久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

函數(shù)的定義域及概念

時間:2019-05-15 03:57:33下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《函數(shù)的定義域及概念》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《函數(shù)的定義域及概念》。

第一篇:函數(shù)的定義域及概念

2.1映射、函數(shù)的概念及函數(shù)的定義域 【教學目標】了解映射的概念,掌握函數(shù)的概念、同一函數(shù)、函數(shù)解析式以及函數(shù)定義域的常見求法。【重、難點】映射、函數(shù)的概念、表示方法,函數(shù)定義域的常見求法。【 考 點 】映射、函數(shù)的概念、表示方法,函數(shù)定義域的常見求法。【知識回顧】: 1.映射:(1)映射的概念:設(shè)A、B 是兩個非空的集合,如果按照某一個確定對應(yīng)關(guān)系f,對于集合A中的_____________,在集合B中_______________與之對應(yīng),那么就稱_________叫做從集合A到集合B的一個映射,記作f:A?B。(2)象和原象,給定一個從集合A到B的映射,且a?A,b?B,如果元素a 和元素b對應(yīng),那么,我們把元素b叫做元素a的______,元素a叫做元素b的_______.2.函數(shù):(1)傳統(tǒng)定義:如果在某變化過程中有兩個變量x,y,并且對于x在某個范圍內(nèi)的每一個______的值,按照某個對應(yīng)法則f,y都有______的值和它對應(yīng),那么y就是x的函數(shù),記為y=f(x).(2)近代定義:函數(shù)是由一個_______到另一個__________的映射。(3)函數(shù)的三要素:函數(shù)是由________、_________以及_________三部分組成的特殊的映射。(4)函數(shù)的表示法_______、_______、__________(5)同一函數(shù):如果兩個函數(shù)的,并且。(6)常見求解析式的方法有:、、。(7)函數(shù)的定義域是指____________________________________________.(8)根據(jù)函數(shù)解析式求定義域的常用依據(jù)有 ①_________________________________,②_____________________________________,③_________________________________,④__________________________________。(9)已知f(x)的定義域是[a,b],求f[g(x)]的定義域,是指滿足__________ ___;已知f[g(x)]的定義域是[a,b],求f(x)的定義域,是指x?[a,b]的條件下,求g(x)的值域。(10)實際問題或是幾何問題給出的函數(shù)的定義域:________________________________。(11)分段函數(shù):若函數(shù)在其定義域的不同子集上,因 不同而分別用幾個不同的式子來表示,這種函數(shù)稱為分段函數(shù),分段函數(shù)的定義域等于各段函數(shù)的定義域的,其值域等于各段函數(shù)的值域的,分段函數(shù)雖由幾個部分組成,但它表示的是一個函數(shù).(12)求定義域的一般步驟:①________________________________________ ②_________________________________________ ③_________________________________________

第二篇:函數(shù)定義域的知識點

1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.函數(shù)的值域的求法:觀察法、配方法、換元法、利用多項式的除法、單調(diào)性法、判別式法、反函數(shù)法、數(shù)形結(jié)合法、不等式法等.無論用什么方法求函數(shù)的值域,都必須考慮函數(shù)的定義域.。

2.構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域

再注意:(1)由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))

(2)兩個函數(shù)相等當且僅當它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)

3.常用的函數(shù)表示法:解析法: 圖象法: 列表法:

4.分段函數(shù)在定義域的不同部分上有不同的解析表達式的函數(shù)。

(1)分段函數(shù)是一個函數(shù),不要把它誤認為是幾個函數(shù);

(2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.

5.函數(shù)解析式的求法:

(1)待定系數(shù)法,如果已知函數(shù)解析式的構(gòu)造時,用待定系數(shù)法;

(2)換元法或配湊法,已知復(fù)合函數(shù)f[g(x)]的表達式可用換元法,當表達式較簡單時也可用配湊法;

(3)方程思想,若已知抽象的函數(shù)表達式,則用解方程組消參的方法求解f(x);

(4)賦值法,若已知抽象函數(shù)關(guān)系式,則用賦值法。

另外,在解題過程中經(jīng)常用到分類討論、等價轉(zhuǎn)化等數(shù)學思想方法.

第三篇:復(fù)合函數(shù)的定義域

復(fù)合函數(shù)的定義域

復(fù)合函數(shù)的計算

用極限的夾逼準則求極限

無窮小量與無窮大量

兩個重要極限

等價無窮小量 用洛必達法則或等價無窮小量求極限 用定義研究分段函數(shù)連續(xù)性

用定義研究分段函數(shù)連續(xù)性可導性 用連續(xù)函數(shù)零點定理證明函數(shù)等式 用導數(shù)的定義計算導數(shù) 冪指函數(shù)求極限及求導數(shù) 利用導數(shù)是平面曲線切線的斜率求切線方程 隱函數(shù)求微分 通過導數(shù)討論函數(shù)單調(diào)區(qū)間 利用函數(shù)的單調(diào)性證明函數(shù)不等式 通過導數(shù)討論函數(shù)的拐點 求函數(shù)的極值

原函數(shù)

用換元法計算不定積分 求三角函數(shù)的不定積分 用分部積分法求不定積分

第四篇:高中函數(shù)定義域知識點

高一新生要根據(jù)自己的條件,以及高中階段學科知識交叉多、綜合性強,以及考查的知識和思維觸點廣的特點,那么接下來給大家分享一些關(guān)于高中函數(shù)定義域知識,希望對大家有所幫助。

高中函數(shù)定義域知識

定義域

(高中函數(shù)定義)設(shè)A,B是兩個非空的數(shù)集,如果按某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A--B為集合A到集合B的一個函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域;

值域

名稱定義

函數(shù)中,應(yīng)變量的取值范圍叫做這個函數(shù)的值域函數(shù)的值域,在數(shù)學中是函數(shù)在定義域中應(yīng)變量所有值的集合常用的求值域的方法

(1)化歸法;(2)圖象法(數(shù)形結(jié)合);(3)函數(shù)單調(diào)性法;(4)配方法;(5)換元法;(6)反函數(shù)法(逆求法);(7)判別式法;(8)復(fù)合函數(shù)法;(9)三角代換法;(10)基本不等式法等

關(guān)于函數(shù)值域誤區(qū)

定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學中,實行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的位置是相當?shù)模^不能厚此薄皮,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認識。

“范圍”與“值域”相同嗎?

“范圍”與“值域”是我們在學習中經(jīng)常遇到的兩個概念,許多同學常常將它們混為一談,實際上這是兩個不同的概念。“值域”是所有函數(shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。

高一數(shù)學必修一函數(shù)知識點

1.函數(shù)的奇偶性

(1)若f(x)是偶函數(shù),那么f(x)=f(-x);

(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));

(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

2.復(fù)合函數(shù)的有關(guān)問題

(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

3.函數(shù)圖像(或方程曲線的對稱性)

(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x= 對稱;

4.函數(shù)的周期性

(1)y=f(x)對x∈R時,f(x +a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

(4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數(shù);

(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2 的周期函數(shù);

5.方程k=f(x)有解 k∈D(D為f(x)的值域);

6.a≥f(x)恒成立 a≥[f(x)]max,;a≤f(x)恒成立 a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);(2)l og a N=(a>0,a≠1,b>0,b≠1);

(3)l og a b的符號由口訣“同正異負”記憶;(4)a log a N= N(a>0,a≠1,N>0);

8.判斷對應(yīng)是否為映射時,抓住兩點:(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

10.對于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;(5)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

12.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題

13.恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

高一數(shù)學必修一函數(shù)知識

一:集合的含義與表示

1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個整體。

把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。

2、集合的中元素的三個特性:

(1)元素的確定性:集合確定,則一元素是否屬于這個集合是確定的:屬于或不屬于。

(2)元素的互異性:一個給定集合中的元素是的,不可重復(fù)的。

(3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合3、集合的表示:{…}

(1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

b、描述法:

①區(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。

{x?R|x-3>2},{x|x-3>2}

②語言描述法:例:{不是直角三角形的三角形}

③Venn圖:畫出一條封閉的曲線,曲線里面表示集合。

4、集合的分類:

(1)有限集:含有有限個元素的集合(2)無限集:含有無限個元素的集合(3)空集:不含任何元素的集合5、元素與集合的關(guān)系:

(1)元素在集合里,則元素屬于集合,即:a?A

(2)元素不在集合里,則元素不屬于集合,即:a¢A

注意:常用數(shù)集及其記法:

非負整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N-或N+

整數(shù)集Z

有理數(shù)集Q

實數(shù)集R6、集合間的基本關(guān)系

(1).“包含”關(guān)系(1)—子集

定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關(guān)系,稱集合A是集合B的子集。

高中函數(shù)定義域知識點

第五篇:函數(shù)概念說課稿

函數(shù)概念說課稿

函數(shù)概念說課稿1

一、本課時在教材中的地位及作用

教材采用北師大版(數(shù)學)必修1,函數(shù)作為初等數(shù)學的核心內(nèi)容,貫穿于整個初等數(shù)學體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學建模的思想等內(nèi)容,這些內(nèi)容的學習,無疑對學生今后的學習起著深刻的影響。

本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進一步學習函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)

二、教學目標

理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。

通過對實際問題分析、抽象與概括,培養(yǎng)學生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

通過對函數(shù)概念形成的探究過程,培養(yǎng)學生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

三、重難點分析確定

根據(jù)上述對教材的分析及新課程標準的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。

四、教學基本思路及過程

本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進一步學習函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

⑴學情分析

一方面學生在初中已經(jīng)學習了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學生已經(jīng)學習了集合的概念,這為學習函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學生的抽象、分析、概括的能力比較高,學生學起來有一定的難度,加上學生數(shù)學基礎(chǔ)較差,理解能力,運算能力等參差不齊等。

⑵教法、學法

1、本節(jié)課采用的方法有:

直觀教學法、啟發(fā)教學法、課堂討論法。

2、采用這些方法的理論依據(jù):我一方面精心設(shè)計問題情景,引導學生主動探索,另一方面,依據(jù)本節(jié)為概念學習的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導學生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程,充分體現(xiàn)“教師為主導,學生為主體”的教學原則。

3、學法方面,學生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

⑶教學過程

(一)創(chuàng)設(shè)情景,引入新課

情景1:提供一張表格,把本班中考得分前10名的情況填入表格,

我報名次,學生提供分數(shù)。

情景2:西康高速汽車的行駛速度為80千米/小時,汽車行駛的距離

y與行駛時間x之間的關(guān)系式為:y=80x

情景3:安康市一天24小時內(nèi)的氣溫隨時間變化圖:(圖略)

提問(1):這三個例子中都涉及到了幾個變化的量?(兩個)

提問(2):當其中一個變量取值確定后,另一個變量將如何?(它的

值也隨之唯一確定)

提問(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題

[設(shè)計意圖]在創(chuàng)設(shè)本課開頭情境1、2的時候,我并沒有運用書中的前兩個例子。第一個例子我改成提供給學生一張中考成績統(tǒng)計單。是為了創(chuàng)設(shè)和學生生活相近的情境,從而引起學生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個例子我改成一道簡單的速度與時間問題,是因為學生對重力加速度的問題還不是很熟悉。同時這兩個例子并沒有改變課本用三個實例分別代表三種表示函數(shù)方法的意圖。

這樣學生可以從熟悉的情景引入,提高學生的參與程度。符合學生的認知特點。

(二)探索新知,形成概念

1、引導分析,探求特征

思考:如何用集合的語言來闡述上述三個問題的共同特征?

[設(shè)計意圖]并不急著讓學生回答此問,為引導學生改變思路,換個角度思考問題,進入本節(jié)課的重點。這里也是教師作為教學的引導者的體現(xiàn),及時對學生進行指引。

提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個問題都涉及到了兩個集合,具體略)

[設(shè)計意圖]引導學生觀察,培養(yǎng)觀察問題,分析問題的能力。

提問(5):兩個集合的元素之間具有怎樣的關(guān)系?(對應(yīng))

及時給出單值對應(yīng)的定義,并嘗試用輸入值,輸出值的概念來表達這種對應(yīng)。

2、抽象歸納,引出概念

提問(6):現(xiàn)在你能從集合角度說說這三個問題的共同點嗎?

[設(shè)計意圖]學生相互討論,并回答,引出函數(shù)的概念。訓練學生的歸納能力。

板書:函數(shù)的概念

上述一系列問題,始終倡導學生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動,生生互動中,在學生心情愉悅的氛圍中,突破本節(jié)課的重點。

3、探求定義,提出注意

提問(7):你覺得這個定義中應(yīng)注意哪些問題(兩個非空數(shù)集,唯一對應(yīng)等)?

[設(shè)計意圖]剖析概念,使學生抓住概念的本質(zhì),便于理解記憶。

2、例題剖析,強化概念

例1、判斷下列對應(yīng)是否為函數(shù):

(1)

(2)

[設(shè)計意圖]通過例1的教學,使學生體會單值對應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。

例2、(1);

(2)y=x—1;

(3);

(4)

[設(shè)計意圖]首先對求函數(shù)的定義域進行方法引導,偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強調(diào)只有對應(yīng)法則與定義域相同的兩個函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無關(guān),進一步理解函數(shù)符號的本質(zhì)內(nèi)涵。

例3、試求下列函數(shù)的定義域與值域:

(1)

(2)

[設(shè)計意圖]讓學體會理解函數(shù)的三要素:定義域、值域、對應(yīng)法則。

4、鞏固練習,運用概念

書本練習P25:練習1,2,3。P28:練習1,2

布置作業(yè):A組:1、2。B組1。

5、課堂小結(jié),提升思想

引導學生進行回顧,使學生對本節(jié)課有一個整體把握,將對學生形成的知識系統(tǒng)產(chǎn)生積極的影響。

6、板書設(shè)計:借助小黑板,時間的合理分配等(略)

五、教學評價及反思

我通過對一系列問題情景的設(shè)計,讓學生在問題解決的過程中體驗成功的樂趣,實現(xiàn)對本課重難點的突破,教學時間分配合理,為使課堂形式更加豐富,也可將某些問題改成判斷題。在學生分析、歸納、建構(gòu)概念的過程中,可能會出現(xiàn)理解的偏差,教師應(yīng)給予恰當?shù)氖崂怼?/p>

本節(jié)課的起始,可以借助于多媒體技術(shù),為學生創(chuàng)設(shè)更理想的教學情景(結(jié)合各學校的硬件條件)。

函數(shù)概念說課稿2

一、說課內(nèi)容:

人教版九年級數(shù)學下冊的二次函數(shù)的概念及相關(guān)習題

二、教材分析:

1、教材的地位和作用

這節(jié)課是在學生已經(jīng)學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的基礎(chǔ),是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

2、教學目標和要求:

(1)知識與技能:使學生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。

(2)過程與方法:復(fù)習舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學生解決問題的能力.

(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心.

3、教學重點:對二次函數(shù)概念的理解。

4、教學難點:由實際問題確定函數(shù)解析式和確定自變量的.取值范圍。

三、教法學法設(shè)計:

1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學過程

2、從學生活動出發(fā),通過以舊引新,順勢教學過程

3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學過程

四、教學過程:

(一)復(fù)習提問

1.什么叫函數(shù)?我們之前學過了那些函數(shù)?

(一次函數(shù),正比例函數(shù),反比例函數(shù))

2.它們的形式是怎樣的?

(y=kx+b,ky=kx ,ky= , k0)

3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k0的條件? k值對函數(shù)性質(zhì)有什么影響?

【設(shè)計意圖】復(fù)習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.

(二)引入新課

函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關(guān)系。(電腦演示)

例1、(1)圓的半徑是r(cm)時,面積s (cm2)與半徑之間的關(guān)系是什么?

解:s=0)

例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m2)與矩形一邊長x(m)之間的關(guān)系是什么?

解: y=x(20/2-x)=x(10-x)=-x2+10x (0

例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?

解: y=100(1+x)2

=100(x2+2x+1)

= 100x2+200x+100(0

教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?

【設(shè)計意圖】通過具體事例,讓學生列出關(guān)系式,啟發(fā)學生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

(三)講解新課

以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

二次函數(shù)的定義:形如y=ax2+bx+c (a0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

鞏固對二次函數(shù)概念的理解:

1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。

2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)

3、為什么二次函數(shù)定義中要求a?

(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)

4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.

5、b和c是否可以為零?

由例1可知,b和c均可為零.

若b=0,則y=ax2+c;

若c=0,則y=ax2+bx;

若b=c=0,則y=ax2.

注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

【設(shè)計意圖】這里強調(diào)對二次函數(shù)概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。

判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

(1)y=3(x-1)2+1 (2)

(3)s=3-2t2 (4)y=(x+3)2- x2

(5) s=10r2 (6) y=22+2x

(8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))

【設(shè)計意圖】理論學習完二次函數(shù)的概念后,讓學生在實踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實踐操作中。

(四)鞏固練習

1.已知一個直角三角形的兩條直角邊長的和是10cm。

(1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;

(2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)

于x的函數(shù)關(guān)系式。

【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。

2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。

(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

(2)這兩個函數(shù)中,那個是x的二次函數(shù)?

【設(shè)計意圖】簡單的實際問題,學生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發(fā)他們學習數(shù)學的興趣,建立學好數(shù)學的信心。

3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為Ccm,圓柱的體積為Vcm3

(1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

(2)兩個函數(shù)中,都是二次函數(shù)嗎?

【設(shè)計意圖】此題要求學生熟記圓柱體積和底面周長公式,在這兒相當于做了一次復(fù)習,并與今天所學知識聯(lián)系起來。

4. 籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

【設(shè)計意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠跳一跳,夠得到。

(五)拓展延伸

1. 已知二次函數(shù)y=ax2+bx+c,當 x=0時,y=0;x=1時,y=2;x= -1時,y=1.求a、b、c,并寫出函數(shù)解析式.

【設(shè)計意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學做個鋪墊。

2.確定下列函數(shù)中k的值

(1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______

(2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______

【設(shè)計意圖】此題著重復(fù)習二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項系數(shù)不為0.

(六) 小結(jié)思考:

本節(jié)課你有哪些收獲?還有什么不清楚的地方?

【設(shè)計意圖】讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結(jié)的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。

(七) 作業(yè)布置:

必做題:

1. 正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎?

2. 在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

選做題:

1.已知函數(shù) 是二次函數(shù),求m的值。

2.試在平面直角坐標系畫出二次函數(shù)y=x2和y=-x2圖象

【設(shè)計意圖】作業(yè)中分為必做題與選做題,實施分層教學,體現(xiàn)新課標人人學有價值的數(shù)學,不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學生繼續(xù)學習二次函數(shù)圖象的興趣。

五、教學設(shè)計思考

以實現(xiàn)教學目標為前提

以現(xiàn)代教育理論為依據(jù)

以現(xiàn)代信息技術(shù)為手段

貫穿一個原則以學生為主體的原則

突出一個特色充分鼓勵表揚的特色

滲透一個意識應(yīng)用數(shù)學的意識

函數(shù)概念說課稿3

第一大塊:教材分析

一、本課時在教材中的地位及作用

函數(shù)作為初等數(shù)學的核心內(nèi)容,貫穿于整個初等數(shù)學體系之中。本章節(jié)9個課時,函數(shù)這一章在高中數(shù)學中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學建模的思想等內(nèi)容,這些內(nèi)容的學習,無疑對學生今后的學習起著深刻的影響。

本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進一步學習函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)

二、教學目標

理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。

通過對實際問題分析、抽象與概括,培養(yǎng)學生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

通過對函數(shù)概念形成的探究過程,培養(yǎng)學生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

三、重難點分析確定

根據(jù)上述對教材的分析及新課程標準的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點

第二大塊:說教法、學法

一、教學基本思路及過程

本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進一步學習函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、學情分析

一方面學生在初中已經(jīng)學習了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學生已經(jīng)學習了集合的概念,這為學習函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學生的抽象、分析、概括的能力比較高,學生學起來有一定的難度,加上學生數(shù)學基礎(chǔ)較差,理解能力,運算能力等參差不齊等。

三、教法、學法

1、本節(jié)課采用的方法有:

直觀教學法、啟發(fā)教學法、課堂討論法。

2、采用這些方法的理論依據(jù):

我一方面精心設(shè)計問題情景,引導學生主動探索,另一方面,依據(jù)本節(jié)為概念學習的特點,以問題的提出、問題的解決為主線,設(shè)置問題,倡導學生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程,充分體現(xiàn)“教師為主導,學生為主體”的教學原則。

函數(shù)概念說課稿4

一、說課內(nèi)容:

蘇教版九年級數(shù)學下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習題

二、教材分析:

1、教材的地位和作用

這節(jié)課是在學生已經(jīng)學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的基礎(chǔ),是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

2、教學目標和要求:

(1)知識與技能:使學生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。

(2)過程與方法:復(fù)習舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學生解決問題的能力.

(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心.

3、教學重點:對二次函數(shù)概念的理解。

4、教學難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。

三、教法學法設(shè)計:

1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學過程

2、從學生活動出發(fā),通過以舊引新,順勢教學過程

3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學過程

四、教學過程:

(一)復(fù)習提問

1.什么叫函數(shù)?我們之前學過了那些函數(shù)?

(一次函數(shù),正比例函數(shù),反比例函數(shù))

2.它們的形式是怎樣的?

(=x+b,≠0;=x ,≠0;= , ≠0)

3.一次函數(shù)(=x+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有≠0的條件? 值對函數(shù)性質(zhì)有什么影響?

【設(shè)計意圖】復(fù)習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)≠0的條件,以備與二次函數(shù)中的a進行比較.

(二)引入新課

函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關(guān)系。(電腦演示)

例1、(1)圓的半徑是r(c)時,面積s (c)與半徑之間的關(guān)系是什么?

解:s=πr(r>0)

例2、用周長為20的籬笆圍成矩形場地,場地面積與矩形一邊長x()之間的關(guān)系是什么?

解: =x(20/2-x)=x(10-x)=-x+10x (0

例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和(元)與x之間的關(guān)系是什么(不考慮利息稅)?

解: =100(1+x)

=100(x+2x+1)

= 100x+200x+100(0

教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?

【設(shè)計意圖】通過具體事例,讓學生列出關(guān)系式,啟發(fā)學生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

(三)講解新課

以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

二次函數(shù)的定義:形如=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

鞏固對二次函數(shù)概念的理解:

1、強調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即 是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。

2、在 =ax2+bx+c 中自變量是x ,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)

3、為什么二次函數(shù)定義中要求a≠0 ?

(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)

4、在例3中,二次函數(shù)=100x2+200x+100中, a=100, b=200, c=100.

5、b和c是否可以為零?

由例1可知,b和c均可為零.

若b=0,則=ax2+c;

若c=0,則=ax2+bx;

若b=c=0,則=ax2.

注明:以上三種形式都是二次函數(shù)的特殊形式,而=ax2+bx+c是二次函數(shù)的一般形式.

【設(shè)計意圖】這里強調(diào)對二次函數(shù)概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。

判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

(1)=3(x-1)+1 (2)

(3)s=3-2t (4)=(x+3)- x

(5) s=10πr (6) =2+2x

(8)=x4+2x2+1(可指出是關(guān)于x2的二次函數(shù))

【設(shè)計意圖】理論學習完二次函數(shù)的概念后,讓學生在實踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實踐操作中。

(四)鞏固練習

1.已知一個直角三角形的兩條直角邊長的和是10c。

(1)當它的一條直角邊的長為4.5c時,求這個直角三角形的面積;

(2)設(shè)這個直角三角形的面積為Sc2,其中一條直角邊為xc,求S關(guān)

于x的函數(shù)關(guān)系式。

【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。

2.已知正方體的棱長為xc,它的表面積為Sc2,體積為Vc3。

(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

(2)這兩個函數(shù)中,那個是x的二次函數(shù)?

【設(shè)計意圖】簡單的實際問題,學生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發(fā)他們學習數(shù)學的興趣,建立學好數(shù)學的信心。

3.設(shè)圓柱的高為h(c)是常量,底面半徑為rc,底面周長為Cc,圓柱的體積為Vc3

(1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

(2)兩個函數(shù)中,都是二次函數(shù)嗎?

【設(shè)計意圖】此題要求學生熟記圓柱體積和底面周長公式,在這兒相當于做了一次復(fù)習,并與今天所學知識聯(lián)系起來。

4. 籬笆墻長30,靠墻圍成一個矩形花壇,寫出花壇面積(2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

【設(shè)計意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠“跳一跳,夠得到”。

(五)拓展延伸

1. 已知二次函數(shù)=ax2+bx+c,當 x=0時,=0;x=1時,=2;x= -1時,=1.求a、b、c,并寫出函數(shù)解析式.

【設(shè)計意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學做個鋪墊。

2.確定下列函數(shù)中的值

(1)如果函數(shù)= x^2-3+2 +x+1是二次函數(shù),則的值一定是______

(2)如果函數(shù)=(-3)x^2-3+2+x+1是二次函數(shù),則的值一定是______

【設(shè)計意圖】此題著重復(fù)習二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項系數(shù)不為0.

(六) 小結(jié)思考:

本節(jié)課你有哪些收獲?還有什么不清楚的地方?

【設(shè)計意圖】讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結(jié)的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。

(七) 作業(yè)布置:

必做題:

1. 正方形的邊長為4,如果邊長增加x,則面積增加,求關(guān)于x 的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎?

2. 在長20c,寬15c的矩形木板的四角上各鋸掉一個邊長為xc的正方形,寫出余下木板的面積(c2)與正方形邊長x(c)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

選做題:

1.已知函數(shù) 是二次函數(shù),求的值。

2.試在平面直角坐標系畫出二次函數(shù)=x2和=-x2圖象

【設(shè)計意圖】作業(yè)中分為必做題與選做題,實施分層教學,體現(xiàn)新課標人人學有價值的數(shù)學,不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學生繼續(xù)學習二次函數(shù)圖象的興趣。

五、教學設(shè)計思考

以實現(xiàn)教學目標為前提

以現(xiàn)代教育理論為依據(jù)

以現(xiàn)代信息技術(shù)為手段

貫穿一個原則——以學生為主體的原則

突出一個特色——充分鼓勵表揚的特色

滲透一個意識——應(yīng)用數(shù)學的意識

函數(shù)概念說課稿5

“說課”有利于提高教師理論素養(yǎng)和駕馭教材的能力,也有利于提高教師的語言表達能力,因而受到廣大教師的重視,登上了教育研究的大雅之堂。以下是小編整理的函數(shù)的概念說課稿,希望對大家有幫助!

尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《函數(shù)的概念》。

新課標指出:數(shù)學課程要面向全體學生,適應(yīng)學生個性發(fā)展的需要,使得人人都能獲得良好的數(shù)學教育,不同的人在數(shù)學上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。

一、說教材

首先談?wù)勎覍滩牡睦斫猓逗瘮?shù)的概念》是北師大版必修一第二章2.1的內(nèi)容,本節(jié)課的內(nèi)容是函數(shù)概念。函數(shù)內(nèi)容是高中數(shù)學學習的一條主線,它貫穿整個高中數(shù)學學習中。又是溝通代數(shù)、方程、、不等式、數(shù)列、三角函數(shù)、解析幾何、導數(shù)等內(nèi)容的橋梁,同時也是今后進一步學習高等數(shù)學的基礎(chǔ)。函數(shù)學習過程經(jīng)歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學習可以提高了學生的數(shù)學思維能力。

二、說學情

接下來談?wù)剬W生的實際情況。新課標指出學生是教學的主體,所以要成為符合新課標要求的教師,深入了解所面對的學生可以說是必修課。本階段的學生已經(jīng)具備了一定的分析能力,以及邏輯推理能力。所以,學生對本節(jié)課的學習是相對比較容易的。

三、說教學目標

根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:

(一)知識與技能

理解函數(shù)的概念,能對具體函數(shù)指出定義域、對應(yīng)法則、值域,能夠正確使用“區(qū)間”符號表示某些函數(shù)的定義域、值域。

(二)過程與方法

通過實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學模型,在此基礎(chǔ)上學習用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用進一步加深集合與對應(yīng)數(shù)學思想方法。

(三)情感態(tài)度價值觀

在自主探索中感受到成功的喜悅,激發(fā)學習數(shù)學的興趣。

四、說教學重難點

我認為一節(jié)好的數(shù)學課,從教學內(nèi)容上說一定要突出重點、突破難點。而教學重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學重點是:函數(shù)的模型化思想,函數(shù)的三要素。本節(jié)課的教學難點是:符號“y=f(x)”的含義,函數(shù)定義域、值域的區(qū)間表示,從具體實例中抽象出函數(shù)概念。

五、說教法和學法

現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調(diào)學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結(jié)合本節(jié)課的內(nèi)容特點和學生的心理特征與認知規(guī)律以問題為主線,我采用啟發(fā)法、講授法、小組合作、自主探究等教學方法。

六、說教學過程

下面我將重點談?wù)勎覍虒W過程的設(shè)計。

(一)新課導入

首先是導入環(huán)節(jié),提問:關(guān)于函數(shù)你知道什么?在初中階段對函數(shù)是如何下定義的?你能否舉一個例子。從而引出本節(jié)課的課題《函數(shù)概念》。

利用初中的函數(shù)概念進行導入,拉近學生與新知識之間的距離,幫助學生進一步完善知識框架行程知識體系。

(二)新知探索

接下來是教學中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、自主探究法等。

首先利用多媒體展示生活實例

(1)某山的海拔高度與氣溫的變化關(guān)系;

(2)汽車勻速行駛,路程和時間的變化關(guān)系;

(3)沸點和氣壓的變化關(guān)系。

引導學生分析歸納以上三個實例,他們之間有什么共同點,并根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量之間的關(guān)系是否為函數(shù)關(guān)系。

預(yù)設(shè):①都有兩個非空數(shù)集A、B;②兩個數(shù)集之間都有一種確定的對應(yīng)關(guān)系;③對于數(shù)集A中的每一個x,按照某種對應(yīng)關(guān)系f,在數(shù)集B中都有唯一確定的y值和它對應(yīng)。

接下來引導學生思考通過對上述實例的共同點并結(jié)合課本歸納函數(shù)的概念。組織學生閱讀課本,在閱讀過程中注意思考以下問題

問題1:函數(shù)的概念是什么?初中與高中對函數(shù)概念的定義的異同點是什么?符號“x”的含義是什么?

問題2:構(gòu)成函數(shù)的三要素是什么?

問題3:區(qū)間的概念是什么?區(qū)間與集合的關(guān)系是什么?在數(shù)軸上如何表示區(qū)間?

十分鐘過后,組織學生進行全班交流。

預(yù)設(shè):函數(shù)的概念:給定兩個非空數(shù)集A和B,如果按照某個對應(yīng)關(guān)系f,對于集合A中任何一個數(shù)x,在集合B中都存在唯一確定的數(shù)f(x)與之對應(yīng),那么就把這對應(yīng)關(guān)系f叫作定義在幾何A上的函數(shù),記作f:A→B,或y=f(x),x∈A。此時,x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)▏x∈A}叫作函數(shù)的值域。

函數(shù)的三要素包括:定義域、值域、對應(yīng)法則。

區(qū)間:

為了使得學生對函數(shù)概念的本質(zhì)了解的更加深入此時進行追問

追問1:初中的函數(shù)概念與高中的函數(shù)概念有什么異同點?

講解過程中注意強調(diào),函數(shù)的本質(zhì)為兩個數(shù)集之間都有一種確定的對應(yīng)關(guān)系,而且是一對一,或者多對一,不能一對多。

追問2:符號“y=f(x)”的含義是什么?“y=g(x)”可以表示函數(shù)嗎?

講解過程中注意強調(diào),符號“y=f(x)”是函數(shù)符號,可以用任意的字母表示,f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù)不是f與x相乘。

追問3:對應(yīng)關(guān)系f可以是什么形式?

講解過程中注意強調(diào),對應(yīng)關(guān)系f可以是解析式、圖象、表格

追問4:函數(shù)的三要素可以缺失嗎?指出三個實例中的三要素分別是什么。

講解過程中注意強調(diào),函數(shù)的三要素缺一不可。

追問5:用區(qū)間表示三個實例的定義域和值域。

設(shè)計意圖:在這個過程當中我將課堂完全交給學生,教師發(fā)揮組織者,引導者的作用,在運用啟發(fā)性的原則,學生能夠獨立思考問題,動手操作,還能在這個過程中和同學之間討論,加強了學生們之間的交流,這樣有利于培養(yǎng)學生們的合作意識和探究能力。

(三)課堂練習

接下來是鞏固提高環(huán)節(jié)。

組織學生自己列舉幾個生活中有關(guān)函數(shù)的例子,并用定義加以描述,指出函數(shù)的定義域和值域并用區(qū)間表示。

這樣的問題的設(shè)置,讓學生對知識進一步鞏固,讓學生逐漸熟練掌握。

(四)小結(jié)作業(yè)

在課程的最后我會提問:今天有什么收獲?

引導學生回顧:函數(shù)的概念、函數(shù)的三要素、區(qū)間的表示。

本節(jié)課的課后作業(yè)我設(shè)計為:

1.求解下列函數(shù)的值

(1)已知f(x)=5x-3,求發(fā)(x)=4。

(2)已知

求g(2)。

2.如圖,某灌溉渠道的橫截面是等腰梯形,底寬2m,渠深1.8m,邊坡的傾角是45°

(1)試用解析表達式將橫截面中水的面積A表示成水深h的函數(shù)

(2)確定函數(shù)的定義域和值域

(3)嘗試繪制函數(shù)的圖象

這樣的設(shè)計能讓學生理解本節(jié)課的核心,并為下節(jié)課學習函數(shù)的表示方法做鋪墊。

函數(shù)概念說課稿6

一、說課內(nèi)容:

蘇教版九年級數(shù)學下冊第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習題二、教材分析:

1、教材的地位和作用這節(jié)課是在學生已經(jīng)學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的基礎(chǔ),是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

2、教學目標和要求:

(1)知識與技能:使學生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。

(2)過程與方法:復(fù)習舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學生解決問題的能力。

(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心。

3、教學重點:對二次函數(shù)概念的理解。

4、教學難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。

二、教法學法設(shè)計:

1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學過程。

2、從學生活動出發(fā),通過以舊引新,順勢教學過程。

3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學過程四。

三、教學過程:

(一)復(fù)習提問

1.什么叫函數(shù)?我們之前學過了那些函數(shù)?(一次函數(shù),正比例函數(shù),反比例函數(shù))

2.它們的形式是怎樣的?(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件?k值對函數(shù)性質(zhì)有什么影響?

(二)設(shè)計意圖

復(fù)習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k≠0的條件,以備與二次函數(shù)中的a進行比較。

引入新課函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。

看下面三個例子中兩個變量之間存在怎樣的關(guān)系:

例1、(1)圓的半徑是r(cm)時,面積s(cm)與半徑之間的關(guān)系是什么?解:s=πr(r>0)。

例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關(guān)系是什么?解:y=x(20/2—x)=x(10—x)=—x+10x(0

例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?解:y=100(1+x)=100(x+2x+1)=100x+200x+100(0

教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?

(三)講解新課以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

二次函數(shù)的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。

鞏固對二次函數(shù)概念的理解:

1、強調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。

2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)

3、為什么二次函數(shù)定義中要求a≠0?(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)

4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.5、b和c是否可以為零?

(四)鞏固練習

已知一個直角三角形的兩條直角邊長的和是10cm。

(1)當它的一條直角邊的長為4。5cm時,求這個直角三角形的面積;

(2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)于x的函數(shù)關(guān)系式。

此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學生經(jīng)歷由具體到抽象的過程,從而降低學生學習的難度。

(五)小結(jié)思考:本節(jié)課你有哪些收獲?還有什么不清楚的地方?

讓學生來談本節(jié)課的收獲,培養(yǎng)學生自我檢查、自我小結(jié)的良好習慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。

(六)作業(yè)布置

必做題:

正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎?

在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍?

選做題:

1、已知函數(shù)是二次函數(shù),求m的值?

2、試在平面直角坐標系畫出二次函數(shù)y=x2和y=—x2圖象?

作業(yè)中分為必做題與選做題,實施分層教學,體現(xiàn)新課標人人學有價值的數(shù)學,不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學生繼續(xù)學習二次函數(shù)圖象的興趣。

函數(shù)概念說課稿7

尊敬的各位評委、老師們:

大家好!

今天我說課的內(nèi)容是《函數(shù)的概念》,選自人教版高中數(shù)學必修一第一章第二節(jié)。下面介紹我對本節(jié)課的設(shè)計和構(gòu)思,請您多提寶貴意見。

我的說課有以下六個部分:

一、背景分析

1、學習任務(wù)分析

本節(jié)課是必修1第1章第2節(jié)的內(nèi)容,是函數(shù)這一章的起始課,它上承集合,下引性質(zhì),與方程、不等式、數(shù)列、三角函數(shù)、解析幾何、導數(shù)等內(nèi)容聯(lián)系密切,是學好后繼知識的基礎(chǔ)和工具,所以本節(jié)課在數(shù)學教學中的地位和作用是至關(guān)重要的。

2、學情分析

學生在初中已經(jīng)學習了函數(shù)的概念,初步具備了學習函數(shù)概念的基本能力,但函數(shù)的概念從初中的變量學說到高中階段的對應(yīng)說很抽象,不易理解。

另外,通過對集合的學習,學生基本適應(yīng)了有效教學的課堂模式,初步具備了小組合作、自主探究的學習能力。

基于以上的分析,我認為本節(jié)課的教學重點為:函數(shù)的概念以及構(gòu)成函數(shù)的三要素;

教學難點為:函數(shù)概念的形成及理解。

二、教學目標設(shè)計

根據(jù)《課程標準》對本節(jié)課的學習要求,結(jié)合本班學生的情況,故而確立本節(jié)課的教學目標。

1、知識與技能(方面)

通過豐富的實例,讓學生

①了解函數(shù)是非空數(shù)集到非空數(shù)集的一個對應(yīng);

②了解構(gòu)成函數(shù)的三要素;

③理解函數(shù)概念的本質(zhì);

④理解f(x)與f(a)(a為常數(shù))的區(qū)別與聯(lián)系;

⑤會求一些簡單函數(shù)的定義域。

2、過程與方法(方面)

在教學過程中,結(jié)合生活中的實例,通過師生互動、生生互動培養(yǎng)學生分析推理、歸納總結(jié)和表達問題的能力,在函數(shù)概念的構(gòu)建過程中體會類比、歸納、猜想等數(shù)學思想方法。

3、情感、態(tài)度與價值觀(方面)

讓學生充分體驗函數(shù)概念的形成過程,參與函數(shù)定義域的求解過程以及函數(shù)的求值過程,使學生感受到數(shù)學的抽象美與簡潔美。

三、課堂結(jié)構(gòu)設(shè)計

為充分調(diào)動學生的學習積極性,變被動學習為主動愉快的探究,我使用有效教學的課堂模式,課前學生通過結(jié)構(gòu)化預(yù)習,完成問題生成單,課中采用師生互動、小組討論、學生展寫、展講例題,教師點評的方式完成問題解決單,課后完成問題拓展單,課堂結(jié)構(gòu)包含:

復(fù)習舊知,引出課題(約2分鐘)創(chuàng)設(shè)情境,形成概念(約5分鐘)剖析概念(約12分鐘)例題分析,鞏固知識——小組討論,展寫例題(約8分鐘)小組展講,教師點評(約10分鐘)總結(jié)反思,知識升華(約2分鐘)(最后)布置作業(yè),拓展練習。

四、教學媒體設(shè)計

教學中利用投影與黑板相結(jié)合的形式,利用投影直觀、生動地展示實例,并能增加課堂容量;利用黑板列舉本節(jié)重要內(nèi)容,使學生對所學內(nèi)容有一整體認識,并讓學生利用黑板展寫、展講例題,有問題及時發(fā)現(xiàn)及時解決。

五、教學過程設(shè)計

本節(jié)課圍繞問題的解決與重難點的突破,設(shè)計了下面的教學過程。

整個教學過程按四個環(huán)節(jié)展開:

首先,在第一環(huán)節(jié)——復(fù)習舊知,引出課題,先由兩個問題導入新課

①初中時函數(shù)是如何定義的?

②y=1是函數(shù)嗎?

[設(shè)計意圖]:學生通過對這兩個問題的思考與討論,發(fā)現(xiàn)利用初中的定義很難回答第②個問題,從而激起他們的好奇心:高中階段的函數(shù)概念會是什么?激發(fā)他們學習本節(jié)課的強烈愿望和情感,使他們處于積極主動的探究狀態(tài),大大提高了課堂效率。

從學生的心理狀態(tài)與認知規(guī)律出發(fā),教學過程自然過渡到第二個環(huán)節(jié)——函數(shù)概念的形成。

由于高中階段的函數(shù)概念本身比較抽象,看不見也摸不著,不易直接給出,因此在本環(huán)節(jié)中,我主要通過學生能看見能感知的生活中的3個實例出發(fā),由具體到抽象,由特殊到一般,一步步歸納形成函數(shù)的概念,此過程我稱之為“創(chuàng)設(shè)情境,形成概念”。

對于這3個實例,我分別預(yù)設(shè)一個問題讓學生思考與體會。

問題1:從炮彈發(fā)射到落地的0-26s時間內(nèi),集合A是否存在某一時間t,在B中沒有高度h與之對應(yīng)?是否有兩個或多個高度與之相對應(yīng)?

問題2:從1979—20xx年,集合A是否存在某一時間t,在B中沒有面積S與之對應(yīng)?是否有兩個或多個面積與它相對應(yīng)嗎?

問題3:從1991—20xx年間,集合A中是否存在某一時間t,在B中沒恩格爾系數(shù)與之對應(yīng)?是否會有兩個或多個恩格爾系數(shù)與對應(yīng)?

[設(shè)計意圖]:通過循序漸進地提問,變教為誘,以誘達思,引導學生根據(jù)問題總結(jié)3個實例的各自特點,并綜合各自特點,歸納它們的公共特征,著重向?qū)W生滲透集合與對應(yīng)的觀點,這樣,再讓學生經(jīng)歷由具體到抽象的概括過程,用集合、對應(yīng)的語言來描述函數(shù)時就顯得水到渠成,難點得以突破。

函數(shù)的概念既已形成,本節(jié)課自然進入了第3個環(huán)節(jié)——剖析概念,理解概念。

函數(shù)概念的理解是本節(jié)課的重點也是難點,概念本身比較抽象,學生在理解上可能把握不準確,所以我分兩個步驟來進行剖析,由具體到抽象,螺旋上升。

首先,在學生熟讀熟背函數(shù)概念的基礎(chǔ)上,我設(shè)計一個學生活動,讓學生充分參與,在參與中體會學習的快樂。

我利用多媒體制作一個表格,請學號為01—05的同學填寫自己上次的數(shù)學考試成績,并提出3個問題:

問題1:若學號構(gòu)成集合A,成績構(gòu)成集合B,對應(yīng)關(guān)系f:上次數(shù)學考試成績,那么由A到B能否構(gòu)成函數(shù)?

問題2:若將問題1中“學號”改為“01—05的學生”,其余不變,那么由A到B能否構(gòu)成函數(shù)?

問題3:若學號04的學生上次考試因病缺考,無成績,那么對問題1學號與成績能否構(gòu)成函數(shù)?

[設(shè)計意圖]:通過層層提問,層層回答,讓學生對概念中關(guān)鍵詞的把握更為準確,對函數(shù)概念的理解更為具體,為總結(jié)歸納函數(shù)概念的本質(zhì)特征打下基礎(chǔ)。

其次,我通過幻燈片的形式展示幾組數(shù)集的對應(yīng)關(guān)系,讓學生分析討論哪些對應(yīng)關(guān)系能構(gòu)成函數(shù),在學生深刻認識到函數(shù)是非空數(shù)集到非空數(shù)集的一對一或多對一的對應(yīng)關(guān)系,并能準確把握概念中的關(guān)鍵詞后,再著重強強在這兩種對應(yīng)關(guān)系中,何為定義域,何為值域,值域和集合B有什么關(guān)系,強調(diào)函數(shù)的三要素,得出兩函數(shù)相等的條件。

至此,本節(jié)課的第三個環(huán)節(jié)已經(jīng)完成,對于區(qū)間的概念,學生通過預(yù)習能夠理解課堂上不再多講,僅在多媒體上進行展示,但會在后面例題的使用中指出注意事項。

在本節(jié)課的第四個環(huán)節(jié)——例題分析中,我重點以例題的形式考查函數(shù)的有關(guān)概念問題,簡單函數(shù)的定義域問題以及函數(shù)的求值問題,至于分段函數(shù)、復(fù)合函數(shù)的求值及定義域問題,將在下節(jié)課予以解決,本環(huán)節(jié)主要通過學生討論、展寫、展講、學生互評、教師點評的方式完成知識的鞏固,讓學生成為課堂的主人。

最后,通過

——總結(jié)點評,完善知識體系

——課堂練習,鞏固知識掌握

——布置作業(yè),沉淀教學成果

六、教學評價設(shè)計

教學是動態(tài)生成的過程,課堂上必然會有難以預(yù)料的事情發(fā)生,具體的教學過程還應(yīng)根據(jù)實際情況加以調(diào)整。

最后,引用赫爾巴特的一句名言結(jié)束我的說課,那就是“發(fā)揮我們教師的創(chuàng)造性,使教育過程成為一種藝術(shù)的事業(yè),使我們不聰明的孩子變的聰明,使我們聰明的孩子變的更聰明”。

謝謝大家!

下載函數(shù)的定義域及概念word格式文檔
下載函數(shù)的定義域及概念.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔相關(guān)法律責任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    函數(shù)概念論文

    學習新教材的心得體會 現(xiàn)代教育的目標就是要教師組織和引導學生主動掌握知識,發(fā)展學習能力,即在傳授學生知識的同時又要培養(yǎng)學生能力,即既教書又育人。根據(jù)本人的一點教學實......

    《函數(shù)的概念》

    課題:函數(shù)的概念(一) 【三維目標】 1.會用集合與對應(yīng)的語言來刻畫函數(shù),理解函數(shù)符號y=f(x)的含義;通過學習函數(shù)概念,培養(yǎng)學生觀察問題,提出問題的探究能力,進一步培養(yǎng)學生學習數(shù)學......

    函數(shù)極限概念

    一. 函數(shù)極限的概念 1.x趨于?時函數(shù)的極限 設(shè)函數(shù)f定義在??,???上,類似于數(shù)列情形,我們研究當自變量x趨于+?時,對應(yīng)的函數(shù)值能否無線地接近于某個定數(shù)A.例如,對于函數(shù)f?x?=,從圖象上可見,當......

    函數(shù)的解析式與定義域 教案

    課題:函數(shù)的解析式及定義域 知識要點 1函數(shù)解析式:函數(shù)的解析式就是用數(shù)學運算符號和括號把數(shù)和表示數(shù)的字母連接而成的式子叫解析式,解析式亦稱“解析表達式”或“表達式”,簡......

    函數(shù)概念教學設(shè)計[★]

    函數(shù)的概念 一.教材分析 函數(shù)是數(shù)學中最重要的概念之一,且貫穿在中學數(shù)學的始終,只有對概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中學生對函數(shù)概念理解的程度會直接影響......

    《函數(shù)的概念》說課稿

    《函數(shù)的概念》說課 各位專家、評委:大家好! 我說課的內(nèi)容是數(shù)學人教版普通高中新課程標準實驗教科書必修1函數(shù)第一課時。我將從背景分析、教學目標設(shè)計、教法與學法選擇、教學......

    《函數(shù)的概念》學案

    《函數(shù)的概念》學案 班別:_____________姓名:______________學號:__________ 【學習目標】: 1.理解函數(shù)的概念及函數(shù)符號,了解函數(shù)的表示方法; 2.能夠?qū)懗龊唵蔚暮瘮?shù)關(guān)系式; 3.會求......

    二次函數(shù)的概念

    《二次函數(shù)的概念》教學反思 “課內(nèi)比教學”體現(xiàn)教育本質(zhì)的回歸,是提高教師專業(yè)素質(zhì)、促進教師專業(yè)成長的重要途徑。在此次活動中,我主講的課題是《二次函數(shù)的概念》。通過講......

主站蜘蛛池模板: 国内揄拍国内精品人妻浪潮av| 国产美女裸体丝袜喷水视频| 国产av国片偷人妻麻豆| 插我舔内射18免费视频| 中字幕久久久人妻熟女天美传媒| 午夜成人无码免费看试看| 国产成人女人毛片视频在线| 成人免费看片又大又黄| 亚洲2020天天堂在线观看| 亚洲欧美日韩中文字幕一区二区三区| 又大又黄又粗高潮免费| 中文字幕亚洲欧美专区| 亚洲国产欧美在线人成最新| 国产亚洲婷婷香蕉久久精品| 国产清纯白嫩初高生在线观看| 色偷偷av男人的天堂京东热| 国产亚洲日韩欧美一区二区三区| 色悠久久久久久久综合| 欧美伊人久久大香线蕉综合| 100国产精品人妻无码| 精品亚洲国产成人a片app| 97色偷偷色噜噜狠狠爱网站97| 精品亚洲成a人在线观看青青| 国内露脸少妇精品视频| 波多野结衣av手机在线观看| 丰满爆乳在线播放| 日本一二免费不卡区| 一区二区国产高清视频在线| 中文人妻无码一区二区三区| 国产成人综合亚洲亚洲国产第一页| 久久久久成人精品无码| 国产无遮挡a片无码免费软件| 亚洲 日韩 欧美 有码 在线| 最近2019中文字幕大全第二页| www插插插无码视频网站| 99久久国语露脸精品国产色| 亚洲中文字幕无码天然素人在线| 亚洲av最新在线观看网址| 亚洲男同志网站| 欧美性大战xxxxx久久久| 久久婷婷五夜综合色啪软件下|