第一篇:高三物理三輪基礎知識精品教案3:牛頓運動定律
高三物理三輪基礎知識精品教案3:牛頓運動定律
牛頓三個運動定律是力學的基礎,對整個物理學也有重大意義。本章考查的重點是牛頓第二定律,而牛頓第一定律和第三定律在牛頓第二定律的應用中得到了完美的體現。從近幾年高考看,要求準確理解牛頓第一定律;加深理解牛頓第二定律,熟練掌握其應用,尤其是物體受力分析的方法;理解牛頓第三定律;理解和掌握運動和力的關系;理解超重和失重。本章內容的高考試題每年都有,對本章內容單獨命題大多以選擇、填空形式出現,趨向于用牛頓運動定律解決生活、科技、生產實際問題。經常與電場、磁場聯系,構成難度較大的綜合性試題,運動學的知識往往和牛頓運動定律連為一體,考查推理能力和綜合分析能力。
1、牛頓第一定律:一切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止。
對牛頓第一定律的理解要點:(1)運動是物體的一種屬性,物體的運動不需要力來維持;(2)它定性地揭示了運動與力的關系,即力是改變物體運動狀態的原因,是使物體產生加速度的原因;(3)定律說明了任何物體都有一個極其重要的屬性——慣性;(4)不受力的物體是不存在的,牛頓第一定律不能用實驗直接驗證,但是建立在大量實驗現象的基礎之上,通過思維的邏輯推理而發現的。它告訴了人們研究物理問題的另一種方法,即通過大量的實驗現象,利用人的邏輯思維,從大量現象中尋找事物的規律;(5)牛頓第一定律是牛頓第二定律的基礎,不能簡單地認為它是牛頓第二定律不受外力時的特例,牛頓第一定律定性地給出了力與運動的關系,牛頓第二定律定量地給出力與運動的關系。
2、牛頓第二定律:物體的加速度跟所受的外力的合力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。公式F=ma.對牛頓第二定律的理解要點:(1)牛頓第二定律定量揭示了力與運動的關系,即知道了力,可根據牛頓第二定律研究其效果,分析出物體的運動規律;反過來,知道了運動,可根據牛頓第二定律研究其受力情況,為設計運動,控制運動提供了理論基礎;(2)牛頓第二定律揭示的是力的瞬時效果,即作用在物體上的力與它的效果是瞬時對應關系,力變加速度就變,力撤除加速度就為零,注意力的瞬時效果是加速度而不是速度;(3)牛頓第二定律是矢量關系,加速度的方向總是和合外力的方向相同的,可以用分量式表示,Fx=max, Fy=may,Fz=maz;(4)牛頓第二定律F=ma定義了力的基本單位——牛頓(定義使質量為1kg的物體產生1m/s2的加速度的作用力為1N,即1N=1kg.m/s2.3、牛頓第三定律:兩個物體之間的作用力與反作用力總是大小相等,方向相反,作用在同一直線上。
對牛頓第三定律的理解要點:(1)作用力和反作用力相互依賴性,它們是相互依存,互以對方作為自已存在的前提;(2)作用力和反作用力的同時性,它們是同時產生、同時消失,同時變化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性質的力;(4)作用力和反作用力是不可疊加的,作用力和反作用力分別作用在兩個不同的物體上,各產生其效果,不可求它們的合力,兩個力的作用效果不能相互抵消,這應注意同二力平衡加以區別。
4.物體受力分析的基本程序:(1)確定研究對象;(2)采用隔離法分析其他物體對研究對象的作用力;(3)按照先重力,然后環繞物體一周找出跟研究對象接觸的物體,并逐個分析這些物體對研究對象的彈力和摩擦力,最后分析其他場力;(4)畫物體受力圖,沒有特別要求,則畫示意圖即可。
5.超重和失重:(1)超重:物體有向上的加速度稱物體處于超重。處于失重的物體的物體對支持面的壓力F(或對懸掛物的拉力)大于物體的重力,即F=mg+ma.;(2)失重:物體有向下的加速度稱物體處于失重。處于失重的物體對支持面的壓力FN(或對懸掛物的拉力)小于物體的重力mg,即FN=mg-ma,當a=g時,FN=0,即物體處于完全失重。
6、牛頓定律的適用范圍:(1)只適用于研究慣性系中運動與力的關系,不能用于非慣性系;(2)只適用于解決宏觀物體的低速運動問題,不能用來處理高速運動問題;(3)只適用于宏觀物體,一般不適用微觀粒子。
第二篇:牛頓運動定律教案
三、牛頓運動定律
教學目標 1.知識目標:
(1)掌握牛頓第一、第二、第三定律的文字內容和數學表達式;(2)掌握牛頓第二定律的矢量性、瞬時性、獨立性和對應性;(3)了解牛頓運動定律的適用范圍. 2.能力目標:
(1)培養學生正確的解題思路和分析解決動力學問題的能力;(2)使學生掌握合理選擇研究對象的技巧. 3.德育目標:
滲透物理學思想方法的教育,使學生掌握具體問題具體分析,靈活選擇研究對象,建立合理的物理模型的解決物理問題的思考方法.
教學重點、難點分析
1.在高
一、高二的學習中,學生較系統地學習了有關動力學問題的知識,教師也介紹了一些解題方法,但由于學生掌握物理知識需要有一個消化、理解的過程,不能全面系統地分析物體運動的情境,在高三復習中需要有效地提高學生物理學科的能力,在系統復習物理知識的基礎上,對學生進行物理學研究方法的教育.本單元的重點就是幫助學生正確分析物體運動過程,掌握解決一般力學問題的程序.
2.本單元的難點在于正確、合理地選擇研究對象和靈活運用中學的數學方法,解決實際問題.難點的突破在于精選例題,重視運動過程分析,正確掌握整體—隔離法.
教學過程設計
一、引入
牛頓運動定律是經典力學的基礎,應用范圍很廣.
在力學中,只研究物體做什么運動,這部分知識屬于運動學的內容.至于物體為什么會做這種運動,這部分知識屬于動力學的內容,牛頓運動定律是動力學的支柱.我們必須從力、質量和加速度這三個基本概念的深化理解上掌握牛頓運動定律.這堂復習課希望學生對動力學的規律有較深刻的理解,并能在實際中正確運用.
二、教學過程 教師活動
1.提問:敘述牛頓第一定律的內容,慣性是否與運動狀態有關? 學生活動
回憶、思考、回答:
一切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止. 教師概括.
牛頓第一定律指明了任何物體都具有慣性——保持原有運動狀態不變的特性,同時也確定了力是一個物體對另一個物體的作用,力是改變物體運動狀態的原因.
應該明確:
(1)力不是維持物體運動的原因;
(2)慣性是物體的固有性質.慣性大小與外部條件無關,僅取決于物體本身的質量.無論物體受力還是不受力,無論是運動還是靜止,也無論是做勻速運動還是變速運動,只要物體質量一定,它的慣性都不會改變,更不會消失,慣性是物體的固有屬性.
放投影片:
[例1]某人用力推原來靜止在水平面上的小車,使小車開始運動,此后改用較小的力就可以維持小車做勻速直線運動,可見:
A.力是使物體產生運動的原因 B.力是維持物體運動速度的原因 C.力是使物體產生加速度的原因 D.力是使物體慣性改變的原因 討論、思考、回答: 經討論得出正確答案為:C. 2.提問:牛頓第二定律的內容及數學表達式是什么? 學生回憶、回答:
物體受到外力作用時,所獲得的加速度的大小跟外力大小成正比,跟物體的質量成反比,加速度的方向與合外力方向相同.
ΣF=ma
理解、思考. 教師講授: 牛頓第二定律的意義
(1)揭示了力、質量、加速度的因果關系.(2)說明了加速度與合外力的瞬時對應關系.(3)概括了力的獨立性原理
提問:怎樣應用牛頓第二定律?應用牛頓第二定律解題的基本步驟如何? 討論:歸納成具體步驟.
應用牛頓第二定律解題的基本步驟是:(1)依題意,正確選取并隔離研究對象.
(2)對研究對象的受力情況和運動情況進行分析,畫出受力分析圖.(3)選取適當坐標系,一般以加速度的方向為正方向.根據牛頓第二定律和運動學公式建立方程.
(4)統一單位,求解方程組.對計算結果進行分析、討論. 在教師的引導下,分析、思考. 依題意列式、計算.
[例2]有只船在水中航行時所受阻力與其速度成正比,現在船由靜止開始沿直線航行,若保持牽引力恒定,經過一段時間后,速度為v,加速度為a1,最終以2v的速度做勻速運動;若保持牽引力的功率恒定,經過另一段時間后,速度為v,加速度為a2,最終也以2v的速度做勻速運動,則a2=______a1.
放投影片,引導解題: 牽引力恒定:
牽引力功率恒定:
提問:通過此例題,大家有什么收獲?隨教師分步驟應用牛頓第二定律列式. 學生分組討論,得出結論:
力是產生加速度的原因,也就是說加速度與力之間存在即時直接的因果關系.被研究對象什么時刻受力,什么時刻產生加速度,什么時刻力消失,什么時刻加速度就等于零.這稱做加速度與力的關系的同時性,或稱為瞬時性.
放投影片:
[例3]已知,質量m=2kg的質點停在一平面直角坐標系的原點O,受到三個平行于平面的力的作用,正好在O點處于靜止狀態.已知三個力中F2=4N,方向指向負方向,從t=0時起,停止F1的作用,到第2秒末物體的位置坐標是(-2m,0).求:(1)F1的大小和方向;(2)若從第2秒末起恢復F1的作用,而同時停止第三個力F3的作用,則到第4秒末質點的位置坐標是多少?(3)第4秒末質點的速度大小和方向如何?(4)F3的大小和方向?
讀題,分析問題,列式,求解. 畫坐標圖:
經啟發、討論后,學生上黑板寫解答.
(1)在停止F1作用的兩秒內,質點的位置在x軸負方向移動,應
所以F1=-Fx=-ma=2(N)F1的方向沿X軸方向.
(2)當恢復F1的作用,而停止F3的作用的2秒內,因為F1在x軸正方向,F2在y軸負方向,直接用F1和F2列的動力學方程
所以第4秒末的位置坐標應是
其中v1x=a1t1=-2(m/s),t2=2s
(3)第4秒末質點沿x軸和y軸方向的速度分別為v2x和v2y,有
即第4秒末質點的速度為4m/s,沿y軸負方向.
限,設F3與y軸正向的夾角為θ,則有
對照解題過程理解力的獨立作用原理. 教師啟發、引深:
大量事實告訴我們,如果物體上同時作用著幾個力,這幾個力會各自產生自己的加速度,也就是說這幾個力各自產生自己的加速度與它們各自單獨作用時產生的加速度相同,這是牛頓力學中一條重要原理,叫做力的獨立作用原理,即:
3.提問:敘述牛頓第三定律的內容,其本質是什么? 回憶,思考,回答:
兩個物體之間的作用力和反作用力總是大小相等,方向相反,作用在一條直線上. 放投影片:
牛頓第三定律肯定了物體間的作用力具有相互作用的本質:即力總是成對出現,孤立的單個力是不存在的,有施力者,必要有受力者,受力者也給施力者以力的作用.這一對作用力和反作用力的關系是:等大反向,同時存在,同時消失,分別作用于兩個不同的物體上,且具有相同的性質和相同的規律.
[例4] 如圖1-3-2,物體A放在水平桌面上,被水平細繩拉著處于靜止狀態,則:
[
]
A.A對桌面的壓力和桌面對A的支持力總是平衡的 B.A對桌面的摩擦力的方向總是水平向右的 C.繩對A的拉力小于A所受桌面的摩擦力
D.A受到的重力和桌面對A的支持力是一對作用力與反作用力 思考、討論、得出正確結論選B,并討論其它選項錯在何處. 放投影片:
4.牛頓運動定律的適用范圍
牛頓運動定律如同一切物理定律一樣,都有一定的適用范圍.牛頓運動定律只適用于宏觀物體,一般不適用于微觀粒子;只適用于物體的低速(遠小于光速)運動問題,不能用來處理高速運動問題.牛頓第一定律和第二定律還只適用于慣性參照系.
理解,記筆記.
三、課堂小結
提問:你怎樣運用牛頓運動定律來解決動力學問題? 組織學生結合筆記討論并進行小結.
由牛頓第二定律的數學表達式ΣF=ma,可以看出凡是求瞬時力及作用效果的問題;判斷質點的運動性質的問題,都可用牛頓運動定律解決.
解決動力學問題的基本方法是:
(1)根據題意選定研究對象,確定m.
(2)分析物體受力情況,畫受力圖,確定F合.(3)分析物體運動情況,確定a.
(4)根據牛頓定律,力的概念、規律、運動學公式等建立有關方程.(5)解方程.(6)驗算、討論.
四、教學說明
1.作為高三總復習,涉及概念、規律多.因此復習重點在于理解概念、規律的實質,總結規律應用的方法和技巧.
2.復習課不同于新課,必須強調引導學生歸納、總結.注意知識的連貫性和知識點的橫向對比性.如一對作用力和反作用力與一對平衡力有什么不同?
3.復習課可以上得活躍些,有些綜合題可以由學生互相啟發,互相討論去解決,這樣既可以提高學生的學習興趣又可提高學生分析問題的能力.
同步練習
一、選擇題
1.如圖1-3-3所示,物體A放在物體B上,物體B放在光滑的水平面上,已知mA=6kg,mB=2kg.A、B間動摩擦因數μ=0.2.A物上系一細線,細線能承受的最大拉力是20N,水平向右拉細線,下述中正確的是(g=10m/s2)
[
]
A.當拉力F<12N時,A靜止不動 B.當拉力F>12N時,A相對B滑動 C.當拉力F=16N時,B受A摩擦力等于4N D.無論拉力F多大,A相對B始終靜止
2.如圖1-3-4所示,物體m放在固定的斜面上,使其沿斜面向下滑動,設加速度為a1;若只在物體m上再放上一個物體m′,則m′與m一起下滑的加速度為a2;若只在m上施加一個方向豎直向下,大小等于m′g的力F,此時m下滑的加速度為a3,則
[
]
A.當a1=0時,a2=a3且一定不為零 B.只要a1≠0,a1=a2<a3 C.不管a1如何,都有a1=a2=a3 D.不管a1如何,都有a1<a2=a3
3.如圖1-3-5所示,在光滑的水平面上放著兩塊長度相等,質量分別為M1和M2的木板,在兩木板的左端分別放有一個大小、形狀、質量完全相同的物塊.開始都處于靜止狀態,現分別對兩物體施加水平恒力F1、F2,當物體與木板分離后,兩木板的速度分別為v1和v2,若已知v1>v2,且物體與木板之間的動摩擦因數相同,需要同時滿足的條件是
[
]
A.F1=F2,且M1>M2 B.F1=F2,且M1<M2 C.F1>F2,且M1=M2 D.F1<F2,且M1=M2
二、非選擇題
4.如圖1-3-6所示,一質量為M=4kg,長為L=3m的木板放在地面上.今施一力F=8N水平向右拉木板,木板以v0=2m/s的速度在地上勻速運動,某一時刻把質量為m=1kg的鐵塊輕輕放在木板的最右端,不計鐵塊與木板間的摩擦,且小鐵塊視為質點,求小鐵塊經多長時間將離開木板?(g=10m/s2)
5.一艘宇宙飛船飛近一個不知名的行星,并進入靠近該行星表面的圓形軌道,宇航員著手進行預定的考察工作.宇航員能不能僅僅用一只表通過測定時間來測定該行星的平均密度?說明理由.
6.物體質量為m,以初速度v0豎直上拋.設物體所受空氣阻力大小不變,已知物體經過時間t到達最高點.求:
(1)物體由最高點落回原地要用多長時間?(2)物體落回原地的速度多大?
7.如圖1-3-7所示,質量均為m的兩個梯形木塊A和B緊挨著并排放在水平面上,在水平推力F作用下向右做勻加速運動.為使運動過程中A和B之間不發生相對滑動,求推力F的大小.(不考慮一切摩擦)
8.質量m=4kg的質點,靜止在光滑水平面上的直角坐標系的原點O,先用F1=8N的力沿x軸作用了3s,然后撤去F1,再用y方向的力F2=12N,作用了2s,問最后質點的速度的大小、方向及質點所在的位置.
參考答案
1.CD
2.B
3.BD
4.2s
7.0<F≤2mgtanθ
第三篇:高一物理《牛頓運動定律的應用》教案
教學目標
1、知識目標:
(1)能結合物體的運動情況進行受力分析.(2)掌握應用牛頓運動定律解決問題的基本思路和方法,學會用牛頓運動定律和運動學公式解決力學問題.2、能力目標:培養學生審題能力、分析能力、利用數學解決問題能力、表述能力.3、情感目標:培養嚴謹的科學態度,養成良好的思維習慣.教學建議
教材分析
本節主要通過對典型例題的分析,幫助學生掌握處理動力學兩類問題的思路和方法.這兩類問題是:已知物體的受力情況,求解物體的運動情況;已知物體的運動情況,求解物體的受力.教法建議
1、總結受力分析的方法,讓學生能夠正確、快速的對研究對象進行受力分析.2、強調解決動力學問題的一般步驟是:確定研究對象;分析物體的受力情況和運動情況;列方程求解;對結果的合理性討論.要讓學生逐步習慣于對問題先作定性和半定量分析,弄清問題的物理情景后再動筆算,并養成畫情景圖的好習慣.3、根據學生的實際情況,對這部分內容分層次要求,即解決兩類基本問題——→解決斜面問題——→較簡單的連接體問題,建議該節內容用2-3節課完成.教學設計示例
教學重點:物體的受力分析;應用牛頓運動定律解決兩類問題的方法和思路.教學難點:物體的受力分析;如何正確運用力和運動關系處理問題.示例:
一、受力分析方法小結
通過基本練習,小結受力分析方法.(讓學生說,老師必要時補充)
1、練習:請對下例四幅圖中的A、B物體進行受力分析.
答案:
2、受力分析方法小結
(1)明確研究對象,把它從周圍物體中隔離出來;
(2)按重力、彈力、摩擦力、外力順序進行受力分析;
(3)注意:分析各力的依據和方法:產生條件;物體所受合外力與加速度方向相同;分析靜摩擦力可用假設光滑法.不多力、不丟力的方法:繞物一周分析受力;每分析一力均有施力物體;合力、分力不要重復分析,只保留實際受到的力.二、動力學的兩類基本問題
1、已知物體的受力情況,確定物體的運動情況.2、已知物體的運動情況,確定物體的受力情況.3、應用牛頓運動定律解題的一般步驟:
選取研究對象;(注意變換研究對象)
畫圖分析研究對象的受力和運動情況;(畫圖很重要,要養成習慣)
進行必要的力的合成和分解;(在使用正交分解時,通常選加速度方向為一坐標軸方向,當然也有例外)
根據牛頓運動定律和運動學公式列方程求解;(要選定正方向)
對解的合理性進行討論.三、處理連接體問題的基本方法
1、若連接體中各個物體產生的加速度相同,則可采用整體法求解該整體產生的加速度.2、若連接體中各個物體產生的加速度不同,則一般不可采用整體法.(若學生情況允許,可再提高觀點講)
3、若遇到求解連接體內部物體間的相互作用力的問題,則必須采用隔離法.以上各問題均通過典型例題落實.探究活動
題目:根據自己的學習情況,編一份有關牛頓運動定律應用的練習題.題量:4-6道.要求:給出題目詳細解答,并注明選題意圖及該題易錯之處.評價:可操作性、針對性,可調動學生積極性。
第四篇:牛頓運動定律全套教案
超重和失重
一、教學目標
1.了解超重和失重現象;
2.運用牛頓第二定律研究超重和失重的原因;
3.培養學生利用牛頓第二定律分析問題和解決問題的能力。
二、重點、難點分析
1.超重和失重在本質上并不是物體受到的重力發生了變化,而是物體在豎直方向有加速度時,物體對支持物的壓力或拉力的變化,這一點學生理解起來往往困難較大。讓學生理解超重和失重的本質是本節課教學的重點之一,也是后面理解航天器中失重現象的基礎。
2.超重和失重中物體對支持物的壓力和拉力的計算,是牛頓第二定律應用的一個方面,也應作為本節教學的重點之一。
三、教具
演示教具:超重和失重演示裝置、彈簧秤、重物、細線、下面扎孔的可樂瓶、錄像資料。
學生用具:彈簧秤、鉤碼、打點計時器用重錘、繡花線。
四、主要教學過程(一)引入新課
看錄像片《航天飛機上的失重現象》《失重物體的運動》。
提問:剛才所看到的錄像片是在什么地方發生的?它向我們展示了一種什么現象?
這里給我們展示了失重現象,是在航天飛機中發生的。航天飛機在起飛中產生了超重現象,在太空中又產生了失重現象。超重和失重是怎么產生的呢?這就是我們這節課研究的內容。
(二)教學過程設計 板書:
十、超重和失重 我們先來研究一下超重現象。板書:1.超重現象
實驗:介紹裝置,架子上有兩個滑輪,兩邊掛有重物。我們取左邊的重物加以研究,重物靜止時,彈簧秤的示數大小等于物體所受的重力,物體對彈簧秤的拉力等于物體所受的重力。放手后物體做向上的加速運動,我們再觀察彈簧秤示數的變化。
提問:看到了什么現象?彈簧秤的示數增大,物體對繩的拉力增大。以上實驗可以用更簡單的裝置來完成,只不過觀察時的效果稍差一些。彈簧秤下掛一重物,物體靜止時,彈簧秤的示數等于物體所受的重力。當物體向上做加速運動時,彈簧秤的示數大于物體所受的重力,物體對繩的拉力大于物重。學生小實驗:細線拉重錘(繡花線、打點計時器用重錘)。線系在重錘上,緩慢拉起,再讓重錘做向上的加速運動,線斷。
分析原因:取物體為研究對象,T-G=ma,T-mg=ma,彈簧秤的拉力為
T=mg+ma=m(g+a)討論:(1)物體做向上的加速運動時,彈簧對物體的拉力大于物體靜止時的拉力,T>mg,物體對彈簧的拉力大于物重。
舉例:起重機在吊起重物時,有經驗的司機都不讓物體的加速度過大是什么原因?
(2)學生列舉生活中的感受:電梯向上起動時,電梯對人的支持力大于靜止時的支持力,同樣人對電梯的壓力也大于物重;電梯下降剎車時也一樣。只要物體的加速度方向是向上的,就會產生以上現象。
提問:在電梯中放一彈簧測力秤,人站在上面。當電梯向上加速度運動時秤的示數怎樣變化?
(3)整理公式:T=m(g+a)=mg′,g′叫做等效重力加速度,g′>g。站在電梯里的人在電梯向上加速或向下減速時,人對電梯的壓力大于人的重力,好像是重力加速度g增大了。火箭起飛時有很大的向上的加速度,內部發生的是超重現象。當物體存在向上的加速度時,它對支持物的壓力(或對懸掛物的拉力)大于物重的現象叫做超重現象。
發生超重現象時,物重并沒有變化。2.失重現象
實驗:重物靜止時,彈簧秤的示數大小等于物體所受的重力,物體對彈簧秤的拉力等于物體所受的重力。放手后物體做向下的加速運動,我們再觀察彈簧秤示數的變化。
提問:看到了什么現象?彈簧秤的示數減少,物體對支持物的拉力減小。學生實驗:觀察感受失重現象。彈簧秤下掛一重物,物體靜止時,彈簧秤的示數等于物體所受的重力。當物體向下做加速運動時,彈簧秤的示數小于物體所受的重力。(注意對減速時的示數增大的解釋。)取物體為研究對象,G-T=ma,彈簧秤的拉力為T=mg-ma=m(g-a)討論:(1)物體做向下的加速運動時,彈簧對物體的拉力小于物體靜止時的拉力,T<mg,物體對彈簧的拉力小于物重。
(2)學生列舉生活中的感受:電梯向下起動時,電梯對人的支持力小于靜止時的支持力,同樣人對電梯的壓力也小于物重;電梯上升剎車時也一樣。(3)整理公式:T=m(g-a)=mg′,g′叫做等效重力加速度,g′<g。站在電梯里的人在電梯向下加速或向上減速時,人對電梯的壓力小于人的重力,好像是重力加速度g減少了。
失重:當物體存在向下的加速度時,它對支持物的壓力(或拉力)小于物重的現象,叫做失重。當a=g時,T=0,叫做完全失重。
發生失重時,物重并沒有變化。
實驗:在可樂瓶下面扎一些小孔,裝上水后水從小孔噴出。把水瓶拋出,噴水情況會怎樣變化?分析瓶拋出后,水怎樣噴。讓學生先分析可能發生的現象,再觀察上拋時的現象,下拋的情況讓學生回家去做。解釋現象出現的原因,拋出后水處于失重狀態,對瓶無壓力,水不噴。
3.例題
例1 關于電梯的幾種運動中,支持力的變化情況如何?
靜止: 上升:
下降:
勻速 加速 減速 勻速 加減 減速
速度方向 加速度方支持力與重
向 力 無 ↑ ↑ ↑ ↓ ↓ ↓
無 無 ↑ ↓ 無 ↓ ↑
= = > < = < >
思考題:一個在地面上能舉起100千克質量杠鈴的運動員在一個加速運動的電梯上能舉起多大質量的杠鈴?a=g,a=g/2,分向上和向下兩種加速情況討論。(投影)例2:一臺升降機的地板上放著一個質量為m的物體,它跟地面間的動摩擦因數為μ,可以認為物體受到的最大靜摩擦力等于滑動摩擦力。一根勁度系數為k的彈簧水平放置,左端跟物體相連,右端固定在豎直墻上,開始時彈簧的伸長為△x,彈簧對物體有水平向右的拉力,求:升降機怎樣運動時,物體才能被彈簧拉動?
分析:物體開始沒有滑動是由于彈簧的拉力小于最大靜摩擦力。這里f=μN,只有減小地面對物體的壓力才能減少最大靜摩擦力,當f=μN=k△x時物體開始滑動。
取物體為研究對象,受力如圖,當物體做向下的加速運動或向上的減速運動時,才能使地面對物體的壓力減小,即G-N=ma。聯解兩式得:a=(G-N)/m=(mg-k△x/μ)/m=g-k△x/μm 即升降機做a>g-k△x/μm的向下的勻加速運動或向上的勻減速運動時,物體可以在地面上滑動。
(三)小結:發生超重和失重現象時,物體并沒有變化,只是由于物體有豎直方向的加速度使得物體對支持物的作用力發生了變化。這里討論的問題限于地面附近的物體所發生的超重和失重現象,沒有討論航天飛機中的失重現象。請大家思考一下,航天飛機中的物體受不受地球的引力,它上面的失重現象又是怎樣發生的呢?
布置作業;練習(1)(2)(3)
五、說明
1.本節課可采用在教師引導下,教師跟學生共同討論研究的方式進行。在教學中教師要注意學生對知識的接受情況,恰當地提出問題,對學生的認識給予正確的評價和解釋。
2.課上安排的演示實驗要自己制作,彈簧秤的量程要小,最好是0.2千克左右的,刻度要明顯利于學生觀察。兩邊重物的質量選擇要合適,可使加速過程時間較長、較穩定。
3.兩個學生小實驗,拉斷線的實驗要注意器材的選擇;用彈簧秤拉鉤碼的實驗要注意現象的正確解釋。
第五篇:高三物理三輪基礎知識精品教案5:機械能
高三物理三輪基礎知識精品教案5:機械能
能的概念、功和能的關系以及各種不同形式的能的相互轉化和守恒的規律是自然界中最重要、最普遍、最基本的客觀規律,它貫穿于整個物理學中。本章的功和功率、動能和動能定理、重力的功和重力勢能、彈性勢能、機械能守恒定律是歷年高考的必考內容,考查的知識點覆蓋面全,頻率高,題型全。動能定理、機械能守恒定律是力學中的重點和難點,用能量觀點解題是解決動力學問題的三大途徑之一。考題的內容經常與牛頓運動定律、曲線運動、動量守恒定律、電磁學等方面知識綜合,物理過程復雜,綜合分析的能力要求較高,這部分知識能密切聯系實際、生活實際、聯系現代科學技術,因此,每年高考的壓軸題,高難度的綜合題經常涉及本章知識。例如:2001年的全國卷第22題、2001年上海卷第23題、2002年全國理綜第30題、2003年全國理綜第34題、2004年上海卷第21題、2004年物理廣西卷第17題、2004年理綜福建卷第25題等。同學平時要加強綜合題的練習,學會將復雜的物理過程分解成若干個子過程,分析每一個過程的始末運動狀態量及物理過程中力、加速度、速度、能量和動量的變化,對于生活、生產中的實際問題要建立相關物理模型,靈活運用牛頓定律、動能定理、動量定理及能量轉化的方法提高解決實際問題的能力。
1.深刻理解功的概念
功是力的空間積累效應。它和位移相對應(也和時間相對應)。計算功的方法有兩種:
⑴按照定義求功。即:W=Fscosθ。在高中階段,這種方法只適用于恒力做功。當0????2時F做正功,當???2時F不做功,當
?2????時F做負功。
這種方法也可以說成是:功等于恒力和沿該恒力方向上的位移的乘積。
⑵用動能定理W=ΔEk或功能關系求功。當F為變力時,高中階段往往考慮用這種方法求功。
這種方法的依據是:做功的過程就是能量轉化的過程,功是能的轉化的量度。如果知道某一過程中能量轉化的數值,那么也就知道了該過程中對應的功的數值。
1用力和位移的夾角α判斷;○2用力(3).會判斷正功、負功或不做功。判斷方法有:○
3用動能變化判斷.和速度的夾角θ判斷定;○(4)了解常見力做功的特點:
重力做功和路徑無關,只與物體始末位置的高度差h有關:W=mgh,當末位置低于初位置時,W>0,即重力做正功;反之則重力做負功。
滑動摩擦力做功與路徑有關。當某物體在一固定平面上運動時,滑動摩擦力做功的絕對值等于摩擦力與路程的乘積。
在彈性范圍內,彈簧做功與始末狀態彈簧的形變量有關系。
1一對作用力和反作用力在同一段時間內做的(5)一對作用力和反作用力做功的特點:○
2一對互為作用反作用的摩擦力做的總功可能為零總功可能為正、可能為負、也可能為零;○(靜摩擦力)、可能為負(滑動摩擦力),但不可能為正。
2.深刻理解功率的概念
(1)功率的物理意義:功率是描述做功快慢的物理量。
(2)功率的定義式:P?Wt,所求出的功率是時間t內的平均功率。
(3)功率的計算式:P=Fvcosθ,其中θ是力與速度間的夾角。該公式有兩種用法:①求某一時刻的瞬時功率。這時F是該時刻的作用力大小,v取瞬時值,對應的P為F在該時刻的瞬時功率;②當v為某段位移(時間)內的平均速度時,則要求這段位移(時間)內F必須為恒力,對應的P為F在該段時間內的平均功率。(4)重力的功率可表示為PG=mgVy,即重力的瞬時功率等于重力和物體在該時刻的豎直分速度之積。
3.深刻理解動能的概念,掌握動能定理。
(1)動能Ek?12mV2是物體運動的狀態量,而動能的變化ΔEK是與物理過程有關的過程量。
(2)動能定理的表述
合外力做的功等于物體動能的變化。(這里的合外力指物體受到的所有外力的合力,包括重力)。表達式為W=ΔEK.動能定理也可以表述為:外力對物體做的總功等于物體動能的變化。實際應用時,后一種表述比較好操作。不必求合力,特別是在全過程的各個階段受力有變化的情況下,只要把各個力在各個階段所做的功都按照代數和加起來,就可以得到總功。
動能定理建立起過程量(功)和狀態量(動能)間的聯系。這樣,無論求合外力做的功還是求物體動能的變化,就都有了兩個可供選擇的途徑。功和動能都是標量,動能定理表達式是一個標量式,不能在某一個方向上應用動能定理。
4.深刻理解勢能的概念,掌握機械能守恒定律。
1.機械能守恒定律的兩種表述
⑴在只有重力做功的情形下,物體的動能和重力勢能發生相互轉化,但機械能的總量保持不變。
⑵如果沒有摩擦和介質阻力,物體只發生動能和重力勢能的相互轉化時,機械能的總量保持不變。
對機械能守恒定律的理解:
①機械能守恒定律的研究對象一定是系統,至少包括地球在內。通常我們說“小球的機械能守恒”其實一定也就包括地球在內,因為重力勢能就是小球和地球所共有的。另外小球的動能中所用的v,也是相對于地面的速度。
②當研究對象(除地球以外)只有一個物體時,往往根據是否“只有重力做功”來判定機械能是否守恒;當研究對象(除地球以外)由多個物體組成時,往往根據是否“沒有摩擦和介質阻力”來判定機械能是否守恒。
③“只有重力做功”不等于“只受重力作用”。在該過程中,物體可以受其它力的作用,只要這些力不做功。
2.機械能守恒定律的各種表達形式 ⑴mgh?12mv2?mgh??12?; ?Ekmv?,即Ep?Ek?E?p2⑵?EP??Ek?0;?E1??E2?0;?E增??E減
用⑴時,需要規定重力勢能的參考平面。用⑵時則不必規定重力勢能的參考平面,因為重力勢能的改變量與參考平面的選取沒有關系。尤其是用ΔE增=ΔE減,只要把增加的機械能和減少的機械能都寫出來,方程自然就列出來了。
5.深刻理解功能關系,掌握能量守恒定律。
(1)做功的過程是能量轉化的過程,功是能的轉化的量度。
能量守恒和轉化定律是自然界最基本的規律之一。而在不同形式的能量發生相互轉化的過程中,功扮演著重要的角色。本章的主要定理、定律都可由這個基本原理出發而得到。
需要強調的是:功是一個過程量,它和一段位移(一段時間)相對應;而能是一個狀態量,它與一個時刻相對應。兩者的單位是相同的(都是J),但不能說功就是能,也不能說“功變成了能”。
(2)復習本章時的一個重要課題是要研究功和能的關系,尤其是功和機械能的關系。突出:“功是能量轉化的量度”這一基本概念。
1物體動能的增量由外力做的總功來量度:W外=ΔEk,這就是動能定理。○2物體重力勢能的增量由重力做的功來量度:WG=-ΔEP,這就是勢能定理。○3物體機械能的增量由重力以外的其他力做的功來量度:○W其=ΔE機,(W其表示除重力以外的其它力做的功),這就是機械能定理。
4當W其=0時,說明只有重力做功,所以系統的機械能守恒。○5一對互為作用力反作用力的摩擦力做的總功,用來量度該過程系統由于摩擦而減小○的機械能,也就是系統增加的內能。Q=fd(d為這兩個物體間相對移動的路程)。