第一篇:初中數學幾何證明題教學模式的探索
初中數學幾何證明題教學模式的探索
初中幾何證明題不但是學習的重點。而且是學習的難點,很多同學對幾何證明題。不知從何著手,一部分學生雖然知道答案,但敘述不清楚,說不出理由,對邏輯推理的證明過程幾乎不會寫,這樣,導致大部分的學生失去了幾何學習的信心,雖然新的課程理念要求,推理的過程不能過繁。一切從簡,但證明的過程要求做到事實準確、道理嚴密,證明過程方能完整,教學中怎樣才能把幾何證明題的求解過程敘述清楚呢?根據教學經驗,我在教學中是這樣做的,希望與大家一起探討。
(1)“讀”——讀題
如何指導學生讀題?仁者見仁、智者見智,我們課題組結合我們的研究和本校學生的實際,將讀題分為三步:第一步,粗讀(類似語文閱讀的瀏覽)。快速地將題目從頭到尾瀏覽一遍,大致了解題目的意思和要求;第二步,細讀。在大致了解題目的意思和要求的情況下,再認真地有針對性地讀題,弄清題目的題設和結論,搞清已知是什么、需要證明的是什么?并盡可能地將已知條件在圖形中用符號簡明扼要地表示出來(如哪兩個角相等,哪兩條線段相等,垂直關系,等等),若題中給出的條件不明顯的(即有隱含條件的),還要指導學生如何去挖掘它們、發現它們;第三步,記憶復述。在前面粗讀和細讀的基礎上,先將已知條件和要證明的結論在心里默記一遍,再結合圖形中自己所標的符號將原題的意思復述出來。到此讀題這一環節,才算完成。
對于讀題這一環節,我們之所以要求這么復雜,是因為在實際證題的過程中,學生找不到證明的思路或方法,很多時候就是由于漏掉了題中某些已知條件或將題中某些已知條件記錯或想當然地添上一些已知條件,而將已知記在心里并能復述出來就可以很好地避免這些情況的發生。
(2)“析”——分析
指導學生用數學方法中的“分析法”,執果索因,一步一步探究證明的思路和方法。教師用啟發性的語言或提問指導學生,學生在教師的指導下經過一系列的質疑、判斷、比較、選擇,以及相應的分析、綜合、概括等認識活動,思考、探究,小組內討論、交流、發現解決問題的思路和方法。
(3)“述”——口述
學生學習小組推選小組代表,由小組代表分析自己那一組探究到的證明的思路和方法,口述證明過程及每一步的依據。我們知道學習語文、外語及其他語言都是從“說”開始學起的,那么學習幾何語言,也可以嘗試先“說”后寫。特別是初一初二的學生,讓他們先在小組內自主探索、討論交流,弄清證題思路,然后再讓學生代表口述證題過程,這對于訓練學生應用和提高幾何語言的表達能力很有好處。
(4)“擇”——選擇最簡易的方法
在各位學生代表口述完解題過程后,教師引導學生比較、選擇最簡單的一種證題方法,這樣做,不僅能幫助學生進一步理清證明思路、記憶相關的幾何定理、性質,而且還增加了學生學習的興趣和好奇心,從而激發學生學習的積極性和主動性。
(5)“演”——板演
在學生集體復述解題的基礎上,教師板演上述解題過程,給學生作證題的書寫示范,讓學生體會怎樣合理、規范、科學地書寫證明過程。
(6)“練”——變式練習
變式,既是一種重要的思想方法,又是一種行之有效的教學方法。通過變式訓練,在課堂上展現知識發生、發展、形成的完整認知過程。在教學實踐中,筆者深深體會到:變式教學符合學生是認知規律,能有層次地推進,為學生提供一個求異、思變的空間,讓學生把學到的概念、公式、定理、法則靈活應用道各種情景中去,培養學生靈活多變的思維品質,提高學生研究、探索問題的能力,提高數學素養,從而有效地提高數學教學效果。
因此,在學生獲得某種基本的證法后,教師可以通過變式,改變問題中的條件,轉換探求的結論,變化問題的形式或圖形的形狀位置等多種途徑,指導學生從不同的方向、不同的角度、不同的層次去思考問題。
在此基礎上,再讓學生分組討論,合作交流,作出更多的變式題目,并思考改變了已知或結論的題目又如何證明。
第二篇:初中數學幾何證明題
平面幾何大題 幾何是豐富的變換
多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手
注意哪些角相等哪些邊相等,用標記。進而看出哪些三角形全等。平行四邊形所有的判斷方式?
難題
第三篇:初中數學幾何證明題
初中數學幾何證明題
分析已知、求證與圖形,探索證明的思路。
對于證明題,有三種思考方式:
(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干后,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。
(3)正逆結合。對于從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
幾何證明題入門難,證明題難做,是許多初中生在學習中的共識,這里面有很多因素,有主觀的、也有客觀的,學習不得法,沒有適當的解題思路則是其中的一個重要原因。掌握證明題的一般思路、探討證題過程中的數學思維、總結證題的基本規律是求解幾何證明題的關鍵。在這里結合自己的教學經驗,談談自己的一些方法與大家一起分享。
一要審題。很多學生在把一個題目讀完后,還沒有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可齲我們應該逐個條件的讀,給的條件有什么用,在腦海中打個問號,再對應圖形來對號入座,結論從什么地方入手去尋找,也在圖中找到位置。
二要記。這里的記有兩層意思。第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來。如給出對邊相等,就用邊相等的符號來表示。第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來。
三要引申。難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那么這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論(就像電腦一下,你一點擊開始立刻彈出對應的菜單),然后在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便于以后難題的學習。
四要分析綜合法。分析綜合法也就是要逆向推理,從題目要你證明的結論出發往回推理。看看結論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對頂角相等2.平行線里同位角相等、內錯角相等3.余角、補角定理4.角平分線定義5.等腰三角形6.全等三角形的對應角等等方法。然后結合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉換成證明其他的結論,通常缺少的條件會在第三步引申出的條件和題目中出現,這時再把這些條件綜合在一起,很條理的寫出證明過程。
五要歸納總結。很多同學把一個題做出來,長長的松了一口氣,接下來去做其他的,這個也是不可取的,應該花上幾分鐘的時間,回過頭來找找所用的定理、公理、定義,重新審視這個題,總結這個題的解題思路,往后出現同樣類型的題該怎樣入手。
第四篇:初中幾何證明題
(1)如圖,在三角形ABC中,BD,CE是高,FG分別為ED,BC的中點,O是外心,求證AO∥FG 問題補充:
證明:延長AO,交圓O于M,連接BM,則:∠ABM=90°,且∠M=∠ACB.∠AEC=∠ADB=90°,∠EAC=∠DAB,則⊿AEC∽⊿ADB,AE/AD=AC/AB;
又∠EAD=∠CAB,則⊿EAD∽⊿CAB,得∠AED=∠ACB=∠M.∴∠AED+∠BAM=∠M+∠BAM=90°,得AO⊥DE.--------(1)
連接DG,EG.點G為BC的中點,則DG=BC/2;(直角三角形斜邊的中線等于斜邊的一半)同理可證:EG=BC/2.故DG=EG.又F為DE的中點,則FG⊥DE.(等腰三角形底邊的中線也是底邊的高)-----------------(2)所以,AO∥FG.(2)已知梯形ABCD中,對角線AC與腰BC相等,M是底邊AB的中點,L是邊DA延長線上一點連接LM并延長交對角線BD于N點
延長LM至E,使LM=ME。
∵AM=MB,LM=ME,∴ALBE是平行四邊形,∴AL=BE,AL∥EB,∴LN/EN=DN/BN。
延長CN交AB于F,令LC與AB的交點為G。
∵AB是梯形ABCD的底邊,∴BF∥CD,∴CN/FN=DN/BN。
由LN/EN=DN/BN,CN/FN=DN/BN,得:LN/EN=DN/BN,∴LC∥FE,∴∠GLM=∠FEB。
由AL∥EB,得:∠LAG=∠EBF,∠ALM=∠BEM。
由∠ALM=∠BEM,∠GLM=∠FEB,得:∠ALM-∠GLM=∠BEM-∠FEB,∴∠ALG=∠BEF,結合證得的∠LAG=∠EBF,AL=BE,得:△ALG≌△BEF,∴AG=BF。
∵AC=BC,∴∠CAG=∠CBF,結合證得的AG=BF,得:△ACG≌△BCF,∴ACL=∠BCN。
(3)如圖,三角形ABC中,D,E分別在邊AB,AC上且BD=CE,F,G分別為BE,CD的中點,直線FG交
AB于P,交AC于Q.求證:AP=AQ
取BC中點為H
連接HF,HG并分別延長交AB于M點,交AC于N點
由于H,F均為中點
易得:
HM‖AC,HN‖AB
HF=CE/2,HG=BD/
2得到:
∠BMH=∠A
∠CNH=∠A
又:BD=CE
于是得:
HF=HG
在△HFG中即得:
∠HFG=∠HGF
即:∠PFM=∠QGN
于是在△PFM中得:
∠APQ=180°-∠BMH-∠PFM=180°-∠A-∠QGN
在△QNG中得:
∠AQP=180°-∠CNH-∠QGN=180°-∠A-∠QGN
即證得:
∠APQ=∠AQP
在△APQ中易得到: AP=AQ
(4)ABCD為圓內接凸四邊形,取△DAB,△ABC,△BCD,△CDA的內心O,O,O,O.求證:OOOO為矩形. 123
41234
已知銳角三角形ABC的外接圓O,過B,C作圓的切線交于E,連結AE,M為BC的中點。求證角BAM=角EAC。
設點O為△ABC外接圓圓心,連接OP;
則O、E、M三點共線,都在線段BC的垂直平分線上。
設AM和圓O相交于點Q,連接OQ、OB。
由切割線定理,得:MB2 = Q·MA ;
由射影定理,可得:MB2 = ME·MO ;
∴MQ·MA = ME·MO,即MQ∶MO = ME∶MA ;
又∵ ∠OMQ = ∠AME,∴△OMQ ∽ △AME,可得:∠MOQ = ∠MAE。
設OM和圓O相交于點D,連接AD。
∵弧BD = 弧CD,∴∠BAD = ∠CAD。
∵∠DAQ =(1/2)∠MOQ =(1/2)∠MAE,∴∠DAE = ∠MAE∠DAE = ∠CAD-∠DAQ = ∠CAM。
設AD、BE、CF是△ABC的高線,則△DEF稱為△ABC的垂足三角形,證明這些高線平分垂足三角形的內角或外角 設交點為O,OE⊥EC,OD⊥DC,則CDOE四點共圓,由圓周角定理,∠ODE=∠OCE。
CF⊥FC,AD⊥DC,則ACDF四點共圓,由圓周角定理,∠ADF=∠ACF=∠OCE=∠ODE,AD平分∠EDF。
其他同理。
平行四邊形內有一點P,滿足角PAB=角PCB,求證:角PBA=角PDA
過P作PH//DA,使PH=AD,連結AH、BH
∴四邊形AHPD是平行四邊形
∴∠PHA=∠PDA,HP//=AD
∵四邊形ABCD是平行四邊形
∴AD//=BC
∴HP//=BC
∴四邊形PHBC是平行四邊形
∴∠PHB=∠PCB
又∠PAB=∠PCB
∴∠PAB=∠PHB
∴A、H、B、P四點共圓
∴∠PHA=∠PBA
∴∠PBA=∠PDA
補充:
補充:
把被證共圓的四個點連成共底邊的兩個三角形,且兩三角形都在這底邊的同側,若能證明其頂角相等,從而即可肯定這四點共圓.
已知點o為三角型ABC在平面內的一點,且向量OA2+BC2=OB2+CA2=OC2+AB2,,則O為三角型ABC的()
只說左邊2式子 其他一樣
OA2+BC2=OB2+CA2 移項后平方差公式可得
(OA+OB)(OA-OB)=(CA+BC)(CA-BC)化簡
得 BA(OA+OB)=BA(CA-BC)
移項并合并得BA(OA+OB+BC-CA)=0
即 BA*2OC=0 所以BA和OC垂直
同理AC垂直BO BC垂直AO哈哈啊是垂心
設H是△ABC的垂心,求證:AH2+BC2=HB2+AC2=HC2+AB2.
作△ABC的外接圓及直徑AP.連接BP.高AD的延長線交外接圓于G,連接CG. 易證∠HCB=∠BCG,從而△HCD≌△GCD.
故CH=GC.
又顯然有∠BAP=∠DAC,從而GC=BP.
從而又有CH2+AB2=BP2+AB2=AP2=4R2.
同理可證AH2+BC2=BH2+AC2=4R2.
第五篇:初中幾何證明題
初中幾何證明題
己知M是△ABC邊BC上的中點,,D,E分別為AB,AC上的點,且DM⊥EM。
求證:BD+CE≥DE。
1.延長EM至F,使MF=EM,連BF.∵BM=CM,∠BMF=∠CME,∴△BFM≌△CEM(SAS),∴BF=CE,又DM⊥EM,MF=EM,∴DE=DF
而∠DBF=∠ABC+∠MBF=∠ABC+∠ACB<180°,∴BD+BF>DF,∴BD+CE>DE。
2.己知M是△ABC邊BC上的中點,,D,E分別為AB,AC上的點,且DM⊥EM。
求證:BD+CE≥DE
如圖
過點C作AB的平行線,交DM的延長線于點F;連接EF
因為CF//AB
所以,∠B=∠FCM
已知M為BC中點,所以BM=CM
又,∠BMD=∠CMF
所以,△BMD≌△CMF(ASA)
所以,BD=CF
那么,BD+CE=CF+CE……………………………………………(1)
且,DM=FM
而,EM⊥DM
所以,EM為線段DF的中垂線
所以,DE=EF
在△CEF中,很明顯有CE+CF>EF………………………………(2)
所以,BD+CE>DE
當點D與點B重合,或者點E與點C重合時,仍然采用上述方法,可以得到BD+CE=DE
綜上就有:BD+CE≥DE。
3.證明因為∠DME=90°,∠BMD<90°,過M作∠BMD=∠FMD,則∠CME=∠FME。
截取BF=BC/2=BM=CM。連結DF,EF。
易證△BMD≌△FMD,△CME≌△FME
所以BD=DF,CE=EF。
在△DFE中,DF+EF≥DE,即BD+CE≥DE。
當F點落在DE時取等號。
另證
延長EM到F使MF=ME,連結DF,BF。
∵MB=MC,∠BMF=∠CME,∴△MBF≌△MCE,∴BF=CE,DF=DE,在三角形BDF中,BD+BF≥DF,即BD+CE≥DE。
分析已知、求證與圖形,探索證明的思路。
對于證明題,有三種思考方式:
(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干后,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。
(3)正逆結合。對于從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。