第一篇:橢圓及其標準方程說課教案
《橢圓及其標準方程》說課教案
我說課的題目是全日制普通高級中學教科書(試驗修訂本.必修)《數學》第二冊、第八章《圓錐曲線》、第一節《橢圓及其標準方程》。
一、概說:
1、教材分析:
橢圓及其標準方程是圓錐曲線的基礎,它的學習方法對整個這一章具有導向和引領作用,直接影響其他圓錐曲線的學習。是后繼學習的基礎和范示。同時,也是求曲線方程的深化和鞏固。
2、教學分析:
橢圓及其標準方程是培養學生觀察、分析、發現、概括、推理和探索能力的極好素材。本節課通過創設情景、動手操作、總結歸納,應用提升等探究性活動,培養學生的數學創新精神和實踐能力,使學生掌握坐標法的規律,掌握數學學科研究的基本過程與方法。
3、學生分析:
高中二年級學生正值身心發展的鼎盛時期,思維活躍,又有了相應知識基礎,所以他們樂于探索、敢于探究。但高中生的邏輯思維能力尚屬經驗型,運算能力不是很強,有待于訓練。
基于上述分析,我采取的是教學方法是“問題誘導--啟發討論--探索結果”以及“直觀觀察--歸納抽象--總結規律”的一種研究性教學方法,注重“引、思、探、練”的結合。
引導學生學習方式發生轉變,采用激發興趣、主動參與、積極體驗、自主探究的學習,形成師生互動的教學氛圍。
我設定的教學重點是:橢圓定義的理解及標準方程的推導。教學難點是:標準方程的推導。
二、目標說明:
1、知識目標:掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程。
2、能力目標:通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力。通過橢圓的標準方程的推導提高學生運用坐標法解決幾何問題的能力。
3、思想目標:通過本次課的學習滲透數形結合和等價轉化的思想方法,激發學生學習數學的積極性,培養學生的學習興趣和創新意識。
三、過程說明:
1、新課導入:以影音文件“海爾波譜彗星的運行軌道示意圖”導入,呈現方式具有新異性,激發學習興趣;畫板畫圖,增強動手操作意識,直觀形象從而引入橢圓定義,進而研究橢圓標準方程。
2、新課呈現:
學生通過觀看文件、動手操作,然后自己總結橢圓定義,符合從感性上升為理性的認知規律,而且提升了抽象概括的能力。然后,進行推導橢圓的標準方程,培養運算能力,進而探討標準方程的特點。教師作為熱烈討論的平等氛圍中的引導者,鼓勵學生大膽探究、勇于創新,積極談論和參與體驗,培養嚴謹的邏輯思維,抽象概括的能力,滲透數學美學教育,掌握數形結合的重要數學思想,最后的幾個探究性問題鼓勵學生積極探索,敢于探究,轉變學習方式。
3、鞏固應用
根據定義及其標準方程,設計三組九道練習題,引導學生聯系、思考、討論、反饋、矯正,增強運用能力。
4、繼續探究:
(1)觀察橢圓形狀,不同原因在哪里;
(2)改變繩長或變換焦點位置再畫橢圓,發現關系;(3)用幾何畫板交流畫圖,觀察形狀變化;(4)如何描述形狀變化?
引導學生探究欲望,開展研究性學習。
四、評價說明:
本節課的學生評價堅持形成性評價和階段性評價相結合的原則。
(一)形成性評價:從操作能力、概括能力、學習興趣、交流合作、情緒情感方面對學習效果進行過程評價。對出現問題的學生,教師指出其可取之處并耐心引導,這樣有助于培養他們勇于面對挫折,持之以恒地科學探索精神;當學生做的精彩有創新,教師給予學生充分的鼓勵,從而進一步激發學生創造的潛能,提高他們的創新能力。
(二)階段性評價:從單元測試、期中測試等方面對學生的階段性學習成果進行測試。評價結果以每次測試成績和學生平時的綜合表現為依據。同時要進行學生的自我評價以及教師對行動的綜合性評價。
(三)教師自我反思評價:本課充分體現了“一個為本,四個調整”的新課程理念。
五、說課總結:
這節課使用計算機網絡技術,展現知識的發生過程,是學生始終處于問題探索研究狀態之中,激情引趣。注重數學科學研究方法的掌握,是研究性教學的一次有益嘗試。有利于改變學生的學習方式,有利于學生自主探究,有利于學生的實踐能力和創新意識的培養
第二篇:《橢圓及其標準方程》說課教案2
高中數學第二冊第八章第一節《橢圓及其標準方程》說課教案
今天我說課的題目是是《橢圓及其標準方程》,下面我對本課題進行分析。
一、教材分析:
《橢圓及其標準方程》是選自人教版高中數學第二冊第八章第一節。本節共分兩個課時。我說課的內容是第一課時。橢圓及其標準方程是圓錐曲線的基礎,它的學習方法對整個這一章具有導向和引領作用,直接影響其他圓錐曲線的學習。是后繼學習的基礎和范示。同時,也是求曲線方程的深化和鞏固。二.教學目標分析
1、知識與技能目標:
理解橢圓定義、掌握標準方程及其推導。
2、過程與方法目標:注重數形結合,掌握解析法研究幾何問題的一般方法,注重探索能力的培養。
3、情感、態度和價值觀目標:
(1)探究方法激發學生的求知欲,培養濃厚的學習興趣。
(2)進行數學美育的滲透,用哲學的觀點指導學習。
三、說教學的重難點
本著《橢圓及其標準方程》新課程標準,在吃透教材基礎上,我確定了以下教學重點和難點。
教學重點是:橢圓定義的理解及標準方程的推導。
教學難點 是:標準方程的推導。
為了講清教材的重難點,使學生能夠達到本課題設定的教學目標,我再從教法我學法上談談。
四、學情分析:
高中二年級學生正值身心發展的鼎盛時期,思維活躍,又有了相應知識基礎,所以他們樂于探索、敢于探究。但高中生的邏輯思維能力尚屬經驗型,運算能力不是很強,有待于訓練。
基于上述分析,我采取的是教學方法是“問題誘導--啟發討論--探索結果”以及“直觀觀察--歸納抽象--總結規律”的一種研究性教學方法,注重“引、思、探、練”的結合。
引導學生學習方式發生轉變,采用激發興趣、主動參與、積極體驗、自主探究的學習,形成師生互動的教學氛圍。
我具體來談談這一堂課的教學過程
2、教學分析:
橢圓及其標準方程是培養學生觀察、分析、發現、概括、推理和探索能力的極好素材。本節課通過創設情景、動手操作、總結歸納,應用提升等探究性活動,培養學生的數學創新精神和實踐能力,使學生掌握坐標法的規律,掌握數學學科研究的基本過程與方法。
五.教學過程
1、新課導入
:以影音文件“海爾波譜彗星的運行軌道示意圖”導入,呈現方式具有新異性,激發學習興趣;畫板畫圖,增強動手操作意識,直觀形象從而引入橢圓定義,進而研究橢圓標準方程。
2、講授新課:
學生通過觀看文件、動手操作,然后自己總結橢圓定義,符合從感性上升為理性的認知規律,而且提升了抽象概括的能力。然后,進行推導橢圓的標準方程,培養運算能力,進而探討標準方程的特點。教師作為熱烈討論的平等氛圍中的引導者,鼓勵學生大膽探究、勇于創新,積極談論和參與體驗,培養嚴謹的邏輯思維,抽象概括的能力,滲透數學美學教育,掌握數形結合的重要數學思想,最后的幾個探究性問題鼓勵學生積極探索,敢于探究,轉變學習方式。
3、鞏固應用
根據定義及其標準方程,設計兩道例題,引導學生聯系、思考、討論、反饋、矯正,增強運用能力。
4、繼續探究:
(1)觀察橢圓形狀,不同原因在哪里;
(2)改變繩長或變換焦點位置再畫橢圓,發現關系;
(3)用幾何畫板交流畫圖,觀察形狀變化;
(4)如何描述形狀變化?
引導學生探究欲望,開展研究性學習。
四、評價說明:
本節課的學生評價堅持形成性評價和階段性評價相結合的原則。
(一)形成性評價:從操作能力、概括能力、學習興趣、交流合作、情緒情感方面對學習效果進行過程評價。對出現問題的學生,教師指出其可取之處并耐心引導,這樣有助于培養他們勇于面對挫折,持之以恒地科學探索精神;當學生做的精彩有創新,教師給予學生充分的鼓勵,從而進一步激發學生創造的潛能,提高他們的創新能力。
(二)階段性評價:從單元測試、期中測試等方面對學生的階段性學習成果進行測試。評價結果以每次測試成績和學生平時的綜合表現為依據。同時要進行學生的自我評價以及教師對行動的綜合性評價。
(三)教師自我反思評價:本課充分體現了“一個為本,四個調整”的新課程理念。
五、說課總結:
這節課使用計算機網絡技術,展現知識的發生過程,是學生始終處于問題探索研究狀態之中,激情引趣。注重數學科學研究方法的掌握,是研究性教學的一次有益嘗試。有利于改變學生的學習方式,有利于學生自主探究,有利于學生的實踐能力和創新意識的培養。
第三篇:《橢圓及其標準方程》說課教案專題
高中數學第二冊第八章第一節《橢圓及其標準方程》說課教案 我說課的題目是全日制普通高級中學教科書(試驗修訂本.必修)《數學》第二冊、第八章《圓錐曲線》、第一節《橢圓及其標準方程》。
一、概說:
1、教材分析:
橢圓及其標準方程是圓錐曲線的基礎,它的學習方法對整個這一章具有導向和引領作用,直接影響其他圓錐曲線的學習。是后繼學習的基礎和范示。同時,也是求曲線方程的深化和鞏固。
2、教學分析:
橢圓及其標準方程是培養學生觀察、分析、發現、概括、推理和探索能力的極好素材。本節課通過創設情景、動手操作、總結歸納,應用提升等探究性活動,培養學生的數學創新精神和實踐能力,使學生掌握坐標法的規律,掌握數學學科研究的基本過程與方法。
3、學生分析:
高中二年級學生正值身心發展的鼎盛時期,思維活躍,又有了相應知識基礎,所以他們樂于探索、敢于探究。但高中生的邏輯思維能力尚屬經驗型,運算能力不是很強,有待于訓練。
基于上述分析,我采取的是教學方法是“問題誘導--啟發討論--探索結果”以及“直觀觀察--歸納抽象--總結規律”的一種研究性教學方法,注重“引、思、探、練”的結合。
引導學生學習方式發生轉變,采用激發興趣、主動參與、積極體驗、自主探究的學習,形成師生互動的教學氛圍。
我設定的教學重點是:橢圓定義的理解及標準方程的推導。
教學難點 是:標準方程的推導。
二、目標說明:
根據數學教學大綱要求確立“三位一體”的教學目標。
1、知識與技能目標:
理解橢圓定義、掌握標準方程及其推導。
2、過程與方法目標:注重數形結合,掌握解析法研究幾何問題的一般方法,注重探索能力的培養。
3、情感、態度和價值觀目標:
(1)探究方法激發學生的求知欲,培養濃厚的學習興趣。
(2)進行數學美育的滲透,用哲學的觀點指導學習。
三、過程說明:
依據“一個為本,四個調整”的新的教學理念和上述教學目標 設計教學過程?!耙詫W生發展為本,新型的師生關系、新型的教學目標、新型的教學方式、新型的呈現方式”體現如下:
(一)對教材的重組與拓展:根據教學目標,選擇教學內容,遵循拓展、開放、綜合的原則。教材中對橢圓定義盡管很嚴密,但不夠直觀,所以增加了影音文件:海爾波譜彗星的運行軌道圖,最后,讓學生交流用幾何畫板畫橢圓以及5個探究性問題,作為對教材的拓展。
(二)在教學過程 中的體現:
1、新課導入
:以影音文件“海爾波譜彗星的運行軌道示意圖”導入,呈現方式具有新異性,激發學習興趣;畫板畫圖,增強動手操作意識,直觀形象從而引入橢圓定義,進而研究橢圓標準方程。
2、新課呈現:
學生通過觀看文件、動手操作,然后自己總結橢圓定義,符合從感性上升為理性的認知規律,而且提升了抽象概括的能力。然后,進行推導橢圓的標準方程,培養運算能力,進而探討標準方程的特點。教師作為熱烈討論的平等氛圍中的引導者,鼓勵學生大膽探究、勇于創新,積極談論和參與體驗,培養嚴謹的邏輯思維,抽象概括的能力,滲透數學美學教育,掌握數形結合的重要數學思想,最后的幾個探究性問題鼓勵學生積極探索,敢于探究,轉變學習方式。
3、鞏固應用
根據定義及其標準方程,設計三組九道練習題,引導學生聯系、思考、討論、反饋、矯正,增強運用能力。
4、繼續探究:
(1)觀察橢圓形狀,不同原因在哪里;
(2)改變繩長或變換焦點位置再畫橢圓,發現關系;
(3)用幾何畫板交流畫圖,觀察形狀變化;(4)如何描述形狀變化?
引導學生探究欲望,開展研究性學習。
四、評價說明:
本節課的學生評價堅持形成性評價和階段性評價相結合的原則。
(一)形成性評價:從操作能力、概括能力、學習興趣、交流合作、情緒情感方面對學習效果進行過程評價。對出現問題的學生,教師指出其可取之處并耐心引導,這樣有助于培養他們勇于面對挫折,持之以恒地科學探索精神;當學生做的精彩有創新,教師給予學生充分的鼓勵,從而進一步激發學生創造的潛能,提高他們的創新能力。
(二)階段性評價:從單元測試、期中測試等方面對學生的階段性學習成果進行測試。評價結果以每次測試成績和學生平時的綜合表現為依據。同時要進行學生的自我評價以及教師對行動的綜合性評價。
(三)教師自我反思評價:本課充分體現了“一個為本,四個調整”的新課程理念。
五、說課總結:
這節課使用計算機網絡技術,展現知識的發生過程,是學生始終處于問題探索研究狀態之中,激情引趣。注重數學科學研究方法的掌握,是研究性教學的一次有益嘗試。有利于改變學生的學習方式,有利于學生自主探究,有利于學生的實踐能力和創新意識的培養。
第四篇:橢圓及其標準方程教案
橢圓及其標準方程教案
教學目標:
(一)知識目標:掌握橢圓的定義及其標準方程,能正確推導橢圓的標準方程,會由標準方程求出橢圓的交點和焦距;
(二)能力目標:通過對橢圓概念的引入和標準方程的推導,培養學生分析、探索的能力,增強學生運用代數法解決幾何問題的能力;
(三)情感目標:激發學生學習數學的興趣、提高學生的審美情趣、培養學生勇于探索,敢于創新的精神。
教學重點:橢圓的定義和橢圓的標準方程的推導。教學難點:橢圓標準方程的推導。
教學方法:探究式教學法(教師通過問題誘導→啟發討論→探索結果,引導學生直觀觀察→歸納抽象→總結規律,使學生在獲得知識的同時,能夠掌握方法、提升能力。)
教具準備:自制教具(圓柱體、細繩)。
教學過程:(一)啟發誘導,推陳出新
1、復習舊知識:拉直一根細線,一端固定,作一個圓,由此回憶圓的定義(到一點的距離等于定長的點的軌跡),圓的標準方程;
2、提出新問題:到兩點的距離等于定長的點是什么軌跡呢? 嘗試作圖;
3、創設情境,引出課題:“橢圓及其標準方程”。(二)小組合作,形成概念
下面請同學們思考下面的問題:
1、在作圖時,視筆尖為動點,線的兩個固定的端點為定點,動點到兩定點距離之和符合什么條件?其軌跡如何?
2、改變兩端點之間的距離,使其與繩長相等,畫出的圖形還是橢圓嗎?
3、當繩長小于兩圖釘之間的距離時,還能畫出圖形嗎?
學生經過動手操作→獨立思考→小組討論→共同交流的探究過程,得出這樣三個結論:橢圓、線段、不存在。
歸納出橢圓的定義:平面內到兩個定點F1、F2的距離之和等于定長(大于F1F2)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距。
(三)橢圓標準方程的推導
1、建立適當坐標系(讓學生根據自己的經驗來確定)
原則:盡可能使方程的形式簡單、運算簡單;主要應使曲線對于坐標軸具有較多的對稱性。
2、標準方程推導過程如下:
①建立直角坐標系:以直線F1F2為x軸,線段F1F2的垂直平分線為y軸,建
立如圖所示的坐標系;
②確定點的坐標:設F1F2?2c,則F1??c,0?,F2?c,0?,設P?x,y?是橢圓上的任意一點;
③設定長為2a,由條件PF1?PF2?2a得
?x?c?2?y2??x?c?2?y2?2a;
x2y2④化簡:得到橢圓方程為2?2?1。
ab(通過學生自己動手推導方程是學生構建知識的一個過程。)
3、歸納方程特點,鞏固上述知識。
4、延伸:①焦點在y軸上:F1?0,?c?,F2?0,c?
y2x2②方程:2?2?1
ab③a,b,c的關系:b2?a2?c2,a?b?0,a?c?0
(四)例題講解
例1:平面內兩個定點的距離是8,寫出到這兩個定點距離的和是10的動點的軌跡方程。
解:這個軌跡是橢圓,兩個定點是焦點,用F1、F2表示。
取過點F1和F2的直線為x軸,線段F1F2的垂直平分線為y軸。?2a?10,2c?8
?a?5,c?4,b2?a2?c2?52?42?9,即b?3
x2y2x2y2?這個橢圓的標準方程是2?2?1,即??1
25953(例1是鞏固橢圓的定義及標準方程)
x2y2x2y2??1與橢圓c2:??1的焦點。
例2:分別求橢圓c1:433解:?4?3
?橢圓c1的焦點在x軸上,橢圓c2的焦點在y 軸上
a2?4,b2?3,c?a2?b2?1
??1,?橢圓c1的兩個焦點分別是0?和?1,0? ?0,是?1?和?0,1?。
橢圓c2的兩個焦點分別(例2會由橢圓的標準方程求出橢圓的焦點坐標和焦距)
(五)課堂練習
課本P61 A 1(2)(3)2(3)(4)(五)課堂小結
1、橢圓定義
2、焦點分別在x軸和y軸上的橢圓的標準方程(結合圖形,表述焦點坐標,焦距,系數的關系等)
3、考慮一下將橢圓平移到坐標軸任意位置時的坐標,留給同學們課后思考
4、布置作業:課本P61 A 1(1)(4)2(1)(2)
第五篇:橢圓及其標準方程教案
橢圓及其標準方程教案
湖北鄖陽中學
梁學文
教學目標:
使學生理解橢圓的定義,掌握橢圓的標準方程及標準方程的推導過程
培養學生運用坐標解決集合問題的能力
培養學生發現規律、尋求規律、認識規律和用規律解決問題的能力 教學重點:
橢圓的定義及標準方程的推導 教學難點:
橢圓定義的理解 教學方法;探索法 教具準備:
細繩一根 教學過程:
課前引入部分:
一、明確教學目標:告訴大家開始新的章節:圓錐曲線,思考:為什么這三類曲線叫做圓錐曲線?
二、教具演示:在黑板用細繩演示到定點距離和等于定長的點的軌跡,請同學幫忙。分三類:繩長小于兩點距;等于;大于。
三、探索總結:師生共同歸納得到:繩長等于點距,得到線段;繩長大于點距,得到橢圓;繩長小于點距,不能得到圖形。
定義及方程推導:
一、定義引導:
平面內到兩定點F1、F2的距離之和等于常數(大于|F1F2|)的點的軌跡叫做橢圓.這兩個定點叫做橢圓的焦點,兩焦點的距離叫做焦距.
學生開始只強調主要幾何特征——到兩定點F1、F2的距離之和等于常數、教師在演示中要從兩個方面加以強調:
(1)將穿有粉筆的細線拉到圖板平面外,得到的不是橢圓,而是橢球形,使學生認識到需加限制條件:“在平面內”.
(2)這里的常數有什么限制嗎?教師邊演示邊提示學生注意:若常數=|F1F2|,則是線段F1F2;若常數<|F1F2|,則軌跡不存在;若要軌跡是橢圓,還必須加上限制條件:“此常數大于|F1F2|”.即兩定點的距離。
二、方程推導 1.標準方程的推導
由橢圓的定義,可以知道它的基本幾何特征,但對橢圓還具有哪些性質,我們還一無所知,所以需要用坐標法先建立橢圓的方程.
如何建立橢圓的方程?根據求曲線方程的一般步驟,可分:(1)建系設點;(2)點的集合;(3)代數方程;(4)化簡方程等步驟.
(1)建系設點
建立坐標系應遵循簡單和優化的原則,如使關鍵點的坐標、關鍵幾何量(距離、直線斜率等)的表達式簡單化,注意充分利用圖形的對稱性,使學生認識到下列選取方法是恰當的.
以兩定點F1、F2的直線為x軸,線段F1F2的垂直平分線為y軸,建立直角坐標系(如圖2-14).設|F1F2|=2c(c>0),M(x,y)為橢圓上任意一點,則有F1(-1,0),F2(c,0).
(2)點的集合
由定義不難得出橢圓集合為: P={M||MF1|+|MF2|=2a}.(3)代數方程
(4)化簡方程 化簡方程可請一個反映比較快、書寫比較規范的同學板演,其余同學在下面完成,教師巡視,適當給予提示:
①原方程要移項平方,否則化簡相當復雜;注意兩次平方的理由詳見問題3說明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②為使方程對稱和諧而引入b,同時b還有幾何意義,下節課還要
(a>b>0).
關于證明所得的方程是橢圓方程,因教材中對此要求不高,可從略.
示的橢圓的焦點在x軸上,焦點是F1(-c,0)、F2(c,0).這里c2=a2-b2. 2.兩種標準方程的比較(引導學生歸納)
0)、F2(c,0),這里c2=a2-b2;
-c)、F2(0,c),這里c2=a2+b2,只須將(1)方程的x、y互換即可得到. 教師指出:在兩種標準方程中,∵a2>b2,∴可以根據分母的大小來判定焦點在哪一個坐標軸上.
(三)例題與練習
例題
平面內兩定點的距離是8,寫出到這兩定點的距離的和是10的點的軌跡的方程.
分析:先根據題意判斷軌跡,再建立直角坐標系,采用待定系數法得出軌跡方程. 解:這個軌跡是一個橢圓,兩個定點是焦點,用F1、F2表示.取過點F1和F2的直線為x軸,線段F1F2的垂直平分線為y軸,建立直角坐標系.
∵2a=10,2c=8.
∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3 因此,這個橢圓的標準方程是
請大家再想一想,焦點F1、F2放在y軸上,線段F1F2的垂直平分
練習1 寫出適合下列條件的橢圓的標準方程:
練習2 下列各組兩個橢圓中,其焦點相同的是
[
]
由學生口答,答案為D.(四)小結 1.定義:橢圓是平面內與兩定點F1、F2的距離的和等于常數(大于|F1F2|)的點的軌跡.
3.圖形如圖2-
15、2-16.
4.焦點:F1(-c,0),F2(c,0).F1(0,-c),F2(0,c).
五、布置作業
課后習題