第一篇:一元二次方程單元備課
第四章 一元二次方程單元備課
單元名稱:一元二次方程
一、本單元的地位和作用
1.本單元教學的主要內容.
一元二次方程概念;解一元二次方程的方法;一元二次方程應用題.
2.本單元在教材中的地位與作用.
一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎之上學習的,它也是一種數學建模的方法.學好一元二次方程是學好二次函數不可或缺的,是學好高中數學的奠基工程.應該說,一元二次方程是本書的重點內容.
二、單元教學目標
1.知識與技能
了解一元二次方程及有關概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌握依據實際問題建立一元二次方程的數學模型的方法;應用熟練掌握以上知識解決問題.
2.過程與方法
(1)通過豐富的實例,讓學生合作探討,老師點評分析,建立數學模型.?根據數學模型恰如其分地給出一元二次方程的概念.
(2)結合八冊上整式中的有關概念介紹一元二次方程的派生概念,如二次項等.
(3)通過掌握缺一次項的一元二次方程的解法──直接開方法,?導入用配方法解一元二次方程,又通過大量的練習鞏固配方法解一元二次方程.
(4)通過用已學的配方法解ax2+bx+c=0(a≠0)導出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac>0,b2-4ac=0,b2-4ac<0.
(5)通過復習八年級上冊《整式》的第5節因式分解進行知識遷移,解決用因式分解法解一元二次方程,并用練習鞏固它.
(6)提出問題、分析問題,建立一元二次方程的數學模型,?并用該模型解決實際問題.
3.情感、態度與價值觀
經歷由事實問題中抽象出一元二次方程等有關概念的過程,使同學們體會到通過一元二次方程也是刻畫現實世界中的數量關系的一個有效數學模型;經歷用配方法、公式法、分解因式法解一元一次方程的過程,使同學們體會到轉化等數學思想;經歷設置豐富的問題情景,使學生體會到建立數學模型解決實際問題的過程,從而更好地理解方程的意義和作用,激發學生的學習興趣.
三、單元知識點分析
四、教學與難點 教學重點
1.一元二次方程及其它有關的概念.
2.用配方法、公式法、因式分解法降次──解一元二次方程.
3.利用實際問題建立一元二次方程的數學模型,并解決這個問題.
教學難點
1.一元二次方程配方法解題.
2.用公式法解一元二次方程時的討論.
3.建立一元二次方程實際問題的數學模型;方程解與實際問題解的區別.
五、教學措施:
1.分析實際問題如何建立一元二次方程的數學模型.
2.用配方法解一元二次方程的步驟.
3.解一元二次方程公式法的推導.
六、課時安排:
本單元教學時間約需14課時,具體分配如下:
一元二次方程
2課時
用配方法解一元二次方程
3課時 用公式法解一元二次方程
2課時 4.用分解因式法解一元二次方程
1課時
5、一元二次方程根的判別式
1課時
6、一元二次方程根與系數的關系
1課時
7、一元二次方程的應用
2課時
回顧與復習
2課時
考試與講評
2課時
總計
14課時
第二篇:一元二次方程單元備課
第二十二章一元二次方程
單元要點分析
教材內容
1.本單元教學的主要內容.
一元二次方程概念;解一元二次方程的方法;一元二次方程應用題.2.本單元在教材中的地位與作用.
一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎之上學習的,它也是一種數學建模的方法.學好一元二次方程是學好二次函數不可或缺的,是學好高中數學的奠基工程.應該說,一元二次方程是本書的重點內容.
教學目標
1.知識與技能
了解一元二次方程及有關概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌握依據實際問題建立一元二次方程的數學模型的方法;應用熟練掌握以上知識解決問題.2.過程與方法
(1)通過豐富的實例,讓學生合作探討,老師點評分析,建立數學模型.?根據數學模型恰如其分地給出一元二次方程的概念.
(2)結合八冊上整式中的有關概念介紹一元二次方程的派生概念,如二次項等.(3)通過掌握缺一次項的一元二次方程的解法──直接開方法,?導入用配方法解一元二次方程,又通過大量的練習鞏固配方法解一元二次方程.(4)通過用已學的配方法解ax2+bx+c=0(a≠0)導出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac>0,b2-4ac=0,b2-4ac<0.
(5)通過復習八年級上冊《整式》的第5節因式分解進行知識遷移,解決用因式分解法解一元二次方程,并用練習鞏固它.
(6)提出問題、分析問題,建立一元二次方程的數學模型,?并用該模型解決實際問題.
3.情感、態度與價值觀
經歷由事實問題中抽象出一元二次方程等有關概念的過程,使同學們體會到通過一元二次方程也是刻畫現實世界中的數量關系的一個有效數學模型;經歷用配方法、公式法、分解因式法解一元一次方程的過程,使同學們體會到轉化等數學思想;經歷設置豐富的問題情景,使學生體會到建立數學模型解決實際問題的過程,從而更好地理解方程的意義和作用,激發學生的學習興趣.
教學重點
1.一元二次方程及其它有關的概念.
2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用實際問題建立一元二次方程的數學模型,并解決這個問題.
教學難點
1.一元二次方程配方法解題.
2.用公式法解一元二次方程時的討論.
3.建立一元二次方程實際問題的數學模型;方程解與實際問題解的區別.
教學關鍵
1.分析實際問題如何建立一元二次方程的數學模型.2.用配方法解一元二次方程的步驟.3.解一元二次方程公式法的推導.
課時劃分
本單元教學時間約需16課時,具體分配如下:22.1一元二次方程2課時22.2降次──解一元二次方程5課時22.3實際問題與一元二次方程4課時教學活動、習題課、小結2課時
第三篇:一元二次方程實際問題
例3.某商店經銷一種銷售成本為每千克40元的水產品,?據市場分析,?若每千克50元銷售,一個月能售出500kg,銷售單價每漲1元,月銷售量就減少10kg,針對這種水產品情況,請解答以下問題:
(1)當銷售單價定為每千克55元時,計算銷售量和月銷售利潤.
(2)設銷售單價為每千克x元,月銷售利潤為y元,求y與x的關系式.
(3)商品想在月銷售成本不超過10000元的情況下,使得月銷售利潤達到8000元,銷售單價應為多少?
分析:(1)銷售單價定為55元,比原來的銷售價50元提高5元,因此,銷售量就減少5×10kg.
(2)銷售利潤y=(銷售單價x-銷售成本40)×銷售量[500-10(x-50)]
(3)月銷售成本不超過10000元,那么銷售量就不超過10000=250kg,在這個提前下,40
?求月銷售利潤達到8000元,銷售單價應為多少.
解:(1)銷售量:500-5×10=450(kg);銷售利潤:450×(55-40)=450×15=6750元
(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000
(3)由于水產品不超過10000÷40=250kg,定價為x元,則(x-40)[500-10(x-50)]=8000解得:x1=80,x2=60
當x1=80時,進貨500-10(80-50)=200kg<250kg,滿足題意.
當x2=60時,進貨500-10(60-50)=400kg>250kg,(舍去).
例4.某人將2000元人民幣按一年定期存入銀行,到期后支取1000元用于購物,剩下的1000元及應得利息又全部按一年定期存入銀行,若存款的利率不變,到期后本金和利息共1320元,求這種存款方式的年利率.
分析:設這種存款方式的年利率為x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就變為1000+2000x·80%,其它依此類推.解:設這種存款方式的年利率為x
則:1000+2000x·80%+(1000+2000x·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2=
答:所求的年利率是12.5%.
1=0.125=12.5% 8
第四篇:實際問題一元二次方程
22.3《實際問題與一元二次方程(2)》學案
課型:上課時間:課時:
學習目標:
能根據具體問題中的數量關系,列出一元二次方程,體會方程是刻畫現實世界的一個有效的數學模型.學習過程:
一、自主學習:
(一)復習鞏固:
1、某商店銷售一批服裝,每價成本價100元,若想獲得25%,這種服裝的售價應為_______________元。
2、某商品原價a元,因需求量大,經營者將該商品提價10%,后因市場物價調整,又降價10%,降價后這種商品的價格是_______________。
(二)、歸納總結:
1、有關利率問題公式:利息=本金×利率×存期本息和=本金+利息
2、有關商品利潤的關系式:(1)利潤=售價-進價
(2)利潤率= 利潤售價?進價(3)售價=進價(1+利潤率)?進價進價
(三)、自我嘗試:
某商場禮品柜臺春節期間購進大量賀年卡,一種賀年卡平均每天可售出500張,每張盈利0.3元,為了盡快減少庫存,商場決定采取適當的降價措施,調查發現,如果這種賀年卡的售價每降低0.1元,那么商場平均每天可多售出100張,?商場要想平均每天盈利120元,每張賀年卡應降價多少元?
(四)例題選講
某商場禮品柜臺春節期間購進甲、乙兩種賀年卡,甲種賀年卡平均每天可售出500張,每張盈利0.3元,乙種賀年卡平均每天可售出200張,每張盈利0.75元,為了盡快減少庫存,商場決定采取適當的降價措施,調查發現,如果甲種賀年卡的售價每降價0.1元,那么商場平均每天可多售出100張;如果乙種賀年卡的售價每降價0.25元,?那么商場平均每天可多售出34?張.?如果商場要想每種賀年卡平均每天盈利120元,那么哪種賀年卡每張降價的絕對量大.
二、課堂檢測:
1.一個小組若干人,新年互送賀卡,若全組共送賀卡72張,則這個小組共().
A.12人B.18人C.9人D.10人
2.一個產品原價為a元,受市場經濟影響,先提價20%后又降價15%,現價比原價多_______%.
3.一個容器盛滿純藥液63升,第一次倒出一部分純藥液后用水加滿,?第二次又倒出同樣多的藥液,再加水補滿,這時容器內剩下的純藥液是28升,設每次倒出液體x升,?則列出的方程是________.
4.上海甲商場七月份利潤為100萬元,九月份的利率為121萬元,乙商場七月份利率為200萬元,九月份的利潤為288萬元,那么哪個商場利潤的年平均上升率較大?
5.某果園有100棵桃樹,一棵桃樹平均結1000個桃子,?現準備多種一些桃樹以提高產量,試驗發現,每多種一棵桃樹,每棵桃樹的產量就會減少2個,?如果要使產量增加15.2%,那么應多種多少棵桃樹?
6.某商店經銷一種銷售成本為每千克40元的水產品,?據市場分析,?若每千克50元銷售,一個月能售出500kg,銷售單價每漲1元,月銷售量就減少10kg,針對這種水產品情況,請解答以下問題:
(1)當銷售單價定為每千克55元時,計算銷售量和月銷售利潤.
(2)設銷售單價為每千克x元,月銷售利潤為y元,求y與x的關系式.
(3)商品想在月銷售成本不超過10000元的情況下,使得月銷售利潤達到8000元,銷售單價應為多少?
三、布置作業
一、選擇題
1.一個小組若干人,新年互送賀卡,若全組共送賀卡72張,則這個小組共().
A.12人B.18人C.9人D.10人
2.某一商人進貨價便宜8%,而售價不變,那么他的利潤(按進貨價而定)可由目前x增加到(x+10%),則x是().
A.12%B.15%C.30%D.50%
3.育才中學為迎接香港回歸,從1994年到1997年四年內師生共植樹1997棵,已知該校1994年植樹342棵,1995年植樹500棵,如果1996年和1997年植樹的年增長率相同,那么該校1997年植樹的棵數為().
A.600B.604C.595D.605
二、填空題
1.一個產品原價為a元,受市場經濟影響,先提價20%后又降價15%,現價比原價多_______%.
2.甲用1000元人民幣購買了一手股票,隨即他將這手股票轉賣給乙,獲利10%,乙而后又將這手股票返賣給甲,但乙損失了10%,?最后甲按乙賣給甲的價格的九折將這手股票賣出,在上述股票交易中,甲盈了_________元.
3.一個容器盛滿純藥液63L,第一次倒出一部分純藥液后用水加滿,?第二次又倒出同樣多的藥液,再加水補滿,這時容器內剩下的純藥液是28L,設每次倒出液體xL,?則列出的方程是________.
三、綜合提高題
1.上海甲商場七月份利潤為100萬元,九月份的利率為121萬元,乙商場七月份利率為200
萬元,九月份的利潤為288萬元,那么哪個商場利潤的年平均上升率較大?
2.某果園有100棵桃樹,一棵桃樹平均結1000個桃子,?現準備多種一些桃樹以提高產量,試驗發現,每多種一棵桃樹,每棵桃樹的產量就會減少2個,?如果要使產量增加15.2%,那么應多種多少棵桃樹?
3.某玩具廠有4個車間,某周是質量檢查周,現每個車間都原有a(a>0)個成品,且每個
車間每天都生產b(b>0)個成品,質量科派出若干名檢驗員周一、?周二檢驗其中兩個車間原有的和這兩天生產的所有成品,然后,周三到周五檢驗另外兩個車間原有的和本周生產的所有成品,假定每名檢驗員每天檢驗的成品數相同.
(1)這若干名檢驗員1天共檢驗多少個成品?(用含a、b的代數式表示)
(2)若一名檢驗員1天能檢驗
4b個成品,則質量科至少要派出多少名檢驗員? 5
第五篇:一元二次方程應用2010
1、(2009煙臺市)某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉”政策的實施,商場決定采取適當的降價措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數表達式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?
2、(2009武漢)某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元,則每個月少賣10件(每件售價不能高于65元).設每件商品的售價上漲x元(x為正整數),每個月的銷售利潤為y元.
(1)求y與x的函數關系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月的利潤恰為2200元?
3、某果園有100棵橙子樹,每一棵樹平均結600個橙子.現準備多種一些橙子樹以提高產量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會減少.根據經驗估計,每多種一棵樹,平均每棵樹就會少結5個橙子.⑴利用函數表達式描述橙子的總產量與增種橙子樹的棵數之間的關系.(2)增種多少棵橙子,可以使橙子的總產量達到60400個?
4、某商店經銷一種銷售成本為每千克40元的水產品.據市場分析,若按每千克50元銷售,一個月能售出500千克;銷售單價每漲1元,月銷售量就減少10千克.針對這種水產品的銷售情況,請售答以下問題:
(1)當銷售單價定為每千克55元時,計算月銷售量和月銷售利潤;
(2)設銷售單價為每千克x元,月銷售利潤為y元,求y與x函數關系式(不必寫出x的取值范圍);(3)商店想在月銷售成本不超過1000元的情況下,使得月銷售利潤達到8000元,銷售單價應定為多少?
5、某化工材料經銷公司購進了一種化工原料共7000千克,購進價格為每千克30元.物價部門規定其銷售單價不得高于每千克70元,也不得低于30元.市場調查發現:單價定為70元時,日均銷售60千克;單價每降低1元,日均多售出2千克.在銷售過程中,每天還要支出其他費用500元(天數不足一天時,按整天計算).設銷售單價為x元,日均獲利為y元.求y關于x的二次函數關系式,并注明x的取值范圍;
6、(2009年貴州省黔東南州)凱里市某大型酒店有包房100間,在每天晚餐營業時間,每間包房收包房費100元時,包房便可全部租出;若每間包房收費提高20元,則減少10間包房租出,若每間包房收費再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去。
(1)設每間包房收費提高x(元),則每間包房的收入為y1(元),但會減少y2
間包房租出,請分別寫出y1、y2與x之間的函數關系式。
(2)為了投資少而利潤大,每間包房提高x(元)后,設酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數關系式。
7、(2009年甘肅慶陽)(8分)某企業2006年盈利1500萬元,2008年克服全球金融危機的不利影響,仍實現盈利2160萬元.從2006年到2008年,如果該企業每年盈利的年增長率相同,求:(1)該企業2007年盈利多少萬元?
(2)若該企業盈利的年增長率繼續保持不變,預計2009年盈利多少萬元?
8、(2009年湖州)隨著人民生活水平的不斷提高,我市家庭轎車的擁有量逐年增加.據統計,某小區2006年底擁有家庭轎車64輛,2008年底家庭轎車的擁有量達到100輛.(1)若該小區2006年底到2009年底家庭轎車擁有量的年平均增長率都相同,求該小區到2009年底家庭轎車將達到多少輛?
(2)為了緩解停車矛盾,該小區決定投資15萬元再建造若干個停車位.據測算,建造費用分別為室內車位5000元/個,露天車位1000元/個,考慮到實際因素,計劃露天車位的數量不少于室內車位的2倍,但不超過室內車位的2.5倍,求該小區最多可建兩種車位各多少個?試寫出所有可能的方案.9.建造一個面積是140平方米的倉庫,要求其一邊靠墻,墻長16米,在與墻平行的一邊開一道2米寬的門?,F人32米長的材料來建倉庫,求這個倉庫的長是多少米?
10、如圖在△ABC中,∠B是直角,AB=6厘米,BC=12厘米。點P從A點開始,沿AB方向以每秒1厘米的速度移動,同時點Q從點B開始,沿BC方向以每秒厘米移動。問幾秒時△PBQ的面積等于8平方厘米?
11.(2009年甘肅慶陽)若關于x的方程x2
?2x?k?1?0的一個根是0,則k?.
12.、(2009威海)若關于x的一元二次方程x2
?(k?3)x?k?0的一個根是?2,則另一個根是______.、(2009山西省太原市)某種品牌的手機經過四、五月份連續兩次降價,每部售價P 13由3200元降到了2500元.設平均每月降價的百分率為x,根據題意列出的方程是.