久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

人教版八年級數(shù)學(xué)下冊勾股定理說課稿優(yōu)秀[共5篇]

時(shí)間:2019-05-15 03:58:08下載本文作者:會(huì)員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《人教版八年級數(shù)學(xué)下冊勾股定理說課稿優(yōu)秀》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《人教版八年級數(shù)學(xué)下冊勾股定理說課稿優(yōu)秀》。

第一篇:人教版八年級數(shù)學(xué)下冊勾股定理說課稿優(yōu)秀

更多教案就在www.tmdps.cn/cn790935,勾股定理說課稿

一、教材分析

本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(蘇科版)八年級上冊第二章第一節(jié)“勾股定理”的第一課時(shí).在本節(jié)課以前,學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識(shí),如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過不少利用圖形面積來探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識(shí)形成知識(shí)鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。在探求勾股定理的過程中,蘊(yùn)涵了豐富的數(shù)學(xué)思想。把三角形有一個(gè)直角“形”的特點(diǎn)轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,是數(shù)形結(jié)合的典范;把探求邊的關(guān)系轉(zhuǎn)化為探求面積的關(guān)系,將邊不在格線上的圖形轉(zhuǎn)化為可計(jì)算的格點(diǎn)圖形,是轉(zhuǎn)化思想的體現(xiàn);先探求特殊的直角三角形的三邊關(guān)系,再猜測一般直角三角形的三邊關(guān)系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節(jié)課,要?jiǎng)?chuàng)設(shè)問題串,提供學(xué)生活動(dòng)的方案,讓學(xué)生在活動(dòng)中思考,在思考中創(chuàng)新,認(rèn)識(shí)和理解勾股定理,并能利用勾股定理解決一些簡單的有關(guān)直角三角形的計(jì)算問題.

二、教學(xué)目標(biāo)

1、讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個(gè)正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓更多教案就在www.tmdps.cn/cn790935, 更多教案就在www.tmdps.cn/cn790935,學(xué)生體會(huì)數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。

2、讓學(xué)生經(jīng)歷拼圖實(shí)驗(yàn)、計(jì)算面積的過程,在過程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;讓各類型的學(xué)生在這些過程中發(fā)揮自己特長,通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣;通過老師的介紹,感受勾股定理的文化價(jià)值.

3、能說出勾股定理,并能用勾股定理解決簡單問題.

三、教學(xué)重點(diǎn) 勾股定理的探索過程.

四、教學(xué)難點(diǎn)

將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積.

五、教學(xué)方法與教學(xué)手段

采用探究發(fā)現(xiàn)式教學(xué),提供適當(dāng)?shù)膯栴}情境.給學(xué)生自主探究交流的空間,引導(dǎo)學(xué)生有目的地探索.

更多教案就在www.tmdps.cn/cn790935,

第二篇:人教版八年級數(shù)學(xué)下冊勾股定理說課稿優(yōu)秀

勾股定理說課稿

一、教材分析

本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(蘇科版)八年級上冊第二章第一節(jié)“勾股定理”的第一課時(shí).在本節(jié)課以前,學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識(shí),如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過不少利用圖形面積來探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識(shí)形成知識(shí)鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。在探求勾股定理的過程中,蘊(yùn)涵了豐富的數(shù)學(xué)思想。把三角形有一個(gè)直角“形”的特點(diǎn)轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,是數(shù)形結(jié)合的典范;把探求邊的關(guān)系轉(zhuǎn)化為探求面積的關(guān)系,將邊不在格線上的圖形轉(zhuǎn)化為可計(jì)算的格點(diǎn)圖形,是轉(zhuǎn)化思想的體現(xiàn);先探求特殊的直角三角形的三邊關(guān)系,再猜測一般直角三角形的三邊關(guān)系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節(jié)課,要?jiǎng)?chuàng)設(shè)問題串,提供學(xué)生活動(dòng)的方案,讓學(xué)生在活動(dòng)中思考,在思考中創(chuàng)新,認(rèn)識(shí)和理解勾股定理,并能利用勾股定理解決一些簡單的有關(guān)直角三角形的計(jì)算問題.

二、教學(xué)目標(biāo)

1、讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個(gè)正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會(huì)數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。

2、讓學(xué)生經(jīng)歷拼圖實(shí)驗(yàn)、計(jì)算面積的過程,在過程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;讓各類型的學(xué)生在這些過程中發(fā)揮自己特長,通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣;通過老師的介紹,感受勾股定理的文化價(jià)值.

3、能說出勾股定理,并能用勾股定理解決簡單問題.

三、教學(xué)重點(diǎn)

勾股定理的探索過程.

四、教學(xué)難點(diǎn)

將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積.

五、教學(xué)方法與教學(xué)手段

采用探究發(fā)現(xiàn)式教學(xué),提供適當(dāng)?shù)膯栴}情境.給學(xué)生自主探究交流的空間,引導(dǎo)學(xué)生有目的地探索.

第三篇:人教版八年級數(shù)學(xué) 勾股定理說課稿

《勾股定理》的說課稿

尊敬的各位評委、各位教師:

你們好!今天我說課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級下冊初中數(shù)學(xué)第十八章第一節(jié)的第一課時(shí)。

下面我從教學(xué)背景分析與處理、教學(xué)策略、教學(xué)流程等方面對本課的設(shè)計(jì)進(jìn)行說明。

一、教學(xué)背景分析

1、教材分析

本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過2002年國際數(shù)學(xué)家大會(huì)的會(huì)徽圖案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實(shí)際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

2、學(xué)情分析

通過前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識(shí),能夠進(jìn)行一般的推理和論證,但如何通過拼圖來證明勾股定理,學(xué)生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識(shí)的樂趣。

3、教學(xué)目標(biāo):

根據(jù)八年級學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):

知識(shí)與能力:了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理;培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識(shí)和能力.

過程與方法:通過創(chuàng)設(shè)情境,導(dǎo)入新課,引導(dǎo)學(xué)生探索勾股定理,并應(yīng)用它解決問題,運(yùn)用了觀察、演示、實(shí)驗(yàn)、操作等方法學(xué)習(xí)新知。

情感態(tài)度價(jià)值觀:感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。

4、教學(xué)重點(diǎn)、難點(diǎn)

通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下 的作用,在今后的生活實(shí)踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué) 重點(diǎn)為探索和證明勾股定理.

由于定理證明的關(guān)鍵是通過拼圖,使學(xué)生利用面積相等對勾股定 理進(jìn)行證明,而如何拼圖,對學(xué)生來說有一定難度,為此我確定本課 的教學(xué)難點(diǎn)為用拼圖的方法來證明勾股定理.

二、教材處理

根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過程中,以創(chuàng)設(shè)問題情境為先導(dǎo),我運(yùn)用了直觀教具、多媒體等手段,激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,并開展以探究活動(dòng)為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問題,分析問題,進(jìn)而解決問題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。

三、教學(xué)策略

1、教法

“教必有法,而教無定法”,只有方法恰當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級學(xué)生思維活動(dòng)特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。

2、學(xué)法

“授人以魚,不如授人以漁”,通過設(shè)計(jì)問題序列,引導(dǎo)學(xué)生主動(dòng)探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

3、教學(xué)手段

充分利用多媒體,提高教學(xué)效率,增大教學(xué)容量;通過動(dòng)態(tài)的演示,激發(fā)學(xué)生學(xué)習(xí)興趣,啟迪學(xué)生思維的發(fā)展;通過直觀教具,進(jìn)行拼圖實(shí)驗(yàn),調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的廣闊性。

4、教學(xué)模式

根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識(shí),提高素質(zhì)能力。

四、教學(xué)流程

(一)創(chuàng)設(shè)情境,引入新課

我利用多媒體課件,給學(xué)生出示2002年國際數(shù)學(xué)家大會(huì)的場面,通過觀察會(huì)徽圖案,提出問題:你見過這個(gè)圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實(shí)生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習(xí)的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題。

(二)引導(dǎo)學(xué)生,探究新知

1、初步感知定理:

活動(dòng)1 這一環(huán)節(jié)我選擇了教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時(shí)發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題:現(xiàn)在也請你觀察,看看有什么發(fā)現(xiàn)?

教師配合演示,使問題更形象、具體。我又適當(dāng)提供兩個(gè)等腰直角三角形,它們的直角邊長分別為10cm和20cm,然后我再請兩位同學(xué)分別量出這兩個(gè)等腰直角三角形的斜邊的長,請同學(xué)們分析這兩個(gè)等腰直角三角形三邊長之間有怎樣的等量關(guān)系,從而使學(xué)生再次感知發(fā)現(xiàn)的規(guī)律。

2、提出猜想:在活動(dòng)1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過活動(dòng)2進(jìn)行看一看,填一填,想一想,議一議,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。這一環(huán)節(jié)我利用多媒體課件,給學(xué)生演示,生動(dòng)、直觀,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”,從而啟迪了學(xué)生的思維。

3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個(gè)一般的直角三角形進(jìn)行證明.通過活動(dòng)3,我充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實(shí)驗(yàn),在動(dòng)手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵(lì)創(chuàng)新,小組競賽,引入競爭,我參與討論,與學(xué)生交流,獲取信息,從而有針對性地引導(dǎo)學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,我配以演示,如拼圖

1、拼圖

2、拼圖3,并對學(xué)生的做法給予表揚(yáng),使學(xué)生在學(xué)習(xí)的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問題的能力。

4、總結(jié)定理:讓學(xué)生自己總結(jié)定理,不完善之處由教師補(bǔ)充。在前面探究活動(dòng)的基礎(chǔ)上,學(xué)生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學(xué)生的語言表達(dá)能力和歸納概括能力。

5、勾股定理簡介:

借助多媒體課件,通過介紹古代在勾股定理研究方面取得的成 就,感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體會(huì)古人偉大的智慧。

(三)反饋訓(xùn)練,鞏固新知

學(xué)生對所學(xué)的知識(shí)是否掌握了,達(dá)到了什么程度?為了檢測學(xué)生對本課目標(biāo)的達(dá)成情況和加強(qiáng)對學(xué)生能力的培養(yǎng),我設(shè)計(jì)了一組有坡度的練習(xí)題:

A組動(dòng)腦筋,想一想,是本節(jié)基礎(chǔ)知識(shí)的理解和直接應(yīng)用;B組求陰影部分的面積,建立了新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力。C組議一議,是一道實(shí)際應(yīng)用題型,給學(xué)生施展才智的機(jī)會(huì),讓學(xué)生獨(dú)立思考后,討論交流得出解決問題的方法,增強(qiáng)了數(shù)學(xué)來源于實(shí)踐,反過來又作用于實(shí)踐的應(yīng)用意識(shí),達(dá)到了學(xué)以致用的目的。

(四)歸納小結(jié),深化新知

本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問題是什么???

通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識(shí)成為體系。

(五)布置作業(yè),拓展新知

讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識(shí)得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。

(六)板書設(shè)計(jì),明確新知

這是我本節(jié)課的板書設(shè)計(jì),它分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識(shí)服務(wù)。

五、教學(xué)效果預(yù)測

本課設(shè)計(jì)力求讓學(xué)生參與知識(shí)的發(fā)現(xiàn)過程,體現(xiàn)以學(xué)生為主體,以促進(jìn)學(xué)生發(fā)展為本的教學(xué)理念,變知識(shí)的傳授者為學(xué)生自主探求知識(shí)的引導(dǎo)者、指導(dǎo)者、合作者。并利用多媒體,直觀教具演示,營造一個(gè)聲像同步,能動(dòng)能靜的教學(xué)情景,給學(xué)生提供一個(gè)探索的空間,促使學(xué)生主動(dòng)參與,親身體驗(yàn)勾股定理的探索和驗(yàn)證過程,從而鍛煉思維、激發(fā)創(chuàng)造,優(yōu)化課堂教學(xué)。努力做到由傳統(tǒng)的數(shù)學(xué)課堂向?qū)嶒?yàn)課堂轉(zhuǎn)變,使學(xué)生真正成為學(xué)習(xí)的主人,培養(yǎng)了學(xué)生的素質(zhì)能力,達(dá)到了良好的教學(xué)效果。

第四篇:人教版八年級下冊數(shù)學(xué)說課稿 第十七章 勾股定理

17.1勾股定理說課稿(模版一)

一、教材分析

(一)教材所處的地位及作用:

勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途也很大。它在數(shù)學(xué)的發(fā)展中起過重要的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

(二)學(xué)情分析:

前面,學(xué)生已具備一些平面幾何的知識(shí),能夠進(jìn)行一般的推理和論證,但如何通過面積法(拼圖法)證明勾股定理,學(xué)生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用多媒體等手段進(jìn)行直觀教學(xué),讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識(shí)的樂趣。

(三)教學(xué)目標(biāo):

1、知識(shí)與能力:了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理;

2、過程與方法:經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)發(fā)現(xiàn)過程,發(fā)展合情合理的推理能力,溝通數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,體會(huì)“數(shù)形結(jié)合”和“特殊到一般”的思想方法。

3、情感態(tài)度與價(jià)值觀:通過介紹中國古代研究勾股定理的成就,激發(fā)學(xué)生的愛國熱情,感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情。

(三)教學(xué)重點(diǎn)、難點(diǎn): 教學(xué)重點(diǎn):探索和掌握勾股定理;

教學(xué)難點(diǎn):用面積法(拼圖法)證明勾股定理

二、教法分析:針對八年級學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性。

三、學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究、合作交流的研討式學(xué)習(xí)方式,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主人.四、教學(xué)過程設(shè)計(jì):(一)回顧交流:

通過回顧交流讓學(xué)生復(fù)習(xí)直角三角形的相關(guān)性質(zhì),設(shè)疑其三邊有何關(guān)系,為引入勾股定理奠定基礎(chǔ)。

(二)圖片欣賞:

通過圖片欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.以激發(fā)學(xué)生的學(xué)習(xí)欲望。

(三)觀察發(fā)現(xiàn):

這里首先引導(dǎo)學(xué)生觀察圖

1、圖

2、圖3,讓學(xué)生計(jì)算每個(gè)圖中的三個(gè)正方形的面積,(注意:學(xué)生可能有不同的方法,只要正確合理,各種方法都應(yīng)給予肯定)。然后通過探究S1、S2、S3之間的關(guān)系,進(jìn)而猜想、發(fā)現(xiàn)得出勾股定理,并用自己的語言表達(dá),最后,教師加以概括并簡單的介紹“勾股”史,對學(xué)生進(jìn)行思想情感的教育,培養(yǎng)學(xué)生愛國主義情感和民族自豪感。這樣做不僅有利于學(xué)生主動(dòng)參與探索,感受學(xué)習(xí)的過程,培養(yǎng)學(xué)生的語言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想;也有利于突破難點(diǎn),讓學(xué)生體會(huì)到觀察、猜想、歸納的思路,讓學(xué)生的分析問題、解決問題的能力在無形中得到提高,這對以后的學(xué)習(xí)有幫助。

(四)歸納證明:

勾股定理的證明很多,這里是利用面積法給出證明的,對于這種證明方法,以前學(xué)生從沒見過,學(xué)生感到陌生,學(xué)生掌握上有一定的困難,所以,這里采取學(xué)生先自學(xué),然后再分組討論交流,最后,教師再給出證明方法,以便突破這一難點(diǎn)。接著再展示兩種勾股定理的證明方法,以激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。

(五)應(yīng)用體驗(yàn):

通過應(yīng)用勾股定理進(jìn)行簡單的計(jì)算,以加深學(xué)生對勾股定理進(jìn)一步的理解和掌握。

五、反思?xì)w納:

引導(dǎo)學(xué)生自己對知識(shí)要點(diǎn)和學(xué)習(xí)思路進(jìn)行反思總結(jié),不僅體現(xiàn)了學(xué)生的主體性,而且也調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性。

六、布置作業(yè):

這里布置了“課外活動(dòng)”,讓學(xué)生采取不同的形式查閱、收集有關(guān)勾股定理的信息進(jìn)行交流,目的是要使全體學(xué)生都能參加,以提高學(xué)生的實(shí)踐能力和創(chuàng)新意識(shí)。

板書設(shè)計(jì):板書力求簡明、扼要、突出重點(diǎn)、突破難點(diǎn)。《勾股定理》說課稿(模版二)尊敬的各位領(lǐng)導(dǎo),各位老師:

大家好!今天我說課的內(nèi)容是初中八年級數(shù)學(xué)人教版教材第十八章第一節(jié)《勾股定理》(第一課時(shí)),下面我分五部分來匯報(bào)我這節(jié)課的教學(xué)設(shè)計(jì),這就是“教材分析”、“學(xué)情分析”、“教法選擇”、“學(xué)法指導(dǎo)”、“教學(xué)過程”。

一、教材分析

(一)教材地位和作用

勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系,將幾何圖形與數(shù)字聯(lián)系起來。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在生產(chǎn)生活中有著廣泛的應(yīng)用。而且它在其它自然學(xué)科中也常常用到。因此,這節(jié)課有著舉足輕重的地位。

(二)教學(xué)目標(biāo)

根據(jù)新課程標(biāo)準(zhǔn)的要求和本課的特點(diǎn),結(jié)合學(xué)生的實(shí)際情況,我確定了本課的教學(xué)目標(biāo):

1、知識(shí)與技能方面

了解勾股定理的文化背景,經(jīng)歷探索勾股定理的過程,掌握直角三角形三邊之間的數(shù)量關(guān)系,并能簡單應(yīng)用。

2、過程與方法方面

經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,能感受到數(shù)學(xué)思考過程的條理性,發(fā)展數(shù)學(xué)的說理和簡單的推理的意識(shí),和語言表達(dá)的能力,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。

3、情感態(tài)度與價(jià)值觀方面

(1)通過了解勾股定理的歷史,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

(2)通過研究一系列富有探 究性的問題,培養(yǎng)學(xué)生與他人交流、合作的意識(shí)和品質(zhì)。

(三)教學(xué)重點(diǎn)難點(diǎn)

教學(xué)重點(diǎn):掌握勾股定理,并能用它來解決一些簡單的問題。

教學(xué)難點(diǎn):勾股定理的證明。

二、學(xué)情分析

我們班日常經(jīng)常使用多媒體輔助教學(xué)。經(jīng)過一年多的幾何學(xué)習(xí),學(xué)生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確歸納所學(xué)知識(shí),通過學(xué)習(xí)小組討論交流,能夠形成解決問題的思路。現(xiàn)在的學(xué)生已經(jīng)厭倦教師單獨(dú)的說教方式,希望教師設(shè)計(jì)便于他們進(jìn)行觀察的幾何環(huán)境,給他們自己探索、發(fā)表自己見解和表現(xiàn)自己才華的機(jī)會(huì);更希望教師滿足他們的創(chuàng)造愿望。

三、教法選擇

根據(jù)本節(jié)課的教學(xué)目標(biāo)、教學(xué)內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),結(jié)合我校的“當(dāng)堂達(dá)標(biāo)”教學(xué)模式,我在教法上采用引導(dǎo)發(fā)現(xiàn)法為主,并以分析法、討論法相結(jié)合。設(shè)計(jì)“觀察--討論—?dú)w納”的教學(xué)方法,意在幫助學(xué)生通過自己動(dòng)手實(shí)驗(yàn)和直觀情景觀察,從實(shí)踐中獲取知識(shí),并通過討論來深化對知識(shí)的理解。本節(jié)課采用了多媒體輔助教學(xué),能夠直觀、生動(dòng)的反應(yīng)圖形,增加課堂的容量,同時(shí)有利于突出重點(diǎn)、分散難點(diǎn),增強(qiáng)教學(xué)形象性,更好的提高課堂效率。

四、學(xué)法指導(dǎo):

為了充分體現(xiàn)《新課標(biāo)》的要求,培養(yǎng)學(xué)生的觀察分析能力,邏輯思維能力,積累豐富的數(shù)學(xué)學(xué)習(xí)經(jīng)驗(yàn),這節(jié)課主要采用觀察分析,自主探索與合作交流的學(xué)習(xí)方法,使學(xué)生積極參與教學(xué)過程。在教學(xué)過程中展開思維,培養(yǎng)學(xué)生提出問題、分析問題、解決問題的能力,進(jìn)一步體會(huì)觀察、類比、分析、從特殊到一般等數(shù)學(xué)思想。借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主人。

五、教學(xué)過程

根據(jù)《新課標(biāo)》中“要引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動(dòng)中”的教學(xué)要求,本節(jié)課的教學(xué)過程我是這樣設(shè)計(jì)的:

(一)創(chuàng)設(shè)情境,引入新課

一個(gè)設(shè)計(jì)合理的情境引入可以說在一定程度上決定著學(xué)生能否帶著興趣積極投入到本節(jié)課的學(xué)習(xí)中。為了體現(xiàn)數(shù)學(xué)源于生活,數(shù)學(xué)是從人的需要中產(chǎn)生的,學(xué)習(xí)數(shù)學(xué)的目的是為了用數(shù)學(xué)解決實(shí)際問題。我設(shè)計(jì)了以下題目:

星期日老師帶領(lǐng)全班同學(xué)去某山風(fēng)景區(qū)游玩,同學(xué)們看到山勢險(xiǎn)峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,∠ACB=90° ,你能用所學(xué)知識(shí)算出纜車路線AB長應(yīng)為多少? 答案是不能的。然后教師指出,通過這節(jié)課的學(xué)習(xí),問題將迎刃而解。

設(shè)計(jì)意圖:以趣味性題目引入。從而設(shè)置懸念,激發(fā)學(xué)生的學(xué)習(xí)興趣。教師引導(dǎo)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,這其中滲透了一種數(shù)學(xué)思想,對于學(xué)生也是一種挑戰(zhàn),能激發(fā)學(xué)生探究的欲望,自然引出下面的環(huán)節(jié)。

緊接著出示本節(jié)課的學(xué)習(xí)目標(biāo):

1.了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過程。2.掌握勾股定理的內(nèi)容,并會(huì)簡單應(yīng)用。

(二)勾股定理的探索

1、猜想結(jié)論

(1)探究一:等腰直角三角形三邊關(guān)系。

由課本64頁畢達(dá)哥拉斯的故事,探究等腰直角三角形三邊關(guān)系。結(jié)合課件中格點(diǎn)圖形的面積,學(xué)生自主探究,通過計(jì)算、討論、總結(jié),得出結(jié)論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

在此過程中,給學(xué)生充分的時(shí)間、觀察、比較、交流,最后通過活動(dòng)讓學(xué)生用語言概括總結(jié)。提問:等腰直角三角形有這樣的性質(zhì),其他的直角三角形也有這樣的性質(zhì)嗎?(2.)探究二:一般的直角三角形三邊關(guān)系。

在課件中的格點(diǎn)圖形中,利用面積,再次探究直角三角形的三邊關(guān)系。學(xué)生自主探究,通過計(jì)算、討論、總結(jié),得出結(jié)論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

設(shè)計(jì)意圖:組織學(xué)生進(jìn)行討論,在此基礎(chǔ)上教師引導(dǎo)學(xué)生從三邊的平方有何大小關(guān)系入手進(jìn)行觀察。教師在多媒體課件上直觀地演示。通過學(xué)生自己探索、討論,由學(xué)生自己得出結(jié)論。這樣,讓學(xué)生參與定理的再發(fā)現(xiàn)過程,他們通過自己觀察、計(jì)算所得出的定理,在心理產(chǎn)生自豪感,從而增強(qiáng)學(xué)生的學(xué)習(xí)數(shù)學(xué)的自信心。

2、證明猜想

目前世界上證明該勾股定理的方法有很多種,而我國古代數(shù)學(xué)家利用拼接、割補(bǔ)圖形,計(jì)算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進(jìn)行證明。學(xué)生分組活動(dòng),根據(jù)圖形的面積進(jìn)行計(jì)算,推導(dǎo)出勾股定理的一般形式:a2 + b2 = c2。即直角三角形兩直角邊的平方和等于斜邊的平方.設(shè)計(jì)意圖:通過利用多媒體課件的演示,更直觀、形象的向?qū)W生介紹用拼接、割補(bǔ)圖形,計(jì)算面積的證明方法,使學(xué)生認(rèn)識(shí)到證明的必要性、結(jié)論的確定性,感受到前人的偉大和智慧。

3、簡要介紹勾股定理命名的由來

我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即“勾

三、股

四、弦五”,它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中.我國稱這個(gè)結(jié)論為“勾股定理”,西方畢達(dá)哥拉斯于公元前五世紀(jì)發(fā)現(xiàn)了勾股定理,但他比商高晚出生五百多年。

設(shè)計(jì)意圖:對比以上事實(shí)對學(xué)生進(jìn)行愛國主義教育,激勵(lì)他們奮發(fā)向上。

(三)勾股定理的應(yīng)用

1.利用勾股定理,解決引入中的問題。體會(huì)數(shù)學(xué)在實(shí)際生活中的應(yīng)用。

2、教學(xué)例1:課本66頁探究1 師生討論、分析: 木板的寬2.2米大于1米,所以橫著不能從門框內(nèi)通過. 木板的寬2.2米大于2米,所以豎著不能從門框內(nèi)通過. 因?yàn)閷蔷€AC的長度最大,所以只能試試斜著 能否通過. 從而將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.

提示:(1)在圖中構(gòu)造出一個(gè)直角三角形。(連接AC)

(2)知道直角△ABC的那條邊?

(3)知道直角三角形兩條邊長求第三邊用什么方法呢?

設(shè)計(jì)意圖:此題是將實(shí)際為題轉(zhuǎn)化為數(shù)學(xué)問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實(shí)際問題和勾股定理的知識(shí)聯(lián)系。通過系列問題的設(shè)置和解決,旨在降低難度,分散難點(diǎn),使難點(diǎn)予以突破,讓學(xué)生掌握勾股定理在具體問題中的應(yīng)用,使學(xué)生獲得新知,體驗(yàn)成功,從而增加學(xué)習(xí)興趣。

(四)、課堂練習(xí)

習(xí)題18.1 1、5。學(xué)生板演,師生點(diǎn)評。

設(shè)計(jì)意圖:通過練習(xí)使學(xué)生加深對勾股定理的理解,讓學(xué)生比較練習(xí)題和例題中條件的異同,進(jìn)一步讓學(xué)生理解勾股定理的運(yùn)用。

(五)課堂小結(jié)

對學(xué)生提問:“通過這節(jié)課的學(xué)習(xí)有什么收獲?”

學(xué)生同桌間暢談自己的學(xué)習(xí)感受和體會(huì),并請個(gè)別學(xué)生發(fā)言。

設(shè)計(jì)意圖:讓學(xué)生自己小結(jié),活躍了氣氛,做到全員參與,理清了知識(shí)脈絡(luò),強(qiáng)化了重點(diǎn),培養(yǎng)了學(xué)生口頭表達(dá)能力。

17.2勾股定理的逆定理說課稿(模版一)

一、教材分析 :

(一)、本節(jié)課在教材中的地位作用

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

(二)、教學(xué)目標(biāo):根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。知識(shí)技能:

1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形 過程與方法:

1、通過對勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成的過程

2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形結(jié)合方法的應(yīng)用

3、通過勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。

情感態(tài)度:

1、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系

2、在探究勾股定理的逆定理的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神

(三)、學(xué)情分析:

盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。

重點(diǎn):

勾股定理逆定理的應(yīng)用

難點(diǎn):

勾股定理逆定理的證明 關(guān)鍵:

輔助線的添法探索

二、教學(xué)過程

:本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。

(一)、復(fù)習(xí)回顧: 復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。

(二)、創(chuàng)設(shè)問題情境

一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么???。這個(gè)問題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識(shí)來源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)

因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

接下來就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過程自然、無神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

(四)、組織變式訓(xùn)練

本著由淺入深的原則,安排了三個(gè)題目。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

(五)、歸納小結(jié),納入知識(shí)體系

本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題 認(rèn)識(shí)問題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。

(六)、作業(yè)布置

由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。a組是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。b組題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。

三、說教法、學(xué)法與教學(xué)手段

為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。

此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。

總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過程;力爭使學(xué)生在獲得知識(shí)的過程中得到能力的培養(yǎng)。

17.2勾股定理的逆定理說課稿(模版二)

一、教材分析 :

(一)、本節(jié)課在教材中的地位作用

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

(二)、教學(xué)目標(biāo):

根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。知識(shí)技能:

1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形 過程與方法:

1、通過對勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成的過程

2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形結(jié)合方法的應(yīng)用

3、通過勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。情感態(tài)度:

1、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系

2、在探究勾股定理的逆定理的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神

(三)、學(xué)情分析:

盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。

重點(diǎn): 勾股定理逆定理的應(yīng)用 難點(diǎn): 勾股定理逆定理的證明 關(guān)鍵: 輔助線的添法探索

二、說教法、學(xué)法與教學(xué)手段 為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。

此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。

總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過程;力爭使學(xué)生在獲得知識(shí)的過程中得到能力的培養(yǎng)。

三、教學(xué)過程 :本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。

(一)、復(fù)習(xí)回顧: 復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。

(二)、創(chuàng)設(shè)問題情境

一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么???。這個(gè)問題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識(shí)來源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)

因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手畫圖在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

(四)、組織變式訓(xùn)練

本著由淺入深的原則,安排了三個(gè)題目。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

(五)、歸納小結(jié),納入知識(shí)體系

本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識(shí)問題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。

(六)、作業(yè)布置

第五篇:勾股定理說課稿優(yōu)秀

勾股定理說課稿

一、教材分析

本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(蘇科版)八年級上冊第三章第一節(jié)“勾股定理”的第一課時(shí).在本節(jié)課以前,學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識(shí),如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過不少利用圖形面積來探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識(shí)形成知識(shí)鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。

在探求勾股定理的過程中,蘊(yùn)涵了豐富的數(shù)學(xué)思想。把三角形有一個(gè)直角“形”的特點(diǎn)轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,是數(shù)形結(jié)合的典范;把探求邊的關(guān)系轉(zhuǎn)化為探求面積的關(guān)系,將邊不在格線上的圖形轉(zhuǎn)化為可計(jì)算的格點(diǎn)圖形,是轉(zhuǎn)化思想的體現(xiàn);先探求特殊的直角三角形的三邊關(guān)系,再猜測一般直角三角形的三邊關(guān)系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節(jié)課,要?jiǎng)?chuàng)設(shè)問題串,提供學(xué)生活動(dòng)的方案,讓學(xué)生在活動(dòng)中思考,在思考中創(chuàng)新,認(rèn)識(shí)和理解勾股定理,并能利用勾股定理解決一些簡單的有關(guān)直角三角形的計(jì)算問題.

二、教學(xué)目標(biāo)

1、讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個(gè)正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會(huì)數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。

2、讓學(xué)生經(jīng)歷拼圖實(shí)驗(yàn)、計(jì)算面積的過程,在過程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;讓各類型的學(xué)生在這些過程中發(fā)揮自己特長,通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣;通過老師的介紹,感受勾股定理的文化價(jià)值.

3、能說出勾股定理,并能用勾股定理解決簡單問題.

三、教學(xué)重點(diǎn)

勾股定理的探索過程.

四、教學(xué)難點(diǎn)

將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積.

五、教學(xué)方法與教學(xué)手段

采用探究發(fā)現(xiàn)式教學(xué),提供適當(dāng)?shù)膯栴}情境.給學(xué)生自主探究交流的空間,引導(dǎo)學(xué)生有目的地探索.

六、教學(xué)過程

(一)創(chuàng)設(shè)情境 提出問題

1.同學(xué)們,我們已經(jīng)學(xué)過三角形的一些基本知識(shí),如果一個(gè)三角形的兩條邊分別長6和8,你知道第三邊的長嗎?你知道第三邊長的范圍嗎?

2.如果又已知這兩邊的夾角,那么第三邊的長是多少?

3.已知直角三角形的兩邊的長,如何求第三邊的長呢?這節(jié)課就讓我們一起來探討這個(gè)問題.板書:直角三角形三邊數(shù)量關(guān)系.

(這是對三角形三邊的不等關(guān)系和三角形全等的判定的回顧,從學(xué)生從原有的認(rèn)知水平出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理,也自然地引出本節(jié)課的目標(biāo).讓學(xué)生體會(huì)到當(dāng)一般性的問題不好解決時(shí),可以先將一般問題轉(zhuǎn)化為特殊問題來研究.)

(二)實(shí)踐探索 猜想歸納

1、用什么方法來探求板書:直角三角形三邊數(shù)量關(guān)系呢?

(展示課件)讓我們試一試通過計(jì)算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系.(從學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)出發(fā),將探求邊長之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺得解決今天問題的方法并不陌生,增強(qiáng)探索問題的信心.)

2、如圖,若將小方格的面積看作1,則以BC為邊的正方形的面積方形的面積SAC ,你能計(jì)算出以AB邊的正方形的面積(比一比,看看哪一組的方法多)

SBC,以AC為邊的正

SAB嗎?

教師引導(dǎo):如何求出以AB為邊長的正方形面積?

哪一組還有其他方法?(投影配合)學(xué)生分組匯報(bào)結(jié)論

教師引導(dǎo)總結(jié)

(割補(bǔ)的求法是這節(jié)課的難點(diǎn),這時(shí)可讓學(xué)生先在書上獨(dú)立分析,再通過小組交流,最后由小組代表到臺(tái)前展示.學(xué)生可能提出割、補(bǔ)等方法,旋轉(zhuǎn)這種方法,配合課件展示。(培養(yǎng)學(xué)生獨(dú)立思考以及合作探究的能力)(把圖形進(jìn)行“割”和“補(bǔ)”,即把不能利用網(wǎng)格線直接計(jì)算面積的圖形轉(zhuǎn)化成可以利用網(wǎng)格線直接計(jì)算面積的圖形,讓學(xué)生體會(huì)將較難的問題轉(zhuǎn)化為簡單問題的思想)通過計(jì)算,你發(fā)現(xiàn)這三個(gè)正方形面積間有什么關(guān)系嗎?(讓學(xué)生回答)

5、交流歸納:

結(jié)合前面操作,觀察右圖,直角三角形直角邊a、b與斜邊c有怎樣的數(shù)量關(guān)系?

(面積是邊長的平方,面積間的等量關(guān)系轉(zhuǎn)化為邊長間的等量關(guān)系,即直角三角形三邊的等量關(guān)系:兩直角邊的平方和等于下邊的平方.)

(這一問題的結(jié)論是本節(jié)課的點(diǎn)睛之筆,應(yīng)充分讓學(xué)生總結(jié),交流,表達(dá).)

追問:在直角三角形ABC中,若∠A=900呢? 則有

6.投影出示:勾股定理發(fā)展史(增加學(xué)生的學(xué)習(xí)興趣,提高對勾股定理的認(rèn)識(shí))

(三)鞏固練習(xí)

1.出示第一題(見課件做一做),請三位學(xué)生板演后,老師做出方法小結(jié)。

(結(jié)合具體的圖形,讓學(xué)生學(xué)會(huì)根據(jù)勾股定理,求解三角形中未知邊的邊長)2.課件展示例一,學(xué)生思考完以后,教師在黑板上書寫解題過程。

(繼續(xù)鞏固勾股定理在數(shù)學(xué)中的應(yīng)用,并強(qiáng)調(diào)書寫格式的規(guī)范)3.最后展示例二(見課件),這是一個(gè)勾股定理在生活中的應(yīng)用題,目的是讓學(xué)生能學(xué)以致用,靈活的運(yùn)用勾股定理解決生活中的問題。

(四)、課終小結(jié):

你本課有何收獲?

小結(jié)提示:

(1)勾股定理的使用條件是什么? 直角三角形三邊有什么樣的數(shù)量關(guān)系?

(2)勾股定理的探索和應(yīng)用過程中你用到了哪些數(shù)學(xué)方法?領(lǐng)悟到了什么樣的數(shù)學(xué)思想?

(五)、作業(yè)布置:

1.習(xí)題3.1第1題。

補(bǔ)充習(xí)題3.1

2.自學(xué)下一課,思考如何利用證明的方法,去驗(yàn)證勾股定理。

(六)、板書設(shè)計(jì):

3.1勾股定理(1)

在直角三角形ABC中,∠C=900,有a2

+b2

=c2。

直角三角形兩直角邊的平方和等于斜邊的平方。

b

c a

下載人教版八年級數(shù)學(xué)下冊勾股定理說課稿優(yōu)秀[共5篇]word格式文檔
下載人教版八年級數(shù)學(xué)下冊勾股定理說課稿優(yōu)秀[共5篇].doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    勾股定理說課稿優(yōu)秀

    勾股定理說課稿 一、教材分析 本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(蘇科版)八年級上冊第二章第一節(jié)“勾股定理”的第一課時(shí).在本節(jié)課以前,學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些......

    勾股定理優(yōu)秀說課稿

    一、教材分析勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一。它揭示了一個(gè)三角形三條邊......

    八年級數(shù)學(xué)下冊說課稿

    八年級數(shù)學(xué)下冊說課稿 今天我說課的內(nèi)容是八年級下冊內(nèi)容。我主要從以下三個(gè)方面進(jìn)行闡述: 一.說課標(biāo) 二.說教材(編寫特點(diǎn)、體例安排、知識(shí)內(nèi)容、中考要求) 三.說建議(教學(xué)建議......

    八年級下冊數(shù)學(xué)說課稿

    八年級下冊數(shù)學(xué)說課稿八年級下冊數(shù)學(xué)說課稿 篇1一、教材分析1、教材所處的地位和作用:不等式基本性質(zhì)是八年級下冊第二章第二節(jié)內(nèi)容。不等式是現(xiàn)實(shí)世界中不等關(guān)系的一種數(shù)學(xué)......

    八年級數(shù)學(xué)勾股定理7(共五則)

    18.1 勾股定理(二) 教學(xué)時(shí)間 第二課時(shí) 三維目標(biāo)一、知識(shí)與技能 1.掌握勾股定理,了解利用拼圖驗(yàn)證勾股定理的方法. 2.運(yùn)用勾股定理解決一些實(shí)際問題.二、過程與方法 1.經(jīng)歷用拼圖......

    八年級數(shù)學(xué)下冊《勾股定理逆定理》教學(xué)反思

    我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾(短直角邊)等于三,股(長直角邊)等于四,那么弦等于五。即“勾三、股四、弦五......

    八年級數(shù)學(xué)專題-勾股定理

    第十七章 勾股定理17.1 勾股定理第1課時(shí) 勾股定理(1)了解勾股定理的發(fā)現(xiàn)過程,理解并掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理,能應(yīng)用勾股定理進(jìn)行簡單的計(jì)算.重點(diǎn)勾股定理......

    初中數(shù)學(xué)勾股定理說課稿

    初中數(shù)學(xué)勾股定理說課稿 初中數(shù)學(xué)勾股定理說課稿1 一、說教材本課時(shí)是華師大版八年級(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎(chǔ)上對勾股定理的應(yīng)用之一。 勾股定理是我......

主站蜘蛛池模板: 国产高潮视频在线观看| 18禁女裸乳扒开免费视频| 亚洲 日韩 另类 制服 无码| 久久婷婷人人澡人爽人人喊| 亚洲精品97久久中文字幕无码| 狠狠躁夜夜躁av网站中文字幕| 国产高潮流白浆视频| 无码成人aⅴ免费中文字幕| 国产综合久久久久久鬼色| 午夜精品久久久久久| 亚洲精品国产二区图片欧美| 国产深夜男女无套内射| 曰曰摸夜夜添夜夜添高潮出水| 国产又色又爽又刺激在线观看| 又污又黄又无遮挡的网站| 色狠狠成人综合网| 国产一区二区三区在线观看| 无码中文字幕乱码一区| 久久久久人妻精品一区蜜桃网站| 中文字幕无码av激情不卡| 亚洲аv电影天堂网| 欧美兽交xxxx×视频| 美女mm131午夜福利在线| 熟妇无码乱子成人精品| 亚洲欧美日韩国产手机在线| 少妇大胆瓣开下部自慰| 成年站免费网站看v片在线| 亚洲a∨无码精品色午夜| 久久免费精品视频| 中文字幕人妻在线中字| 又色又爽又黄无遮挡的免费的软件| 丰满少妇被粗大猛烈进人高清| 久久久精品久久日韩一区综合| 岛国av动作片在线观看| 小辣椒福利视频导航| 亚洲 日韩 欧美 有码 在线| 精品无码欧美黑人又粗又| 国产三级韩国三级日产三级| 欧美亚洲国产日韩一区二区| 人妻少妇偷人无码精品av| 国产精品久人妻精品|