

二項式 ;

三次三項式 ;

(2) , .

作業答案

教材P.149中A組12題:(1)三次二項式 (2)二次三項式

(3)一次二項式 (4)四次三項式

初中數學教案15

把方程兩邊都加上(或減去)同一個數或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。

一、教材內容分析

本節課是數學人教版七年級上冊第三章第二節第二小節的內容。這是一節“概念加例題型”課,此種課型中的學習內容一部分是概念,一部分是運用前面的概念解決實際問題的例題。本節課主要內容是利用移項解一元一次方程。是學生學習解一元一次方程的基礎,這一部分內容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基礎。這類課一般采用“導學導教,當堂訓練”的方式進行,教師指導學生學習的重點一般不放在概念上,要特別留意學生運用概念解題或做與例題類似的習題時,對概念的理解是否到位。

二、教學目標:

1.知識與技能:(1)找相等關系列一元一次方程;(2)用移項解一元一次方程。(3)掌握移項變號的基本原則

2.過程與方法:經歷運用方程解決實際問題的過程,發展抽象、概括、分析問題和解決問題的能力,認識用方程解決實際問題的關鍵是建立相等關系。

3.情感、態度:通過具體情境引入新問題,在移項法則探究的過程中,培養學生合作意識,滲透化歸的思想。

三、學情分析

針對七年級學生學習熱情高,但觀察、分析、概括能力較弱的特點,本節從實際問題入手,讓學生通過自己思考、動手,激發學生的求知欲,提高學生學習的興趣與積極性。在課堂教學中,學生主要采取自學、討論、思考、合作交流的學習方式,使學生真正成為課堂的主人,逐步培養學生觀察、概括、歸納的能力。

四、教學重點:利用移項解一元一次方程。

五、教學難點:移項法則的探究過程。

六、教學過程:

(一)情景引入

引例:請同學們思考這樣一個有趣的問題,我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨分別是( )

A.3個老頭,4個梨 B.4個老頭,3個梨 C.5個老頭,6個梨 D.7個老頭,8個梨

設計意圖:大部分同學會用算術法(答案代入法)來解答的,而這類問題我們如何用方程來解答呢?激起學生求知的欲望,巧妙過渡,揭示課題。板書課題:解一元一次方程——移項

(二)出示學習目標

1.理解移項法,明確移項法的依據,會解形如ax+b=cx+d類型 的一元一次方程。

2.會建立方程解決簡單的'實際問題。

設計意圖:這兩個目標的達成,也驗證了本節課學生自學的效果,這也是本節課的教學重難點。

(三)導教導學

1.出示自學指導

自學教材問題2到例3的內容,思考以下問題:(1)問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題可作為列方程的依據的等量關系是什么?(2)什么是移項?移項的依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟(8分鐘后,比誰能仿照問題2和例3的格式正確解答問題)

2.學生自學

學生根據自學提綱進行獨立學習,教師巡視,對自學速度慢的、自學能力差的、注意力不夠集中的學生給以暗示和幫扶,有利于自學后的成果展示。

3.交流展示(小組合作展示)

(合作交流一)教材問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題哪個相等關系可作為列方程的依據呢?

問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?

1)設未知數:設這個班有X名學生,根據兩種不同分法這批書的總數就有兩種表示方法,即這批書共有(3 X+20)本或(4X-25)本。

2)找相等關系:這批書的總數是一個定值,表示同一個量的兩個不同的式子相等。(板書)

3)根據等量關系列方程: 3x+20 = 4x-25(板書)

【總結提升】解決“分配問題”應用題的列方程的基本要點:

A.找出能貫穿應用題始終的一個不變的量.

B.用兩個不同的式子去表示這個量.

C.由表示這個不變的量的兩個式子相等列出方程.

設計意圖:因為在自學提綱的引領下,每個小組自主學習的效果不同,反饋的意見不同,所以在展示中首先要展示學生對課本例題的理解思路。采取主動自愿的方式,一個小組主講,其它小組補充。

(變式訓練1)某學校組織學生共同種一批樹,如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹苗,求參與種樹的人數

(只設列即可)

(變式訓練2)我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨各多少?

設計意圖:檢查提問學生對“分配問題”應用題掌握的情況,學生回答后教師板書所列方程為后面教學做好鋪墊。學生會帶著“如何解這類方程?”的好奇心過渡到下一個環節的學習。

(合作交流二)什么是移項?移項的依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟。

(板書 )把等式一邊的某項改變符號后,從等式的一邊移到另一邊,這種變形叫做移項。

《解一元一次方程——移項》教學設計(魏玉英)

師:為什么等式(方程)可以這樣變形?依據什么?

(出示)依據等式的基本性質1.即:等式兩邊都加上或減去同一個數或同一個整式,所得結果仍是等式.

師:解一元一次方程中“移項”起了什么作用?

(出示) 通過移項,使等號左邊僅含未知數的項,等號右邊僅含常數的項,使方程更接近x=a的形式.(與課題對照滲透轉化思想)

(基礎訓練)搶答:判斷下列移項是否正確,如有錯誤,請修改

《解一元一次方程——移項》教學設計(魏玉英)

設計理念:讓各個小組憑著勢力去搶答。這五個習題重點考察學生對移項的掌握是本節課的重難點,習題分層設計且成梯度分布。

【歸納板書】 解“ax+b=cx+d”型的一元一次方程的步驟:(1) 移項,(2) 合并同類項,(3) 系數化為1

(綜合訓練) 解下列方程(任選兩題)

設計理念:第(2)、(3)兩題未知數系數是相同類型的,所以讓學生任選一題即可。通過綜合訓練能讓學生更進一步鞏固用移項和合并同類項去解方程了。

(中考試練)若x=2是關于x的方程2x+3m-1=0的解,則m的值為

設計理念:通過本題的訓練讓學生明確中考在本節的考點,同時激勵學生在數學知識的學習中要抓住知識的核心和重點。

(四)我總結、我提高:

通過本節課的學習我收獲了。

設計意圖:通過小組之間互相談收獲的方式進行課堂小結,讓學生相互檢查本節課的學習效果。可以引導學生從本節課獲得的知識、解題的思想方法、學習的技巧等方面交流意見。

(五)當堂檢測(50分)

1.下列方程變形正確的是( )

A.由-2x=6, 得x=3

B.由-3=x+2, 得x=-3-2

C.由-7x+3=x-3, 得(-7+1)x=-3-3

D.由5x=2x+3, 得x=-1

2.一批游客乘汽車去觀看“上海世博會”。如果每輛汽車乘48人,那么還多4人;如果每輛汽車乘50人,那么還有6個空位,求汽車和游客各有多少?(只設出未知數和列出方程即可)

3.(20分)已知x=1是關于x的方程3m+8x=m+x的解,求m的值。

(師生活動)學生獨立答題,教師巡回檢查,對先答完的學生進行及時批改,并把得滿分的學生作為小老師對后解答完的學生的檢測進行評定,最后老師進行小結。

(六)實踐活動

請每一位同學用自己的年齡編一 道“ax+b=cx+d”型的方程應用題,并解答。先在組內交流,選出組內最有創意的一個記在題卡上,自習在全班進行展示 。

設計意圖:

讓學生課后完成,讓學生深深體會到數學來源于生活而又服務于生活,體現了數學知識與實際相結合。

第三篇:初中數學教案

初中數學教案模板。

xx初中教師專用教案 2009-2010學第一學期

課題: 班級: 授課教師: 課時: 學習

目 標 重點確定 難點確定 教學工具

教學方法

教 學 過 程

隨堂練習: 體會與交流

1、數學知識:

2、數學思想方 法: 布置作業: 板 書 設 計

教學反思

第四篇:初中數學教案

初中數學教案

初中數學教案1

一、學生起點分析

學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。

二、學習任務分析

本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理

并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:

● 知識與技能目標

1.理解勾股定理逆定理的具體內容及勾股數的概念;

2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。

● 過程與方法目標

1.經歷一般規律的探索過程,發展學生的抽象思維能力;

2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。

● 情感與態度目標

1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;

2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

教學重點

理解勾股定理逆定理的具體內容。

三、教法學法

1.教學方法:實驗猜想歸納論證

本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗

但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:

(1)從創設問題情景入手,通過知識再現,孕育教學過程;

(2)從學生活動出發,通過以舊引新,順勢教學過程;

(3)利用探索,研究手段,通過思維深入,領悟教學過程。

2.課前準備

教具:教材、電腦、多媒體課件。

學具:教材、筆記本、課堂練習本、文具。

四、教學過程設計

本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:

登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。

第一環節:情境引入

內容:

情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

意圖:

通過情境的創設引入新課,激發學生探究熱情。

效果:

從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。

第二環節:合作探究

內容1:探究

下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

1.這三組數都滿足 嗎?

2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。

意圖:

通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

效果:

經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

從上面的分組實驗很容易得出如下結論:

如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

內容2:說理

提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?

意圖:讓學生明確,僅僅基于測量結果得到的'結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

滿足 的三個正整數,稱為勾股數。

注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

活動3:反思總結

提問:

1.同學們還能找出哪些勾股數呢?

2.今天的結論與前面學習勾股定理有哪些異同呢?

3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?

意圖:進一步讓學生認識該定理與勾股定理之間的關系

第三環節:小試牛刀

內容:

1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。

①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

解答:①②

2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

A 250 B 150 C 200 D 不能確定

解答:B

3.如圖1:在 中, 于 , ,則 是( )

A 等腰三角形 B 銳角三角形

C 直角三角形 D 鈍角三角形

解答:C

4.將直角三角形的三邊擴大相同的倍數后, (圖1)

得到的三角形是( )

A 直角三角形 B 銳角三角形

C 鈍角三角形 D 不能確定

解答:A

意圖:

通過練習,加強對勾股定理及勾股定理逆定理認識及應用

效果

每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

第四環節:登高望遠

內容:

1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

解答:符合要求 , 又 ,

2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?

解答:由題意畫出相應的圖形

AB=240海里,BC=70海里,,AC=250海里;在△ABC中

=(250+240)(250-240)

=4900= = 即 △ABC是Rt△

答:船轉彎后,是沿正西方向航行的。

意圖:

利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

效果:

學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。

第五環節:鞏固提高

內容:

1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

圖4 圖5

解答:④⑤是直角三角形,①②③⑥不是直角三角形

意圖:

第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

效果:

學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

第六環節:交流小結

內容:

師生相互交流總結出:

1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;

2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。

意圖:

鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。

效果:

學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

第七環節:布置作業

課本習題1.4第1,2,4題。

五、教學反思:

1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。

2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

4.注重對學習新知理解應用偏困難的學生的進一步關注。

5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。

由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。

附:板書設計

能得到直角三角形嗎

情景引入 小試牛刀: 登高望遠

初中數學教案2

教學目標:

1、理解并掌握三角形中位線的概念、性質,會利用三角形中位線的性質解決有關問題。

2、經歷探索三角形中位線性質的過程,讓學生實現動手實踐、自主探索、合作交流的學習過程。

3、通過對問題的探索研究,培養學生分析問題和解決問題的能力以及思維的`靈活性。

4、培養學生大膽猜想、合理論證的科學精神。

教學重點:

探索并運用三角形中位線的性質。

教學難點:

運用轉化思想解決有關問題。

教學方法:

創設情境——建立數學模型——應用——拓展提高

教學過程:

情境創設:測量不可達兩點距離。

探索活動:

活動一:剪紙拼圖。

操作:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼成一個平行四邊形。

觀察、猜想: 四邊形BCFD是什么四邊形。

探索: 如何說明四邊形BCFD是平行四邊形?

活動二:探索三角形中位線的性質。

應用

練習及解決情境問題。

例題教學

操作——猜想——驗證

拓展:數學實驗室

小結:布置作業。

初中數學教案3

一、檢查反饋

本次檢查大多數教師都比較重視,檢查內容完整、全面。現將檢查情況總結如下教案方面的特點與不足。

特點:

1、絕大多數教案設計完整,教學重點、難點突出,設置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文李雅芳等能突出對學科素養的高度關注。教師撰寫的課后反思能體現教師對教材處理的新方法,能側重對自己教法和學生學法的'指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現課堂教學的反思意識,反思深刻、務實、有針對性。

2、注重選擇恰當的教學方法,注重在靈活多樣的教學方法中培養學生的合作意識和創新精神。

3、教案能體現多媒體教學手段,注重培養學生的探究精神和創新能力。

不足:

1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結,從中也可以看出我們對課后反思還不夠重視。

2、個別教師教案過于簡單。

作業方面的特點與不足

特點:

1、能按進度布置作業,作業設置量度適中,難易適中,上交率較高,且都能做到全批全改。

2、作業批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業中的錯誤做法及糾正措施。

3、學生在書寫方面有很大進步。從檢查可以發現教師對學生作業的書寫格式有明確的要求。

不足:

1、對于學生書寫的工整性,還需加強教育。

2、教師在批閱作業時,要稍細心些,發現問題就讓學生當時改正,學生也就會逐漸養成做事認真的習慣。

初中數學教案4

從不同方向看

一、教學目標

知識與技能目標

1.初步了解作函數圖象的一般步驟;

2.能熟練作出一次函數的圖象,掌握一次函數及其圖象的簡單性質;

3.初步了解函數表達式與圖象之間的關系。

過程與方法目標

經歷作圖過程中由一般到特殊方法的轉變過程,讓學生體會研究問題的基本方法。

情感與態度目標

1.在作圖的過程中,體會數學的美;

2.經歷作圖過程,培養學生尊重科學,實事求是的作風。

二、教材分析

本節課是在學習了一次函數解析式的基礎上,從圖象這個角度對一次函數進行近一步的研究。教材先介紹了作函數圖象的一般方法:列表、描點、連線法,再進一步總結出作一次函數圖象的特殊方法??兩點連線法。結合一次函數的圖象,教材以議一議的方式,引導學生探索函數解析式與圖象二者間的關系,為進一步學習圖象及性質奠定了基礎。

教學重點:了解作函數圖象的一般步驟,會熟練作出一次函數圖象。

教學難點:一次函數及圖象之間的對應關系。

三、學情分析

函數的`圖象的概念及作法對學生而言都是較為陌生的。教材從作函數圖象的一般步驟開始介紹,得出一次函數圖象是條直線。在此基礎上介紹用兩點連線得一次函數的圖象,學生就容易接受了。在函數解析式與圖象二者之間的探討這部分內容上,不要作更高要求,學生能回答書中的問題就可以了。教學中盡可能的多作幾個一次函數的圖象,讓學生直觀感受到一次函數的圖象是條直線。

四、教學流程

一、復習引入

下圖是小紅某天內體溫變化情況的曲線圖。你知道這幅圖是怎樣作出來的嗎?把每個時間與其對應的體溫分別作為點的橫坐標和縱坐標,在直角坐標系中描出這些點,這樣就可以作出這個圖象。

二、新課講解

把一個函數的自變量和對應的因變量的值分別作為點的橫坐標和縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。

下面我們來作一次函數y = x+1的圖象

分析:根據定義,需要在直角坐標系中描出許多點,因此我們應先計算這些點的橫、縱坐標,即x與對應的y的值。我們可借助一個表格來列出每一對x,y的值。因為一次函數的自變量X可以取一切實數,所以X一般在0附近取值。

解:列表:

描點:以表中各組對應值作為點的坐標,在直角坐標系內描出相應的點。

連線:把這些點依次連接起來,得到y = x+1圖象(如圖)它是一條直線。

三、做一做

(1)仿照上例,作出一次函數y= ?2x+5的圖象。

師:回顧剛才的作圖過程,經歷了幾個步驟?

生:經歷了列表、描點、連線這三個步驟。

師:回答得很好。作函數圖象的一般步驟是列表、描點、連線。今后我們可以用這個方法去作出更多函數的圖象。

師:從剛才同學們作出的一次函數的圖象中我們可以觀察到一次函數圖象是一條直線。

(2)在所作的圖象上取幾個點,找出它們的橫、縱坐標,驗證它們是否都滿足關系:y= ?2x+5

四、議一議

(1)滿足關系式y= ?2x+5的x 、y所對應的點(x,y)都在一次函數y= ?2x+5的圖象上嗎?

(2)一次函數y= ?2x+5的圖象上的點(x,y)都滿足關系式y= ?2x+5嗎?

(3)一次函數y=kx+b的圖象有什么特點?

一次函數y=kx+b的圖象是一條直線,因此作一次函數的圖象時,只要確定兩個點,再過這兩個點作直線就可以了。一次函數y=kx+b的圖象也稱為直線y=kx+b

例1做出下列函數的圖象

教師點評:作一次函數圖象時,通常選取的兩點比較特殊,即為一次函數和X軸、y軸的交點,在列表計算時,分別令X=0,y=0就可計算出這兩點的坐標。正比例函數當X=0時,y=0,即與x 、y鈾的交點重合于原點。因此做正比例函數的圖象時,只需再任取一點,過它與坐標原點作一條直線即可得到正比例函數的圖象。從而正比例函數y=kx的圖象是經過原點(0,0)的一條直線。

練一練:作出下列函數的圖象:

(1)y= ?5x+2,???? (2)y= ?x

(3)y=2x?1,(4)y=5x

五、課堂小結

這節課我們學習了一次函數的圖象。一次函數的圖象是一條直線,正比例函數的圖象是經過原點的一條直線。在作圖時,只需確定直線上兩點的位置,就可得到一次函數的圖象。一般地,作函數圖象的三個步驟是:列表、描點、連線。

六、課后練習

隨堂練習習題6.3

五、教學反思

本節課主要介紹作函數圖象的一般方法,通過對一次函數圖象的認識,得到作一次函數及正比例函數的圖象的特殊方法(兩點確定一條直線)。讓學生能夠迅速找到直線與坐標軸的交點,這是本節課的難點。數形結合,找準這兩個特殊點坐標的特點(x=0或y=0),讓學生理解的記憶才能收到較好的效果。

初中數學教案5

一、內容特點

在知識與方法上類似于數系的第一次擴張。也是后繼內容學習的基礎。

內容定位:了解無理數、實數概念,了解(算術)平方根的概念;會用根號表示數的(算術)平方根,會求平方根、立方根,用有理數估計一個無理數的大致范圍,實數簡單的四則運算(不要求分母有理化)。

二、設計思路

整體設計思路:

無理數的引入----無理數的表示----實數及其相關概念(包括實數運算),實數的應用貫穿于內容的始終。

學習對象----實數概念及其運算;學習過程----通過拼圖活動引進無理數,通過具體問題的解決說明如何表示無理數,進而建立實數概念;以類比,歸納探索的方式,尋求實數的運算法則;學習方式----操作、猜測、抽象、驗證、類比、推理等。

具體過程:

首先通過拼圖活動和計算器探索活動,給出無理數的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。最后教科書總結實數的概念及其分類,并用類比的方法引入實數的相關概念、運算律和運算性質等。

第一節:數怎么又不夠用了:通過拼圖活動,讓學生感受無理數產生的實際背景和引入的必要性;借助計算器探索無理數是無限不循環小數,并從中體會無限逼近的思想;會判斷一個數是有理數還是無理數。

第二、三節:平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術平方根、平方根、立方根等概念和開方運算。

第四節:公園有多寬:在實際生活和生產實際中,對于無理數我們常常通過估算來求它的近似值,為此這一節內容介紹估算的方法,包括通過估算比較大小,檢驗計算結果的合理性等,其目的是發展學生的'數感。

第五節:用計算器開方:會用計算器求平方根和立方根。經歷運用計算器探求數學規律的活動,發展合情推理的能力。

第六節:實數。總結實數的概念及其分類,并用類比的方法引入實數的相關概念、運算律和運算性質等。

三、一些建議

1.注重概念的形成過程,讓學生在概念的形成的過程中,逐步理解所學的概念;關注學生對無理數和實數概念的意義理解。

2.鼓勵學生進行探索和交流,重視學生的分析、概括、交流等能力的考察。

3.注意運用類比的方法,使學生清楚新舊知識的區別和聯系。

4.淡化二次根式的概念。

初中數學教案6

1.知識結構

2.重點和難點分析

重點:本節的重點是平行四邊形的概念和性質.雖然平行四邊形的概念在小學學過,但對于概念本質屬性的理解并不深刻,為了加深學生對概念的理解,為以后學習特殊的平行四邊形打下基礎,所以教師不要忽視平行四邊形的概念教學.平行四邊形的性質是以后證明四邊形問題的基礎,也是學好全章的關鍵.尤其是平行四邊形性質定理的推論,推論的應用有兩個條件:

一個是夾在兩條平行線間;

一個是平行線段,具備這兩個條件才能得出一個結論平行線段相等,缺少任何一個條件結論都不成立,這也是學生容易犯錯的地方,教師要反復強調.

難點:本節的難點是平行四邊形性質定理的靈活應用.為了能熟練的應用性質定理及其推論,要把性質定理和推論的條件和結論給學生講清楚,哪幾個條件,決定哪個結論,如何用數學符號表示即書寫格式,都要在講練中反復強化.

3.教法建議

(1)教科書一開始就給出了平行四邊形的定義,我感覺這樣引入新課,不利于調動學生的積極性.自己設計了一個動畫,建議老師們用它作為本節的引入,既可以激發學生的學習興趣,又可以激活學生的思維.

(2)在生產或生活中,平行四邊形是常見圖形之一,教師可以多給學生提供一些平行四邊形的圖片,增加學生的感性認識,然后,讓他們自己總結出平行四邊形的定義,教師最后做總結.平行四邊形是特殊的四邊形,要判定一個四邊形是不是平行四邊形,要判斷兩點:首先是四邊形,然后四邊形的兩組對邊分別平行.平行四邊形的定義既是平行四邊形的一個判定方法,又是平行四邊形的一個性質.

(3)對于教師來說講課固然重要,但講完課后有目的的強化訓練也是不可缺少的,通過做題,幫助學生更好的理解所講內容,也就是我們平時說的要反思回顧,總結深化.

平行四邊形及其性質第一課時

一、素質教育目標

(一)知識教學點

1.使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念.

2.掌握平行四邊形的性質定理1、2.

3.并能運用這些知識進行有關的證明或計算.

(二)能力訓練點

1.知道解決平行四邊形問題的基本思想是化為三角形問題來處理,滲透轉化思想.

2.通過推導平行四邊形的性質定理的過程,培養學生的推導、論證能力和邏輯思維能力.

(三)德育滲透點

通過要求學生書寫規范,培養學生科學嚴謹的學風.

(四)美育滲透點

通過學習,滲透幾何方法美和幾何語言美及圖形內在美和結構美

二、學法引導

閱讀、思考、講解、分析、轉化

三、重點·難點·疑點及解決辦法

1.教學重點:平行四邊形性質定理的應用

2.教學難點:正確理解兩條平行線間的距離的概念和運用性質定理2的推論;在計算或證明中綜合應用本節前一章的知識.

3.疑點及解決辦法:關于性質定理2的推論;兩點的距離,點到直線的距離,兩平行直線中間的距離的區別與聯系,注重對概念的教學,使學生深刻理解上述概念,搞清它們之間的關系;平行四邊形的高有關問題.

四、課時安排

2課時

五、教具學具準備

教具(做兩個全等的三角形),投影儀,投影膠片,小黑板,常用畫圖工具

六、師生互動活動設計

教師復習提問,學習思考口答;教師設疑引思,學生討論分析;師生共同總結結論,教師示范講解,學生達標練習

第一課時

七、教學步驟

【復習提問】

1.什么叫做四邊形?什么叫四邊形的一組對邊?

2.四邊形的兩組對邊在位置上有幾種可能?

教師隨著學生回答畫出圖1)

圖1

【引入新課】

在四邊形中,我們常見的實用價值最大的就是平行四邊形,如汽車的防護鏈,無軌電車的擊電桿都是平行四邊形的形象,平行四邊形有什么性質呢?這是這節課研究的主要內容(寫出課題).

【講解新課】

1.平行四邊形的定義:兩組對邊分別平行的四邊形叫做平行四邊形.

注意:一個四邊形必須具備有兩組對邊分別平行才是平行四邊形,反過來,平行四邊形就一定是有“兩組對邊分別平行”的.一個四邊形.因此定義既是平行四邊形的一個判定方法(定義判定法)又是平行四邊形的一個性質.

2.平行四邊形的表示:平行四邊形用符號“

”表示,如圖1就是平行四邊形

,記作“

”.

align=middle>

圖1

3.平行四邊形的性質

講解平行四邊形性質前必須使學生明確平行四邊形從屬于四邊形,因此它具有四邊形的一切性質(共性),同時它又是特殊的四邊形,當然還有其特性(個性),下面介紹的性質就是其特性,這是一般四邊形所不具有的.

平行四邊形性質定理1:平行四邊形的對角相等.

平行四邊形性質定理2:平行四邊形對邊相等.

(教具用兩個全等的三角形拼湊的平行四邊形演示,由此得到證明以上兩個定理的方法.如圖2)

圖2如圖3

所以四邊形是平行四邊形,所以.由此得到

推論:夾在兩條平行線間的平行線段相等.

圖3

要注意:必須有兩個平行,即夾兩條平行線段的兩條直線平行,被夾的兩條線段平行,缺一不可,如圖4中的幾種情況都不可以推出圖4

4.平行線間的距離

從推論可以知道,如果兩條直線平行,那么從一條直線上所有各點到另一條直線的距離相等,如圖5.

我們把兩條平行線中一條直線上任意一點到另一條直線的距離,叫做平行線的距離.

圖5

注意:(1)兩相交直線無距離可言.

(2)連結兩點間的線段的長度叫兩點間的距離,從直線外一點到一條直線的垂線段的長,叫點到直線的距離.兩條平行線中一條直線上任意一點到另一條直線的距離,叫做這兩條平行線的距離,一定要注意這些概念之間的區別與聯系.

例1 已知:如圖1,

初中數學教案7

知識技能目標

1、理解反比例函數的圖象是雙曲線,利用描點法畫出反比例函數的圖象,說出它的性質;

2、利用反比例函數的圖象解決有關問題。

過程性目標

1、經歷對反比例函數圖象的觀察、分析、討論、概括過程,會說出它的性質;

2、探索反比例函數的圖象的性質,體會用數形結合思想解數學問題。

教學過程

一、創設情境

上節的練習中,我們畫出了問題1中函數的圖象,發現它并不是直線。那么它是怎么樣的曲線呢?本節課,我們就來討論一般的反比例函數(k是常數,k≠0)的圖象,探究它有什么性質。

二、探究歸納

1、畫出函數的圖象。

分析畫出函數圖象一般分為列表、描點、連線三個步驟,在反比例函數中自變量x≠0。

1、列表:這個函數中自變量x的取值范圍是不等于零的一切實數,列出x與y的對應值:

2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。

3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數的圖象。

上述圖象,通常稱為雙曲線(hyperbola)。

提問這兩條曲線會與x軸、y軸相交嗎?為什么?

學生試一試:畫出反比例函數的圖象(學生動手畫反比函數圖象,進一步掌握畫函數圖象的步驟)。

學生討論、交流以下問題,并將討論、交流的結果回答問題。

1、這個函數的圖象在哪兩個象限?和函數的圖象有什么不同?

2、反比例函數(k≠0)的圖象在哪兩個象限內?由什么確定?

3、聯系一次函數的性質,你能否總結出反比例函數中隨著自變量x的增加,函數y將怎樣變化?有什么規律?

反比例函數有下列性質:

(1)當k>0時,函數的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;

(2)當k<0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。

1、雙曲線的兩個分支與x軸和y軸沒有交點;

2、雙曲線的兩個分支關于原點成中心對稱。

以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?

在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮上的時間少。

在問題2中反映了在面積一定的情況下,飼養場的一邊越長,另一邊越小。

三、實踐應用

例1若反比例函數的圖象在第二、四象限,求m的值。

分析由反比例函數的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。

解由題意,得解得。

例2已知反比例函數(k≠0),當x>0時,y隨x的增大而增大,求一次函數y=kx—k的圖象經過的象限。

分析由于反比例函數(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。

解因為反比例函數(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數y=kx—k的圖象經過一、二、四象限。

例3已知反比例函數的圖象過點(1,—2)。

(1)求這個函數的解析式,并畫出圖象;

(2)若點A(—5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?

分析(1)反比例函數的圖象過點(1,—2),即當x=1時,y=—2。由待定系數法可求出反比例函數解析式;再根據解析式,通過列表、描點、連線可畫出反比例函數的圖象;

(2)由點A在反比例函數的圖象上,易求出m的值,再驗證點A關于兩坐標軸和原點的對稱點是否在圖象上。

解(1)設:反比例函數的解析式為:(k≠0)。

而反比例函數的`圖象過點(1,—2),即當x=1時,y=—2。

所以,k=—2。

即反比例函數的解析式為:。

(2)點A(—5,m)在反比例函數圖象上,所以,

點A的坐標為。

點A關于x軸的對稱點不在這個圖象上;

點A關于y軸的對稱點不在這個圖象上;

點A關于原點的對稱點在這個圖象上;

例4已知函數為反比例函數。

(1)求m的值;

(2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?

(3)當—3≤x≤時,求此函數的最大值和最小值。

解(1)由反比例函數的定義可知:解得,m=—2。

(2)因為—2<0,所以反比例函數的圖象在第二、四象限內,在各象限內,y隨x的增大而增大。

(3)因為在第個象限內,y隨x的增大而增大,

所以當x=時,y最大值=;

當x=—3時,y最小值=。

所以當—3≤x≤時,此函數的最大值為8,最小值為。

例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。

(1)寫出用高表示長的函數關系式;

(2)寫出自變量x的取值范圍;

(3)畫出函數的圖象。

解(1)因為100=5xy,所以。

(2)x>0。

(3)圖象如下:

說明由于自變量x>0,所以畫出的反比例函數的圖象只是位于第一象限內的一個分支。

四、交流反思

本節課學習了畫反比例函數的圖象和探討了反比例函數的性質。

1、反比例函數的圖象是雙曲線(hyperbola)。

2、反比例函數有如下性質:

(1)當k>0時,函數的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;

(2)當k<0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。

五、檢測反饋

1、在同一直角坐標系中畫出下列函數的圖象:

(1);(2)。

2、已知y是x的反比例函數,且當x=3時,y=8,求:

(1)y和x的函數關系式;

(2)當時,y的值;

(3)當x取何值時,?

3、若反比例函數的圖象在所在象限內,y隨x的增大而增大,求n的值。

4、已知反比例函數經過點A(2,—m)和B(n,2n),求:

(1)m和n的值;

(2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0

初中數學教案8

教學目標

1、理解有理數加法的意義,掌握有理數加法法則中的符號法則和絕對值運算法則;

2、能根據有理數加法法則熟練地進行有理數加法運算,弄清有理數加法與非負數加法的區別;

3、三個或三個以上有理數相加時,能正確應用加法交換律和結合律簡化運算過程;

4、通過有理數加法法則及運算律在加法運算中的運用,培養學生的運算能力;

5、本節課通過行程問題說明有理數的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數學知識來源于生活,并應用于生活。

教學建議

(一)重點、難點分析

本節教學的重點是依據有理數的加法法則熟練進行有理數的加法運算。難點是有理數的加法法則的理解。

(1)加法法則本身是一種規定,教材通過行程問題讓學生了解法則的合理性。

(2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。

(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的.加數的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數與0相加,仍得這個數。

(二)知識結構

(三)教法建議

1、對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數、相反數、絕對值等知識。

2、有理數的加法法則是規定的,而教材開始部分的行程問題是為了說明加法法則的合理性。

3、應強調加法交換律“a+b=b+a”中字母a、b的任意性。

4、計算三個或三個以上的加法算式,應建議學生養成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。

5、可以給出一些類似“兩數之和必大于任何一個加數”的判斷題,以明確由于負數參與加法運算,一些算術加法中的正確結論在有理數加法運算中未必也成立。

6、在探討導出有理數的加法法則的行程問題時,可以嘗試發揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數運算法則。

初中數學教案9

一、課題引入

為了讓學生更好地理解正數與負數的概念,作為教師有必要了解數系的發展.從數系的發展歷程來看,微積分的基礎是實數理論,實數的基礎是有理數,而有理數的基礎則是自然數.自然數為數學結構提供了堅實的基礎.

對于“數的發展”(也即“數的擴充”),有著兩種不同的認知體系.一是數的自然擴充過程,如圖1所示,即數系發展的自然的、歷史的體系,它反映了人類對數的認識的歷史發展進程;另一是數的邏輯擴充過程,如圖2所示,即數系發展所經歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數學家構造的一種邏輯體系,其中綜合反映了現代數學中許多思想方法.

二、課題研究

在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數量.這些數量不僅與5、5000等數量有關,而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.

為了準確表達諸如此類的一些具有相反意義的量,僅用小學學過的正整數、正分數、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數—負數.

我們把所學過的大于零的數,都稱為正數;而且還可以在正數的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數,讀作“正5”.

在正數的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構成的數統稱為負數.“-5”讀作“負5”,“-5000”讀作“負5000”.

于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數量就有了不同的表達方式.

利用正數與負數可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數記作“+2”,把乙隊的凈勝球數記作“-2”.

借助實際例子能夠讓學生較好地理解為什么要引入負數,認識到負數是為了有效表達與實際生活相關的一些數量而引入的一種新數,而不是人為地“硬造”出來的一種“新數”.

三、鞏固練習

例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調,又該怎樣記錄這筆支出呢?

思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數或負數來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的`量“支出1600元”記作-1600元.

特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數量,都用正數來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數量則用負數來表示.

再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.

例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當天的收盤價與開盤價的漲跌情況如下表:單位:元

日期周二周三周四周五

開盤+0.16+0.25+0.78+2.12

收盤-0.23-1.32-0.67-0.65

當日收盤價

試在表中填寫周二到周五該股票的收盤價.

思路分析:以周二為例,表中數據“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數據“-0.23”則表示“周二該股票收盤時的收盤價比當天的開盤價降低了0.23元”.

因此,這五天該股票的開盤價與收盤價分別應該按如下的方式進行計算:

周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.

例3甲、乙、丙三支球隊以主客場的形式進行雙循環比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數分別是主客隊的進球數,例如3∶2表示主隊進3球客隊進2球.

初中數學教案10

①結合你對一元一次方程中的一次的理解,說一說你對一次函數中的“一次”的理解. ②k可以是怎樣的數?

③你怎樣認識一次函數和正比例函數的關系?

一個常數b的和即 Y=kx+b 定義:一般地,形

Y=kx+b( k,b 是常數,k≠0 )的函數,叫做一次函數, 當

b=0時,

Y=kx+b即Y=kx,所以說正比例函數是一種特殊的一次函數。

例1、下列函數中,Y是X的一次函數的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X

學生獨立

A①②③B①③④C①②④D①②③④

例2、寫出下列各題中x與y之間的關系式,并判

解釋與應用

斷,y是否為x的一次函數?是否為正比例函數?①汽車以60千米/時的.速度勻速行駛,行駛路程中y(千米)與行駛時間(時)之間的關系式;②圓的面積y(厘米2)與他的半徑x(厘米)之間的關系:③一棵樹現在高50厘米,每個月長高2厘米,x月后這棵樹的高度y(厘米)之間的關系式

初中數學教案11

教學目標:

1、知識與技能:(1)通過學生熟悉的問題情景,以過探索有理數減法法則得出的過程,理解有理數減法法則的合理性。

(2)能熟練進行有理數的減法法則。

2、過程與方法

通過實例,歸納出有理數的減法法則,培養學生的邏輯思維能力和運算能力,通過減法到加法的轉化,讓學生初步體會人歸的數學思想。

重點、難點

1、重點:有理數減法法則及其應用。

2、難點:有理數減法法則的應用符號的改變。

教學過程:

一、創設情景,導入新課

1、有理數加法運算是怎樣做的?(-5)+3= —3+(—5)=

—3+(+5)=

2、-(-2)= -[-(+23)]=,+[-(-2)]=

3、20xx的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?

導語:可見,有理數的減法運算在現實生活中也有著很廣泛的應用。(出示課題)

二、合作交流,解讀探究

1(-2)-(-10)=8=(-2)+8

2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?

3、通過以上列式,你能發現減法運算與加法運算的'關系嗎?

(學生分組討論,大膽發言,總結有理數的減法法則)

減去一個數等于加上這個數的相反數

教師提問、啟發:(1)法則中的“減去一個數”,這個數指的是哪個數?“減去”兩字怎樣理解?(2)法則中的“加上這個數的相反數”“加上”兩字怎樣理解?“這個數的相反數”又怎樣理解?(3)你能用字母表示有理數減法法則嗎?

三、應用遷移,鞏固提高

1、P.24例1 計算:

(1) 0-(-3.18)(2)(-10)-(-6)(3)-

解:(1)0-(-3.18)=0+3.18=3.18

(2)(-10)-(-6)=(-10)+6=-4

(3)-=+=1

2、課內練習:P.241、2、3

3、游戲:兩人一組,用撲克牌做有理數減法運算游戲(每人27張牌,黑牌點數為正數,紅牌點數為負數,王牌點數為0。每人每次出一張牌,兩人輪流先出(先出者為被減數),先求出這兩張牌點數之差者獲勝,直至其中一人手中無牌為止)。

四、總結反思

(1) 有理數減法法則:減去一個數,等于加上這個數的相反數。

(2) 有理數減法的步驟:先變為加法,再改變減數的符號,最后按有理數加法法則計算。

五、作業

P.27習題1.4A組1、2、5、6

備選題

填空:比2小-9的數是 。

а比а+2小 。

若а小于0,е是非負數,則2а-3е 0。

初中數學教案12

一、教學目標:

1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;

2、能力目標:

①,在實踐操作過程中,逐步探索圖形之間的平移關系;

②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;

3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。

二、重點與難點:

重點:圖形連續變化的特點;

難點:圖形的劃分。

三、教學方法:

講練結合。使用多媒體課件輔助教學。

四、教具準備:

多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

五、教學設計:

創設情景,探究新知:

(演示課件):教材上小狗的'圖案。提問:

(1)這個圖案有什么特點?

(2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?

(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?

小組討論,派代表回答。(答案可以多種)

讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。

看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?

小組討論,派代表到臺上給大家講解。

氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。

暢所欲言,互相補充。

課堂小結:

在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。

課堂練習:

小組討論。

小組討論完成。

例子一定要和大家接觸緊密、典型。

答案不惟一,對于每種答案,教師都要給予充分的肯定。

六、教學反思:

本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。

初中數學教案13

教學目標:

1、在現實情境中理解線段、射線、直線等簡單圖形(知識目標)

2、會說出線段、射線、直線的特征;會用字母表示線段、射線、直線(能力目標)

3、通過操作活動,了解兩點確定一條直線等事實,積累操作活動的經驗,培養學生的興趣、愛好,感受圖形世界的豐富多彩。(情感態度目標)

教學難點:了解“兩點確定一條直線”等事實,并應用它解決一些實際問題

教 具:多媒體、棉線、三角板

教學過程:

情景創設:觀察電腦展示圖,使學生感受圖形世界的豐富多彩,激發學習興趣。

如何來描述我們所看到的`現象?

教學過程:

1、一段拉直的棉線可近似地看作線段

師生畫線段

演示投影片1:①將線段向一個方向無限延長,就形成了______

學生畫射線

②將線段向兩個方向無限延長就形成了_______

學生畫直線

2、討論小組交流:

① 生活中,還有哪些物體可以近似地看作線段、射線、直線?

(強調近似兩個字,注意引導學生線段、射線、直線是從生活上抽象出來的)

②線段、射線、直線,有哪些不同之處, 有哪些相同之處?

(鼓勵學生用自己的語言描述它們各自的特點)

3、問題1:圖中有幾條線段?哪幾條?

“要說清楚哪幾條,必須先給線段起名字!”從而引出線段的記法。

點的記法: 用一個大寫英文字母

線段的記法:①用兩個端點的字母來表示

②用一個小寫英文字母表示

自己想辦法表示射線,讓學生充分討論,并比較如何表示合理

射線的記法:

用端點及射線上一點來表示,注意端點的字母寫在前面

直線的記法:

① 用直線上兩個點來表示

② 用一個小寫字母來表示

強調大寫字母與小寫字母來表示它們時的區別

(我們知道他們是無限延長的,我們為了方便研究約定成俗的用上面的方法來表示它們。)

練習1:讀句畫圖(如圖示)

(1) 連BC、AD

(2) 畫射線AD

(3) 畫直線AB、CD相交于E

(4) 延長線段BC,反向延長線段DA相交與F

(5) 連結AC、BD相交于O

練習2:右圖中,有哪幾條線段、射線、直線

4、問題2 請過一點A畫直線,可以畫幾條?過兩點A、B呢?

學生通過畫圖,得出結論:過一點可以畫無數條直線

經過兩點有且只有一條直線

問題3 如果你想將一硬紙條固定在硬紙板上,至少需要幾根圖釘?

為什么?(學生通過操作,回答)

小組討論交流:

你還能舉出一個能反映“經過兩點有且只有一條直線”的實例嗎?

適當引導:栽樹時只要確定兩個樹坑的位置,就能確定同一行的樹坑所在的直線。建筑工人在砌墻時,經常在兩個墻角分別立一根標志桿,在兩根標志桿之間拉一根繩,沿這根繩就可以砌出直的墻來。

5、小結:

① 學生回憶今天這節課學過的內容

進一步清晰線段、射線、直線的概念

② 強調線段、射線、直線表示方法的掌握

6、作業:①閱讀“讀一讀” P121

②習題4的1、2、3。4作為思考題

初中數學教案14

教學目標

1, 掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;

2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;

3, 體驗分類是數學上的常用處理問題的方法。

教學難點正確理解分類的標準和按照一定的標準進行分類

知識重點正確理解有理數的概念

教學過程(師生活動) 設計理念

探索新知 在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).

問題1:觀察黑板上的9個數,并給它們進行分類.

學生思考討論和交流分類的情況.

學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.

例如,

對于數5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5. 1不是整個的數,稱為“正分數,,.…(由于小數可化為分數,以后把小數和分數都稱為分數)

通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,’.

按照書本的說法,得出“整數”“分數”和“有理數”的概念.

看書了解有理數名稱的由來.

“統稱”是指“合起來總的名稱”的意思.

試一試:按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的) 分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與

學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。

有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會

練一練 1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.

2,教科書第10頁練習.

此練習中出現了集合的概念,可向學生作如下的說明.

把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的'數集叫做負數集……;

數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號.

思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?

也可以教師說出一些數,讓學生進行判斷。

集合的概念不必深入展開。

創新探究 問題2:有理數可分為正數和負數兩大類,對嗎?為什么?

教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。

有理數 這個分類可視學生的程度確定是否有必要教學。

應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

小結與作業

課堂小結 到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。

本課作業

1, 必做題:教科書第18頁習題1.2第1題

2, 教師自行準備

本課教育評注(課堂設計理念,實際教學效果及改進設想)

1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概念.分類是數學中解決問題的常用手段,通過本節課的學習使學生了解分類的思想并進行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視.關于分類標準與分類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。

2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養成有很好的作用。

3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。

初中數學教案15

把方程兩邊都加上(或減去)同一個數或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。

一、教材內容分析

本節課是數學人教版七年級上冊第三章第二節第二小節的內容。這是一節“概念加例題型”課,此種課型中的學習內容一部分是概念,一部分是運用前面的概念解決實際問題的例題。本節課主要內容是利用移項解一元一次方程。是學生學習解一元一次方程的基礎,這一部分內容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基礎。這類課一般采用“導學導教,當堂訓練”的方式進行,教師指導學生學習的重點一般不放在概念上,要特別留意學生運用概念解題或做與例題類似的習題時,對概念的理解是否到位。

二、教學目標:

1.知識與技能:(1)找相等關系列一元一次方程;(2)用移項解一元一次方程。(3)掌握移項變號的基本原則

2.過程與方法:經歷運用方程解決實際問題的過程,發展抽象、概括、分析問題和解決問題的能力,認識用方程解決實際問題的關鍵是建立相等關系。

3.情感、態度:通過具體情境引入新問題,在移項法則探究的過程中,培養學生合作意識,滲透化歸的思想。

三、學情分析

針對七年級學生學習熱情高,但觀察、分析、概括能力較弱的特點,本節從實際問題入手,讓學生通過自己思考、動手,激發學生的求知欲,提高學生學習的興趣與積極性。在課堂教學中,學生主要采取自學、討論、思考、合作交流的學習方式,使學生真正成為課堂的主人,逐步培養學生觀察、概括、歸納的能力。

四、教學重點:利用移項解一元一次方程。

五、教學難點:移項法則的探究過程。

六、教學過程:

(一)情景引入

引例:請同學們思考這樣一個有趣的問題,我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨分別是( )

A.3個老頭,4個梨 B.4個老頭,3個梨 C.5個老頭,6個梨 D.7個老頭,8個梨

設計意圖:大部分同學會用算術法(答案代入法)來解答的,而這類問題我們如何用方程來解答呢?激起學生求知的欲望,巧妙過渡,揭示課題。板書課題:解一元一次方程——移項

(二)出示學習目標

1.理解移項法,明確移項法的依據,會解形如ax+b=cx+d類型 的一元一次方程。

2.會建立方程解決簡單的實際問題。

設計意圖:這兩個目標的達成,也驗證了本節課學生自學的效果,這也是本節課的教學重難點。

(三)導教導學

1.出示自學指導

自學教材問題2到例3的內容,思考以下問題:(1)問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題可作為列方程的依據的等量關系是什么?(2)什么是移項?移項的依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟(8分鐘后,比誰能仿照問題2和例3的格式正確解答問題)

2.學生自學

學生根據自學提綱進行獨立學習,教師巡視,對自學速度慢的、自學能力差的、注意力不夠集中的學生給以暗示和幫扶,有利于自學后的成果展示。

3.交流展示(小組合作展示)

(合作交流一)教材問題2中這批書的總數有哪幾種表示法?它們之間有什么關系?本題哪個相等關系可作為列方程的依據呢?

問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?

1)設未知數:設這個班有X名學生,根據兩種不同分法這批書的總數就有兩種表示方法,即這批書共有(3 X+20)本或(4X-25)本。

2)找相等關系:這批書的總數是一個定值,表示同一個量的兩個不同的.式子相等。(板書)

3)根據等量關系列方程: 3x+20 = 4x-25(板書)

【總結提升】解決“分配問題”應用題的列方程的基本要點:

A.找出能貫穿應用題始終的一個不變的量.

B.用兩個不同的式子去表示這個量.

C.由表示這個不變的量的兩個式子相等列出方程.

設計意圖:因為在自學提綱的引領下,每個小組自主學習的效果不同,反饋的意見不同,所以在展示中首先要展示學生對課本例題的理解思路。采取主動自愿的方式,一個小組主講,其它小組補充。

(變式訓練1)某學校組織學生共同種一批樹,如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹苗,求參與種樹的人數

(只設列即可)

(變式訓練2)我國民間流傳著許多趣味算題,多以順口溜的形式表達,請看這樣一個數學問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨各多少?

設計意圖:檢查提問學生對“分配問題”應用題掌握的情況,學生回答后教師板書所列方程為后面教學做好鋪墊。學生會帶著“如何解這類方程?”的好奇心過渡到下一個環節的學習。

(合作交流二)什么是移項?移項的依據是什么?移項時應該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學例3后請歸納解這類一元一次方程的步驟。

(板書 )把等式一邊的某項改變符號后,從等式的一邊移到另一邊,這種變形叫做移項。

《解一元一次方程——移項》教學設計(魏玉英)

師:為什么等式(方程)可以這樣變形?依據什么?

(出示)依據等式的基本性質1.即:等式兩邊都加上或減去同一個數或同一個整式,所得結果仍是等式.

師:解一元一次方程中“移項”起了什么作用?

(出示) 通過移項,使等號左邊僅含未知數的項,等號右邊僅含常數的項,使方程更接近x=a的形式.(與課題對照滲透轉化思想)

(基礎訓練)搶答:判斷下列移項是否正確,如有錯誤,請修改

《解一元一次方程——移項》教學設計(魏玉英)

設計理念:讓各個小組憑著勢力去搶答。這五個習題重點考察學生對移項的掌握是本節課的重難點,習題分層設計且成梯度分布。

【歸納板書】 解“ax+b=cx+d”型的一元一次方程的步驟:(1) 移項,(2) 合并同類項,(3) 系數化為1

(綜合訓練) 解下列方程(任選兩題)

設計理念:第(2)、(3)兩題未知數系數是相同類型的,所以讓學生任選一題即可。通過綜合訓練能讓學生更進一步鞏固用移項和合并同類項去解方程了。

(中考試練)若x=2是關于x的方程2x+3m-1=0的解,則m的值為

設計理念:通過本題的訓練讓學生明確中考在本節的考點,同時激勵學生在數學知識的學習中要抓住知識的核心和重點。

(四)我總結、我提高:

通過本節課的學習我收獲了。

設計意圖:通過小組之間互相談收獲的方式進行課堂小結,讓學生相互檢查本節課的學習效果。可以引導學生從本節課獲得的知識、解題的思想方法、學習的技巧等方面交流意見。

(五)當堂檢測(50分)

1.下列方程變形正確的是( )

A.由-2x=6, 得x=3

B.由-3=x+2, 得x=-3-2

C.由-7x+3=x-3, 得(-7+1)x=-3-3

D.由5x=2x+3, 得x=-1

2.一批游客乘汽車去觀看“上海世博會”。如果每輛汽車乘48人,那么還多4人;如果每輛汽車乘50人,那么還有6個空位,求汽車和游客各有多少?(只設出未知數和列出方程即可)

3.(20分)已知x=1是關于x的方程3m+8x=m+x的解,求m的值。

(師生活動)學生獨立答題,教師巡回檢查,對先答完的學生進行及時批改,并把得滿分的學生作為小老師對后解答完的學生的檢測進行評定,最后老師進行小結。

(六)實踐活動

請每一位同學用自己的年齡編一 道“ax+b=cx+d”型的方程應用題,并解答。先在組內交流,選出組內最有創意的一個記在題卡上,自習在全班進行展示 。

設計意圖:

讓學生課后完成,讓學生深深體會到數學來源于生活而又服務于生活,體現了數學知識與實際相結合。

第五篇:初中數學教案

初中數學教案

教學建議

一、知識結構

二、重點、難點分析

本節的重點是:單項式乘法法則的導出.這是因為單項式乘法法則的導出是對學生已有的數學知識的綜合運用,滲透了“將未知轉化為已知”的數學思想,蘊含著“從特殊到一般”的認識規律,是培養學生思維能力的重要內容之一.

本節的難點是:多種運算法則的綜合運用.是因為單項式的乘法最終將轉化為有理數乘法、同底數冪相乘、冪的乘方、積的乘方等運算,對于初學者來說,由于難于正確辯論和區別各種不同的運算以及運算所使用的法則,易于將各種法則混淆,造成運算結果的錯誤.

三、教法建議

本節課在教學過程中的不同階段可以采用了不同的教學方法,以適應教學的需要.

(1)在新課學習階段的單項式的乘法法則的推導過程中,可采用引導發現法.通過教師精心設計的問題鏈,引導學生將需要解決的問題轉化成用已經學過的知識可以解決的問題,充分體現了教師的主導作用和學生的主體作用,學生始終處在觀察思考之中.

(2)在新課學習的例題講解階段,可采用講練結合法.對于例題的學習,應圍繞問題進行,教師引導學生通過觀察、思考,尋求解決問題的方法,在解題的過程中展開思維.與此同時還進行多次有較強針對性的練習,分散難點.對學生分層進行訓練,化解難點.并注意及時矯正,使學生在前面出現的錯誤,不致于影響后面的學習,為后而后學習掃清障礙.通過例題的講解,教師給出了解題規范,并注意對學生良好學習習慣的培養.

(3)本節課可以師生共同小結,旨在訓練學生歸納的方法,并形成相應的知識系統,進一步防范學生在運算中容易出現的錯誤.

教學設計示例

一、教學目的

1.使學生理解并掌握單項式的乘法法則,能夠熟練地進行單項式的乘法計算.

2.注意培養學生歸納、概括能力,以及運算能力.

3.通過單項式的乘法法則在生活中的應用培養學生的應用意識.

二、重點、難點

重點:掌握單項式與單項式相乘的法則.

難點:分清單項式與單項式相乘中,冪的運算法則.

三、教學過程

復習提問:

什么是單項式?什么叫單項式的系數?什么叫單項式的次數?

引言 我們已經學習了冪的運算性質,在這個基礎上我們可以學習整式的乘法運算.先來學最簡單的整式乘法,即單項式之間的乘法運算(給出標題).

新課 看下面的例子:計算

(1)2x2y·3xy2;(2)4a2x2·(-3a3bx).

同學們按以下提問,回答問題:

(1)2x2y·3xy2

①每個單項式是由幾個因式構成的,這些因式都是什么?

2x2y·3xy2=(2·x2·y)·(3·x·y2)

②根據乘法結合律重新組合 2x2y·3xy2=2·x2·y·3·x·y2

③根據乘法交換律變更因式的位置

2x2y·3xy2=2·3·x2·x·y·y2

④根據乘法結合律重新組合 2x2y·3xy2=(2·3)·(x2·x)·(y·y2)

⑤根據有理數乘法和同底數冪的乘法法則得出結論

2x2y·3xy2=6x3y3

按以上的分析,寫出(2)的計算步驟:

(2)4a2x2·(-3a3bx)

=4a2x2·(-3)a3bx

=[4·(-3)]·(a2·a3)·(x2·x)·b

=(-12)·a5·x3·b

=-12a5bx3.

通過以上兩題,讓學生總結回答,歸納出單項式乘單項式的運算步驟是:

①系數相乘為積的系數;

②相同字母因式,利用同底數冪的乘法相乘,作為積的因式;

③只在一個單項式里含有的字母,連同它的指數也作為積的一個因式;

④單項式與單項式相乘,積仍是一個單項式;

⑤單項式乘法法則,對于三個以上的單項式相乘也適用.

看教材,讓學生仔細閱讀單項式與單項式相乘的法則,邊讀邊體會邊記憶.

利用法則計算以下各題. 例1 計算以下各題:

(1)4n2·5n3;

(2)(-5a2b3)·(-3a);

(3)(-5an+1b)·(-2a);

(4)(4×105)·(5×106)·(3×104).

解:(1)4n2·5n3

=(4·5)·(n2·n3)

=20n5;

(2)(-5a2b3)·(-3a)

=[(-5)·(-3)]·(a2·a)·b3

=15a3b3;

(3)(-5an+1b)·(-2a)

=[(-5)·(-2)]·(an+1·a)b

=10an+2b;

(4)(4·105)·(5·106)·(3·104)

=(4·5·3)·(105·106·104)

=60·1015

=6·1016.

例2 計算以下各題(讓學生回答):

(3)(-5amb)·(-2b2);

(4)(-3ab)(-a2c)·6ab2.

=3x3y3;

(3)(-5amb)·(-2b2);

=[(-5)·(-2)]·am·(b·b2)

=10amb3

(4)(-3ab)·(-a2c)·6ab2

=[(-3)·(-1)·6]·(aa2a)·(bb2)·c

=18a4b3c.

小結 單項式與單項式相乘是整式乘法中的重要內容,它的運算法則的導出主要依據是,乘法的交換律與結合律以及冪的運算性質.

下載初中數學教案:單項式word格式文檔
下載初中數學教案:單項式.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    初中數學教案

    初中數學教案 第七章:圓 第17課時:三角形的內切圓 教學目標: 1、使學生學會作三角形的內切圓. 2、理解三角形內切圓的有關概念. 3、掌握三角形的內心、外心的位置、數量特征. 4、......

    初中數學教案

    教學目標: 教學重點和難點: 教學用具: 教學方法: 教學過程:一、創設情境,引入新課二、新課講授三、例題講解四、課堂練習五、課后作業 教學反思:數與代數教案第一課時數的認識 課型......

    初中數學教案

    課 題 §2.2.3 配方法(三) 教學目標 (一)教學知識點 1.利用方程解決實際問題. 2.訓練用配方法解題的技能. (二)能力訓練要求 1.經歷列方程解決實際問題的過程,體會一元二次方......

    初中函數數學教案

    函數初中數學教案 教學目標: 1:是學生分清楚變量與常量,以及會判斷哪些量是變量 2:理解函數的概念,分清自變量以及應變量,同時會判斷一個變量是不是另一個的函數, 3:能從實際題目中......

    方差初中數學教案

    素質教育目標 (一)知識教學點 使學生了解方差、標準差的意義,會計算一組數據的方差與標準差. (二)能力訓練點 1.培養學生的計算能力. 2.培養學生觀察問題、分析問題的能力,培養學生......

    平方根初中數學教案

    平方根初中數學教案 一、教學目標 1.理解一個數平方根和算術平方根的意義; 2.理解根號的意義,會用根號表示一個數的平方根和算術平方根; 3.通過本節的訓練,提高學生的邏輯思維......

    初中不等式數學教案

    興義民族師范學院 2012屆畢業生 摸擬實習教案 姓 名:馬 澤院 系:數 學 系專 業:數 學 教 育學 號:200930412031 指導教師:黃 激 珊 時間:2011年12月18日 第九章不等式與不等式組......

    圓初中數學教案

    (1)知識結構(2)重點、難點分析 重點:①點和圓的三種位置關系,圓的有關概念,因為它們是研究圓的基礎;②五種常見的點的軌跡,一是對幾何圖形的深刻理解,二為今后立體幾何、解析幾何的學......

主站蜘蛛池模板: 黄色视频免费| 99这里视频只精品2019| 欧美黑人又粗又大高潮喷水| 中国精学生妹品射精久久| 国产交换配偶在线视频| 偷窥村妇洗澡毛毛多| 内射交换多p国产| 成 人 色综合 综合网站| 四虎精品寂寞少妇在线观看| 亚洲日本va午夜中文字幕| 3d动漫精品啪啪一区二区| 97久久精品午夜一区二区| 黄瓜视频在线观看| 日本老熟妇乱| 男人的天堂亚洲一线av在线观看| 国产精品久久久久久久久久免费看| 国产成人亚洲高清一区| 国产亚洲人成a在线v网站| 怡红院av一区二区三区| 国产一区二区三精品久久久无广告| 成人做爰69片免费看网站| 国产精品一区二区av蜜芽| 日本无码欧美一区精品久久| 小12箩利洗澡无码视频网站| 国产在沙发上午睡被强| 亚洲成a人片77777kkkk| 国产人妻精品一区二区三区不卡| 国产成人无码h在线观看网站| 黄桃av无码免费一区二区三区| 老湿机国产福利视频| 风韵多水的老熟妇| 久久久久人妻一区精品色欧美| 成人午夜看黄在线尤物成人| 久久国产精品无码网站| 亚洲国产制服丝袜高清在线| 久久99精品国产.久久久久| 日日碰狠狠丁香久燥| 中文字幕日韩人妻不卡一区| 青青草无码精品伊人久久蜜臀| 国内揄拍国内精品少妇| 国产午夜毛片v一区二区三区|