第一篇:八年級數(shù)學(xué)_勾股定理的逆定理說課稿(精品教案)
勾股定理的逆定理說課稿
尊敬的各位評委,各位老師,大家好:
我今天說課的內(nèi)容是《勾股定理的逆定理》第一課時。下面我將從教材、目標(biāo)、重點難點、教法、教學(xué)流程等幾個方面向各位專家闡述我對本節(jié)課的教學(xué)設(shè)想。
一、說教材。
這節(jié)內(nèi)容選自《人教版》義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)八年級下冊第十八章《勾股定理》中的第二節(jié)。勾股定理的逆定理是幾何中一個非常重要的定理,它是對直角三角形的再認(rèn)識,也是判斷一個三角形是不是直角三角形的一種重要方法。還是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。八年級正是學(xué)生由實驗幾何向推理幾何過渡的重要時期,通過對勾股定理逆定理的探究,培養(yǎng)學(xué)生的分析思維能力,發(fā)展推理能力。在教學(xué)中滲透類比、轉(zhuǎn)化,從特殊到一般的思想方法。
二、說教學(xué)目標(biāo)。
教學(xué)目標(biāo)支配著教學(xué)過程,教學(xué)目標(biāo)的制定和落實是實施課堂教學(xué)的關(guān)鍵。考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實際情況,我制定了如下教學(xué)目標(biāo):
1、知識與技能:探索并掌握直角三角形判別思想,會應(yīng)用勾股定理及逆定理解決實際問題。
2、過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結(jié)合”方法的應(yīng)用。
3、情感、態(tài)度、價值觀:培養(yǎng)數(shù)學(xué)思維以及合情推理意識,感悟勾股定理和逆定理的應(yīng)用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內(nèi)在聯(lián)系。
三、說教學(xué)重點、難點,關(guān)鍵。
本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點及關(guān)鍵。
重點:理解并掌握勾股定理的逆定理,并會應(yīng)用。
難點:理解勾股定理的逆定理的推導(dǎo)。
關(guān)鍵:動手驗證,體驗勾股定理的逆定理。
四、說教法。
在本節(jié)課中,我設(shè)計了以下幾種教法學(xué)法:
情景教學(xué)法,啟發(fā)教學(xué)法,分層導(dǎo)學(xué)法。
讓學(xué)生實踐活動,動手操作,看自己畫的三角形是否為一個直角三角形。體會觀察,作出合理的推測。同時通過引入,讓學(xué)生了解古代都用這種方法來確定直角的。對學(xué)生進行動手能力培養(yǎng)的同時,引導(dǎo)命題的形成過程,自然地得出勾股定理的逆定理。既鍛煉了學(xué)生的實踐、觀察能力,又滲透了人文和探究精神。
五、說教學(xué)流程。
1、動手實踐,檢測猜測。引導(dǎo)學(xué)生分別以 3cm,4cm,5cm , 2.5cm,6cm,6.5cm和
4cm, 7.5 cm, 8.5 cm , 2cm, 5cm, 6cm為邊畫出兩個三角形,觀察猜測三角形的形狀。再引導(dǎo)啟發(fā)學(xué)生從這兩個活動中歸納思考:如果三角形的三邊長a、b、c滿2足 a
2? b
?
c 2,那么此三角形是什么三角形?在整個過程的活動中,盡量給學(xué)生充足的時間和空間,以平等的身份參與到學(xué)生活動中來,幫助指導(dǎo)學(xué)生的實踐活動。
2、探索歸納,證明猜測。
勾股定理逆定理的證明不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,構(gòu)造直角三角形就成為解決問題的關(guān)鍵。如果此時直接將問題拋給學(xué)生證明,學(xué)生定會覺
得無從下手。我就采用分層導(dǎo)進的方法,讓學(xué)生從具體的例子中感受總結(jié),再歸納到中抽象中來。于是我就設(shè)計了這樣的兩個步驟:
先補充一道例題:三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么聯(lián)系?你是怎么得到的?請簡單說明理由。
然后再更改上面的例題,變?yōu)椤鰽BC三邊長為a、b、c,滿足
b 2 ?
c 2,與以a 2 ?a、b為直角邊的直角三角形之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。
在這個過程中,要努力引導(dǎo)學(xué)生聯(lián)想到“全等”,進而設(shè)法構(gòu)造直角三角形,讓學(xué)生在不斷的嘗試、探究的過程中,總結(jié)出勾股定理的逆定理。有效地突破本節(jié)的難點。同時提出原命題與逆命題及其關(guān)系。培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣對學(xué)生的可持續(xù)發(fā)展是非常重要的,歸納出定理后,與學(xué)生一起分析定理的題設(shè)與結(jié)論,并與勾股定理進行對比,明白兩定理是互逆定理。
3、嘗試運用,熟悉定理。
課本中的例題是讓學(xué)生進一步熟練掌握勾股定理的逆定理及其運用的步驟。
4、分層訓(xùn)練,能力升級。有針對性有層次性地布置練習(xí),及時反饋教學(xué)效果,查缺被漏,并對有困難的學(xué)生給予指導(dǎo)。
5、總結(jié)內(nèi)容,強化認(rèn)識。使學(xué)生再次感悟勾股定理的逆定理,體會定理的互逆性,加深對“數(shù)形結(jié)合”的理解,更深刻地理解數(shù)學(xué)思想方法在解題中的地位和作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
6、布置作業(yè)。有代表性地布置不同層次的作業(yè),尊重學(xué)生的個體差異,滿足多樣化學(xué)習(xí)的需要。
結(jié)束語:我的說課完了,非常感謝各位領(lǐng)導(dǎo)和專家給了我這次學(xué)習(xí)、聆聽、參與、鍛煉的機會。謝謝大家!
第二篇:勾股定理逆定理說課稿
勾股定理的逆定理說課稿
一、教材分析
(一)、本節(jié)課在教材中的地位作用
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
(二)、教學(xué)目標(biāo)
1、知識技能:1理解并會證明勾股定理的逆定理;
2會應(yīng)用勾股定理的逆定理判定一個三角形是否為直角三角形;
3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).2、過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結(jié)合”方法的應(yīng)用。
3、情感、態(tài)度價值觀 培養(yǎng)數(shù)學(xué)思維以及合情推理意識,感悟勾股定理和逆定理的應(yīng)用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。
(三)、學(xué)情分析:
盡管已到初二下學(xué)期學(xué)生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣就確定了本節(jié)課的重點、難點。教學(xué)重點:勾股定理逆定理的應(yīng)用 教學(xué)難點:勾股定理逆定理的證明
二、教學(xué)過程
本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進而達到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的。
(一)復(fù)習(xí)回顧
復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。
(二)創(chuàng)設(shè)問題情境
一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么???。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學(xué)生感到數(shù)學(xué)就在身邊。
(三)學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)
因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手畫圖在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點,我讓學(xué)生動手畫出了一個兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
在同學(xué)們完成證明之后,同時讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(四)組織變式訓(xùn)練
本著由淺入深的原則,安排了兩個例題。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進了一層,不僅判斷是否為直接三角形,還繞了一個彎,指出哪一個角是直角。這樣既可以檢查本課知識,又可以提高靈活運用以往知識的能力。例題講解后安排了三個練習(xí),循序漸進,由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。
(五)歸納小結(jié),納入知識體系
本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識問題的好方法,希望同學(xué)在課外練習(xí)時注意用這種方法,這都是教給學(xué)習(xí)方法。
(六)作業(yè)布置
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當(dāng)加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個性有積極作用。
三、說教法學(xué)法與教學(xué)手段
為貫徹實施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識上升到理性認(rèn)識,加深對所學(xué)知識的理解和掌握;有利于突破難點和突出重點。
此外,本節(jié)課我還采用了理論聯(lián)系實際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗和感性認(rèn)識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨立探討、主動獲取知識。
總之,本節(jié)課遵循從生動直觀到抽象思維的認(rèn)識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。
第三篇:勾股定理逆定理說課稿
勾股定理逆定理說課稿
此說課稿是我參加第八批哈爾濱市骨干教師考核的說課稿,敬請個位老師指正。
各位評委老師你們好!我是來自阿城市雙豐一中的數(shù)學(xué)教師李明,我今天說課的題目是《勾股定理的逆定理》,選自《人教版》八年級下冊,為了更好地發(fā)揮教材“藍本”作用,更好地堅持以學(xué)生發(fā)展為本的理念,就本節(jié)課,我將從以下幾個方面做相關(guān)的教學(xué)解說。
一、知識背景
在知識體系上,學(xué)生已經(jīng)學(xué)習(xí)了勾股定理,經(jīng)歷了勾股定理的探究的過程,積累了相關(guān)的數(shù)學(xué)活動經(jīng)驗,這就具備了勾股定理逆定理的探究條件,通過勾股定理逆定理的探究,對培養(yǎng)學(xué)生的分析思維能力,發(fā)展推理能力大有裨益,其中蘊涵著類比、轉(zhuǎn)化,從特殊到一般的思想方法,對學(xué)生的可持續(xù)發(fā)展更有不可低估的作用,我所簡述的是第一課時的內(nèi)容。
二、教學(xué)目標(biāo)
教學(xué)目標(biāo)既是教學(xué)的出發(fā)點,也是歸宿,或者說:它是教學(xué)的靈魂,支配著教學(xué)過程,并規(guī)定著教與學(xué)的方向,教學(xué)目標(biāo)的制定和落實是實施課堂教學(xué)的關(guān)鍵。我認(rèn)為一個好的教學(xué)目標(biāo)應(yīng)具備三個基本要素;行為主體、行為動詞、表現(xiàn)程度。具體的說行為主體必須是學(xué)生而不是教師。第二、目標(biāo)的制定主要是為了后續(xù)評價行為,因此行為動詞盡可能要清晰可把握而不能含糊其詞,否則無法確定教學(xué)的正確方向,教學(xué)過程的可操作性不強。第三、表現(xiàn)程度是用以評價學(xué)生的學(xué)習(xí)表現(xiàn)或?qū)W習(xí)效果所達到的程度,基于以上理念參考《數(shù)學(xué)課程標(biāo)準(zhǔn)》制定教學(xué)目標(biāo):
1、知識與技能:理解勾股定理逆定理的證明方法,掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。
2、數(shù)學(xué)思考:通過勾股定理的逆定理的探索,經(jīng)歷知識發(fā)生、發(fā)展形成的過程,體會數(shù)形結(jié)合的思想方法。
3、解決問題:體會數(shù)形結(jié)合方法在問題解決中的作用,并能利用勾股定理的逆定理解決相關(guān)問題。
4、情感態(tài)度:通過一系列的探究性問題,滲透與人交流合作的意識,感受定理與逆定理之間和諧及辯證統(tǒng)一的關(guān)系。
三、教學(xué)重點,難點
重點:探索勾股定理逆定理和運用。
難點:勾股定理的逆定理的證明
《數(shù)學(xué)課程標(biāo)準(zhǔn)》中提出:要讓學(xué)生經(jīng)歷知識發(fā)生發(fā)展的全過程。依據(jù)此理念,我將重點確定為:探索勾股定理的逆定理和運用。探索勾股定理的逆定理關(guān)鍵在于轉(zhuǎn)化三角形為全等,如何根據(jù)需要構(gòu)造全等三角形,這需要學(xué)生思維有極強的跳躍性,對學(xué)生是一個挑戰(zhàn),要有極強的創(chuàng)新精神,所以將本節(jié)課難點確定為:勾股定理的逆定理的證明
四、教學(xué)理念
本節(jié)課以數(shù)學(xué)活動為載體,組織教學(xué),以學(xué)生實踐活動為主體,溝通活動單元、數(shù)學(xué)思想、思維方式,使不同的學(xué)生在數(shù)學(xué)活動中均得到發(fā)展,探究活動應(yīng)圍繞四個單元活動展開:活動1:情景設(shè)疑,引出課題。活動2:實踐操作、大膽猜想。活動3:推理驗證,深入剖析。活動4:反思應(yīng)用,創(chuàng)新升華。
在教學(xué)活動單元設(shè)計中,強調(diào)教學(xué)方法的多樣性以及與教學(xué)模式、活動單
元的融合,我主要采用以下幾種教法。1.分層導(dǎo)學(xué)法,2.情景教學(xué)法。3.啟發(fā)教學(xué)法。活動中給學(xué)生提供多種器官共用的機會,突出數(shù)學(xué)中活動和活動中數(shù)學(xué)。學(xué)生主要采用小組合作的學(xué)習(xí)方式,讓他們遵循問題情景----觀察猜想----探究驗證----解釋應(yīng)用的主線進行學(xué)習(xí)。關(guān)注他們在活動中的體驗感受,即掌握必須的知識與技能,又獲得方法和能力,更在活動中不斷成長,體現(xiàn)新課程發(fā)展的三維目標(biāo)要求。
五、教學(xué)流程
(一)創(chuàng)設(shè)問題情境,引入新課:
在這一環(huán)節(jié)中,我設(shè)計了這樣一個情境,多媒體動畫展示,米老鼠來到了數(shù)學(xué)王國里的三角形城堡,要求只利用一根繩子,構(gòu)造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預(yù)測大多數(shù)同學(xué)會無從下手,這樣引出課題。只有學(xué)習(xí)了勾股定理的逆定理后,大家都能幫助米老鼠進入城堡,我認(rèn)為:“大疑而大進”這樣做,充分調(diào)動學(xué)習(xí)內(nèi)容,激發(fā)求知欲望,動漫演示,又有了很強的趣味性,做到課之初,趣已生,疑已質(zhì)。
(二)實踐猜想
本環(huán)節(jié)要圍繞以下幾個活動展開:
1、算一算:求以線段a ,b為直角邊的直角三角形的斜邊c長。
1a=3
b=4 2a=5
b=12 3a=2.5
b=6 4a=6
b=8
2、猜一猜,以下列線段長為三邊的三角形形狀
13cm 4cm 5cm
25cm 12cm 13cm
32.5cm 6cm 6.5cm 46cm 8cm 10cm
3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發(fā)現(xiàn)。
4、用恰當(dāng)?shù)恼Z言敘述你的結(jié)論
在算一算中學(xué)生復(fù)習(xí)了勾股定理,猜一猜和擺一擺中學(xué)生小組合作動手實踐,在問題1的基礎(chǔ)上做出合理的推測和猜想,這樣分層遞進找到了學(xué)生思維的最近發(fā)展區(qū),面向不同層次的每一名學(xué)生,每一名學(xué)生都有參與數(shù)學(xué)活動的機會,最后運用恰當(dāng)?shù)恼Z言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學(xué)生充分的時間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導(dǎo)學(xué)生的實踐活動。學(xué)生的擺一擺的過程利用實物投影儀展示,在活動中教師關(guān)注;1)學(xué)生的參與意識與動手能力。2)是否清楚三角形三邊長度的平方關(guān)系是因,直角三角形是果。既先有數(shù),后有形。3)數(shù)形結(jié)合的思想方法及歸納能力。
(三)推理證明
八年級正是學(xué)生由實驗幾何向推理幾何過渡的重要時期,多數(shù)學(xué)生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,而構(gòu)造直角三角形就成為解決問題的關(guān)鍵,直接拋給學(xué)生證明,無疑會石沉大海,所以,我采用分層導(dǎo)進的方法,以求一石激起千層浪。
1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?請簡要說明理由?
2.△ABC三邊長a,b,c滿足a2+b2=c2
與a,b為直角三角形之間有何關(guān)系?試說明理由?
為了較好完成教師的誘導(dǎo),教師要給學(xué)生獨立思考的時間,要給學(xué)生在組
內(nèi)交流個別意見的時間,教師要深入小組指導(dǎo)與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構(gòu)造直角三角形這一解決問題的關(guān)鍵,讓他們在不斷的探究過程中,親自體驗參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點。培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣對學(xué)生的可持續(xù)發(fā)展是非常重要的,歸納完定理后,與學(xué)生一起分析定理的題設(shè)與結(jié)論,得出解題中的書寫格式。
(四)引例解析:通過引例的解決,鞏固定理,這是個開命題,能更好地體現(xiàn)不同的解題策略。教師介紹古埃及和我國古代大禹治水都是利用這種方法確定直角的。讓學(xué)生感受勾股定理豐富的文化內(nèi)涵,體會人文精神,激發(fā)學(xué)好數(shù)學(xué)為國爭光的思想。
(五)分層訓(xùn)練,能力升級,以闖關(guān)的形式進行,深化學(xué)習(xí)內(nèi)容遵循鞏固和發(fā)展相結(jié)合的原則,兼顧不同層次的學(xué)生,滿足多樣化學(xué)習(xí)的需要。最后歸納反思。啟發(fā)學(xué)生交流知識,能力情感的收獲與體驗。在有針對性、有層次布置作業(yè)。
六、設(shè)計說明
本節(jié)課立足于創(chuàng)新和學(xué)生的可持續(xù)發(fā)展,把教學(xué)內(nèi)容分解為一系列富有探究性的問題。讓學(xué)生在解決問題的過程總共經(jīng)歷知識的發(fā)生、發(fā)展和形成的過程,把知識的發(fā)現(xiàn)權(quán)交給學(xué)生,讓他們在獲得知識的過程中體會與人合作的重要,體驗成功的喜悅,真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人,教師只是參與者、合作者、引導(dǎo)者。
第四篇:勾股定理的逆定理說課稿
《勾股定理的逆定理》說課稿
中壩鎮(zhèn)中學(xué)王永成尊敬的各位評委,各位老師,大家好:
我今天說課的內(nèi)容是《勾股定理的逆定理》第一課時。下面我將從教材、教學(xué)目標(biāo)、教學(xué)重點難點、教法、教學(xué)過程等幾個方面闡述我對本節(jié)課的教學(xué)設(shè)想。
一、教材分析
主要說明本節(jié)課在教材中的地位作用
這節(jié)內(nèi)容選自《人教版》義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)八年級下冊第十八章《勾股定理》中的第二節(jié)。勾股定理的逆定理是在勾股定理之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
二、教學(xué)目標(biāo)分析
教學(xué)目標(biāo)支配著教學(xué)過程,教學(xué)目標(biāo)的制定和落實是實施課堂教學(xué)的關(guān)鍵。根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標(biāo)。
1、知識與技能目標(biāo)
理解并能證明勾股定理的逆定理;掌握勾股定理的逆定理,并能利用它來判定一個三角形是不是直角三角形。
2、過程與方法目標(biāo)
在探索的過程中使學(xué)生體驗數(shù)與形的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想
3、情感態(tài)度與價值觀目標(biāo)
結(jié)合勾股定理的有關(guān)歷史資料,激發(fā)學(xué)生學(xué)習(xí)的興趣;通過一系列的探究活動,培養(yǎng)學(xué)生與他人交流合作的團隊精神及創(chuàng)新意識。
三、學(xué)情分析及教學(xué)重點、難點的確定
盡管已到初二下學(xué)期學(xué)生知識增多,能力增強,但思維的局限性
還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu),我確立的教學(xué)重點是勾股定理的逆定理及其應(yīng)用,教學(xué)難點是勾股定理的逆定理的證明,而如何構(gòu)造三角形就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點、難點和關(guān)鍵。
教學(xué)重點:勾股定理的逆定理及其應(yīng)用
教學(xué)難點:勾股定理的逆定理的證明
教學(xué)關(guān)鍵:如何構(gòu)造三角形
四、教法、學(xué)法分析
為貫徹實施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識上升到理性認(rèn)識,加深對所學(xué)知識的理解和掌握;有利于突破難點和突出重點。
此外,本節(jié)課我還采用了理論聯(lián)系實際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗和感性認(rèn)識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨立探討、主動獲取知識。
總之,本節(jié)課遵循從生動直觀到抽象思維的認(rèn)識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。
五、教學(xué)過程
本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之
間筑了一個信息流通渠道,進而達到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的。
(一)、復(fù)習(xí)回顧
復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。
(二)、創(chuàng)設(shè)問題情境
一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學(xué)生感到數(shù)學(xué)就在身邊。
(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)
因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手操作在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點,我讓學(xué)生動手裁出了一個兩直角邊與所作三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生
不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
(四)、遷移應(yīng)用,熟悉定理
例題是課本74頁的例1,是讓學(xué)生進一步熟練掌握勾股定理的逆定理及其運用的步驟
(五)、隨堂練習(xí)
本著由淺入深的原則,安排了四個題目。前三個題目比較簡單,是讓學(xué)生進一步鞏固并掌握勾股定理的逆定理及其運用的步驟,盡量讓學(xué)生口答,讓所有的學(xué)生都能完成。第四個題實際上是對問題情境的進一步解答既可以解決本課知識,又可以提高靈活運用以往知識的能力。通過練習(xí)發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。
(六)、歸納小結(jié),納入知識體系
談?wù)勥@節(jié)課你的收獲吧
本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面。這種形式的小結(jié),激發(fā)了學(xué)生的主動參與意識,調(diào)動了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動中獲得成功體驗的機會,并為程度不同的學(xué)生提供了充分展示自己的機會,尊重學(xué)生的個體差異,滿足學(xué)生多極化學(xué)習(xí)的需要.
(七)、作業(yè)布置
本節(jié)課布置的作業(yè)是課本76頁習(xí)題18.2第1題,是最基本的思維訓(xùn)練項目題,有助于學(xué)生鞏固課堂所學(xué)知識,有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。
六、教學(xué)反思
(一)本節(jié)課的成功之處:
1、本節(jié)課以活動為主線,通過從估算到實驗活動結(jié)果的產(chǎn)生讓學(xué)生總結(jié)過程,最后回到解決實際問題,思路清晰,脈絡(luò)明了。
2、體現(xiàn)了“數(shù)學(xué)源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學(xué)生觀察,思路讓學(xué)生探索,方法讓學(xué)生思考,意義讓學(xué)生概括,結(jié)論讓學(xué)生驗證,難點讓學(xué)生突破,以學(xué)生為主體”的教學(xué)思路。
3、在本節(jié)教學(xué)活動過程中,我盡量以學(xué)生身份和學(xué)生一起探討問題。用一切可能的方式,激勵回答問題的學(xué)生,激發(fā)學(xué)生的求知欲,使師生在和諧的教學(xué)環(huán)境中零距離的接觸。
(二)本節(jié)課的不足之處及改進方法:
1、本節(jié)課我用多媒體課件進行教學(xué)增大了教學(xué)密度,而缺少了板書示范,不利于學(xué)生養(yǎng)成良好的書寫習(xí)慣,在以后的教學(xué)中我應(yīng)加強。
2、在重難點的突破上還應(yīng)加一些遞進的習(xí)題,降低題的難度,使優(yōu)生學(xué)好,中等生也能跟上。這是我在以后教學(xué)中要注意的。
3、還是不敢放手,總是牽著學(xué)生走。學(xué)生配合不夠積極,積極回答問題的學(xué)生少,學(xué)生的積極性沒有充分調(diào)動起來;對中下學(xué)生關(guān)注的太少;教師說的多,學(xué)生沒有充分的時間討論交流;課堂教學(xué)內(nèi)容稍多,在規(guī)定時間內(nèi)沒有很好地完成教學(xué)任務(wù)。
第五篇:八年級數(shù)學(xué)下冊《勾股定理逆定理》教學(xué)反思
我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個直角,如果勾(短直角邊)等于三,股(長直角邊)等于四,那么弦等于五。即“勾
三、股
四、弦五”。它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中,在這本書的另一處,還記載了勾股定理的一般形式。中國古代的幾何學(xué)家研究幾何是為了實用,是唯用是尚的。在講完《勾股定理逆定理》這節(jié)課后,我的反思如下:
本節(jié)課的教學(xué)目標(biāo)是:在掌握了勾股定理的基礎(chǔ)上,讓學(xué)生如何從三邊的關(guān)系來判定一個三角形是否為直角三角形.即:勾股定理的逆定理。
勾股定理的逆定理的教學(xué)設(shè)計說明:本教案的教學(xué)設(shè)計是圍繞勾股定理的逆定理的證明與應(yīng)用來展開,結(jié)合新課標(biāo)的要求,根據(jù)我班學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位為了達到本節(jié)課的教學(xué)目標(biāo),我做了以下設(shè)計(也是成功之處):
一、創(chuàng)設(shè)情境,提出猜想達到直觀性的教學(xué)要求。讓幾個學(xué)生要全班同學(xué)前面做一個“數(shù)學(xué)實驗”,三條分別為:3,4,5的三角形是一個直角三角形。第二步驟是讓學(xué)生畫已知三邊的一定長度的三角形,判斷是不是直角三角形,并分析三邊滿足什么關(guān)系條件,同時,引導(dǎo)學(xué)生從特殊到一般提出猜想。
二、將教學(xué)內(nèi)容精簡化.考慮到我所教班級的學(xué)生認(rèn)識水平,做了如下教學(xué)設(shè)計:⑴將教學(xué)目標(biāo)定為讓學(xué)生掌握勾股定理的逆定理.以及逆定理的應(yīng)用,而對于本課中逆定理的證明.以及其探究都放在一下節(jié)課再進行講解.⑵對于本課中所出現(xiàn)了的逆定理的定義,及其真假性的判斷也簡單化.本節(jié)課也不詳細講.本節(jié)課的的重點放在掌握勾股定理的逆定理,及其應(yīng)用.從課堂效果來看,這樣的教學(xué)設(shè)計是合理的,學(xué)生較好的掌握了勾股定理的逆定理,所以取得了良好的課堂效果。
三、應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運用所學(xué)知識解決相應(yīng)問題,提高學(xué)生的分析解題能力,基于對我班的學(xué)情分析,為了讓學(xué)生都能動起手做,學(xué)案的設(shè)計上做了很多腳手架,目的就是讓學(xué)生能夠按照腳手架的步驟一步步完成,最終也形成了解題的“操作性”。此外,腳手架的設(shè)置對我們的中下水平的學(xué)生是很多幫助的.從課堂上看,他們也能在腳手架的幫助下,完成一定的題目中,而如果沒有的話,這部分學(xué)生對一些基本的題都會束手無策.四、實行分層教學(xué),讓不同水平的學(xué)生在同一課堂都能學(xué)好,為此,我設(shè)計了三個層次的問題,以達到分層教學(xué)目標(biāo):第一層次是讓學(xué)生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強調(diào)已知三角形三邊長或三邊關(guān)系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的計算問題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會分割的思想.設(shè)計的題型前后呼應(yīng),使知識有序推進,有助于學(xué)生的理解和掌握;讓學(xué)生通過合作、交流、反思、感悟的過程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。將目標(biāo)分層后,我設(shè)計的學(xué)案里的題目也是相應(yīng)的進行了分層設(shè)計,滿足不同層次的學(xué)生的做題要求,達到鞏固課堂知識的目的。最后,布置作業(yè),也是分層布置的,分為三層,對應(yīng)不同的學(xué)生,讓他們的作業(yè)都在他們的能力范圍。
誠然,這節(jié)課也存在許多不足。只有分析好不足是教學(xué)課后的重要環(huán)節(jié),只有分析明白了自己的不足才能在今后的課堂里避免犯同樣的錯誤,讓課堂更加的完美起來。是我們新老師快速成長的途徑,第一、新課導(dǎo)入部分:存在如下值得改進的地方:①復(fù)習(xí)舊知部分,復(fù)習(xí)勾股定理的內(nèi)容應(yīng)用了填空的形式,這個形式不是最佳的.因為學(xué)生書寫勾股定理耗時,既使書寫出來,復(fù)習(xí)效果也不太好。最佳的應(yīng)該是以簡單的題目形式來復(fù)習(xí)勾股定理.這樣快而有效;②如何從復(fù)習(xí)勾股定理中巧妙的切入本課的主題,過渡語的設(shè)置,應(yīng)該將過渡語言簡單明了,可設(shè)計成:怎么從邊的關(guān)系來叛斷一個三角形是直角三角形呢?這就是本節(jié)課要學(xué)習(xí)的內(nèi)容.③導(dǎo)入部分的課時分配估計不足,顯得冗長,也一定程度上造成后面的教學(xué)時間緊張。應(yīng)該對導(dǎo)入部分的時效再進行分析簡化。第三、多媒體輔助教學(xué)方面存在不足。本節(jié)課我沒有利用多媒體輔助教學(xué),如學(xué)習(xí)目標(biāo)的發(fā)展、習(xí)題訓(xùn)練內(nèi)容的展示、學(xué)生活動的要求、作業(yè)布置等,這些內(nèi)容都是為教學(xué)服務(wù)的。如果用多媒體課件的展示,可以增大了教學(xué)密度,使學(xué)生的雙基訓(xùn)練得到了加強,使傳統(tǒng)的課堂走向了開放,使學(xué)生真正感受到學(xué)習(xí)方式在發(fā)生變化。也在一定程度上讓課堂更生動,更具有直觀性,更加吸引學(xué)生的注意力,提高課堂效果。在以后的教學(xué)中我應(yīng)加強。
第四,教師專業(yè)素養(yǎng)方面的不足。⒈對本節(jié)課的教學(xué)內(nèi)容把握上有所欠缺,沒有充分參考<<廣州市義務(wù)教育階段學(xué)科學(xué)業(yè)質(zhì)量評價標(biāo)準(zhǔn)&&里的教學(xué)要點,考點,讓自己的授課以它為準(zhǔn).讓課堂符合它的要求.⒉講課的語速過快,應(yīng)該減速,因為個人的原因習(xí)慣的原因,語速可能存在過快,讓學(xué)生很難跟的上來,從而影響學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)效果。
在備每一節(jié)課中,對于課堂的每一個細節(jié),第一刻鐘,第一個教學(xué)設(shè)計的思考都無不直接影響著你的這一節(jié)課,影響著你的課堂效果。靜心思考,反思整個過程是一種全新的收獲,也是全新的開始,讓自己能夠重新起步,向前。