第一篇:幾何證明
龍文教育浦東分校學(xué)生個性化教案
學(xué)生:錢寒松教師:周亞新時間:2010-11-27
學(xué)生評價◇特別滿意◇滿意◇一般◇不滿意
【教材研學(xué)】
一、命題
1.概念:對事情進(jìn)行判斷的句子叫做命題.
2.組成部分:命題由題設(shè)和結(jié)論兩部分組成.每個命題都可以寫成“如果??,那么??”的形式,“如果”的內(nèi)容部分是題設(shè),“那么”的內(nèi)容部分是結(jié)論.
3.分類:命題分為真命題和假命題兩種.判斷正確的命題稱為真命題,反之稱為假命題.驗證一個命題是真命題,要經(jīng)過證明;驗證一個命題是假命題,可以舉出一個反例.
二、互逆命題
1.概念:在兩個命題中,如果第一個命題的題設(shè)是第二個命題的結(jié)論,而第一個
命題的結(jié)論是第二個命題的題設(shè),那么這兩個命題叫做互逆命題,其中一個叫做原命題,則另一個就叫做它的逆命題.
2.說明:
(1)任何一個命題都有逆命題,它們互為逆命題,“互逆”是指兩個命題之間的關(guān)系;
(2)把一個命題的題設(shè)和結(jié)論交換,就得到它的逆命題;
(3)原命題成立,它的逆命題不一定成立,反之亦然.
三、互逆定理
1.概念:如果一個定理的逆命題也是定理(即真命題),那么這兩個定理叫做互逆定理,其中一個定理叫做另一個定理的逆定理.
2.說明:
(1)不是所有的定理都有逆定理,如“對頂角相等”的逆命題是“如果兩個角相等,那么這兩個角是對頂角”,這是一個假命題,所以“對頂角相等”沒有逆定理.
(2)互逆定理和互逆命題的關(guān)系:互逆定理首先是互逆命題,是互逆命題中要求更為嚴(yán)謹(jǐn)?shù)囊活悾椿ツ婷}包含互逆定理.
所以∠C=∠C’=90°,即△ABC是直角三角形.
【點石成金】
例1. 指出下列命題的題設(shè)和結(jié)論,并寫出它們的逆命題.
(1)兩直線平行,同旁內(nèi)角互補;
(2)直角三角形的兩個銳角互余;
(3)對頂角相等.
分析:解題的關(guān)鍵是找出原命題的題設(shè)和結(jié)論,然后再利用互逆命題的特征寫出它們的逆命題.
(1)題設(shè)是“兩條平行線被第三條直線所截”,結(jié)論是“同旁內(nèi)角互補”;逆命題是“如果兩條直線被第三條直線所截,同旁內(nèi)角互補,那么這兩條直線平行”.
(2)題設(shè)是“如果一個三角形是直角三角形”,結(jié)論是“那么這個三角形的兩個銳角互余”;逆命題是“如果一個三角形中兩個銳角互余,那么這個三角形是直角三角形”.
(3)題設(shè)是“如果兩個角是對頂角”,結(jié)論是“那么這兩個角相等”;逆命題是“如果有兩個角相等,那么它們是課題:幾何證明
對頂角”.
名師點金:當(dāng)一個命題的逆命題不容易寫時,可以先把這個命題寫成“如果??,那么??”的形式,然后再把題設(shè)和結(jié)論倒過來即可.
例2.某同學(xué)寫出命題“直角三角形斜邊上的中線等于斜邊的一半”的逆命題是“如果一個三角形斜邊上的中線等于斜邊的一半,那么這個三角形是直角三角形”,你認(rèn)為他寫得對嗎?
分析:寫出一個命題的逆命題,是把原命題的題設(shè)和結(jié)論互換,但有時需要適當(dāng)?shù)淖兺ǎ纭暗妊切蔚膬傻捉窍嗟取钡哪婷}不能寫成“兩底角相等的三角形是等腰三角形”,因為我們還沒有判斷出是等腰三角形,所以不能有“底角”這個概念.
解:上面的寫法不對.原命題條件是直角三角形,斜邊是直角三角形的邊的特有稱呼,該同學(xué)寫的逆命題的條件中提到了斜邊,就已經(jīng)承認(rèn)了直角三角形,就不需要再得這個結(jié)論了.因此,逆命題應(yīng)寫成“如果一個三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形”.
名師點金:在寫一個命題的逆命題時,千萬要注意一些專用詞的用法.
例3.如圖,在△ABD和△ACE中,有下列四個等式:① AB=AC;②AD=AE;③ ∠1=∠2;④BD=CE.請你以其中三個等式作為題設(shè),余下的作為結(jié)論,寫出一個真命題(要求寫出已知,求證及證明過程)
解:選①②③作為題設(shè),④作為結(jié)論.
已知:如圖19—4—103,AB=AC,AD=AE,∠1=∠2.
求證:BD=CE,證明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD.
即∠BAD=∠CAE.
在△BAD和△CAE中,AB=AC.∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(S.A.S.)∴BD=CE.
名師點金:本題考查的是證明三角形的全等,但條件較為開放.當(dāng)然,此題的條件還可以任選其他三個.
【練習(xí)】
1.“兩直線平行,內(nèi)錯角相等”的題設(shè)是____________________,結(jié)論是_________________________
2.判斷:(1)任何一個命題都有逆命題.()
(2)任何一個定理都有逆定理.()
【升級演練】
一、基礎(chǔ)鞏固
1.下列語言是命題的是()
A.畫兩條相等的線段B.等于同一個角的兩個角相等嗎
C.延長線段AD到C,使OC=OAD.兩直線平行,內(nèi)錯角相等
2.下列命題的逆命題是真命題的是()
A.直角都相等B.鈍角都小于180。
龍文教育浦東分校個性化教案ABDEC.cn
C.如果x+y=0,那么x=y=0D.對頂角相等
3.下列說法中,正確的是()
A.一個定理的逆命題是正確的B.命題“如果x<0,y>0,那么xy<0”的逆命題是正確的C.任何命題都有逆命題
D.定理、公理都應(yīng)經(jīng)過證明后才能用
4.下列這些真命題中,其逆命題也真的是()
A.全等三角形的對應(yīng)角相等
B.兩個圖形關(guān)于軸對稱,則這兩個圖形是全等形
C.等邊三角形是銳角三角形
D.直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半
5.證明一個命題是假命題的方法有__________.
6.將命題“所有直角都相等”改寫成“如果??那么?”的形式為___________。
7.舉例說明“兩個銳角的和是銳角”是假命題。
二、探究提高
8.下列說法中,正確的是()
A.每個命題不一定都有逆命題B.每個定理都有逆定理
c.真命題的逆命題仍是真命題D.假命題的逆命題未必是假命題
9.下列定理中,沒有逆定理的是()
A.內(nèi)錯角相等,兩直線平行B.直角三角形中兩銳角互余
c.相反數(shù)的絕對值相等D.同位角相等,兩直線平行
三、拓展延伸
10.下列命題中的真命題是()
A.銳角大于它的余角B.銳角大于它的補角
c.鈍角大于它的補角D.銳角與鈍角之和等于平角
11.已知下列命題:①相等的角是對頂角;②互補的角就是平角;③互補的兩個角一定是一個銳角,另一個為鈍角;④平行于同一條直線的兩直線平行;⑤鄰補角的平分線互相垂直.其中,正確命題的個數(shù)為()
A.0個B.1個C.2個D.3個
龍文教育浦東分校個性化教案
第二篇:幾何證明
1.平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段_________.推論1: 經(jīng)過三角形一邊的中點與另一邊平行的直線必______________.推論2: 經(jīng)過梯形一腰的中點,且與底邊平行的直線________________.2.平行線分線段成比例定理:三條平行線截兩條直線,所得的________________成比例.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段___________.3.相似三角形的性質(zhì)定理:相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于______;相似三角形周長的比、外接圓的直徑比、外接圓的周長比都等于
_________________;
相似三角形面積的比、外接圓的面積比都等于____________________;
4.直角三角形的射影定理:直角三角形斜邊上的高是______________________的比例中項;兩直角邊分別是它們在斜邊上_______與_________的比例中項.5.圓周角定理:圓上一條弧所對的圓周角等于它所對的____________的一半.圓心角定理:圓心角的度數(shù)等于_______________的度數(shù).推論1:同弧或等弧所對的圓周角_________;同圓或等圓中,相等的圓周角所對的弧_______.o推論2:半圓(或直徑)所對的圓周角是____;90的圓周角所對的弦是________.弦切角定理:弦切角等于它所夾的弧所對的______________.6.圓內(nèi)接四邊形的性質(zhì)定理與判定定理:
圓的內(nèi)接四邊形的對角______;圓內(nèi)接四邊形的外角等于它的內(nèi)角的_____.如果一個四邊形的對角互補,那么這個四邊形的四個頂點______;如果四邊形的一個外角等于它的內(nèi)角的對角,那么這個四邊形的四個頂點_________.7.切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的__________.推論:經(jīng)過圓心且垂直于切線的直線必經(jīng)過_______;經(jīng)過切點且垂直于切線的直線必經(jīng)過______.切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的________.8.相交弦定理:圓內(nèi)兩條相交弦,_____________________的積相等.割線定理:從圓外一點引圓的兩條割線,_____________的兩條線段長的積相等.切割線定理:從圓外一點引圓的切線和割線,切線長是__________的比例中項.切線長定理:從圓外一點引圓的兩條切線,它們的切線長____;
圓心和這點的連線平分_____的夾角.
第三篇:幾何證明
幾何證明
1.如圖,AD是∠EAC的平分線,AD∥BC,∠B=30 o,求∠EAD、∠DAC、∠C的度數(shù)
2.已知∠BED=∠B+∠D,試說明AB與CD的位置關(guān)系
3.如圖,EB∥DC,∠C=∠E,請你說出∠A=∠ADE的理由。
4.如圖,已知AB//CD,AE//CF,求證:?BAE??DCF
AEFCD B
5.如圖,AB//CD,AE平分?BAD,CD與AE相交于F,?CFE??E。求證:
AD//BC。
6.如圖,已知AB//CD,?B?40,CN是?BCE的平分線,?
A
D
F
B
C
E
CM?CN,求?BCM的度數(shù)。
7.如圖若FD//BE,求?1??2??3的度數(shù)
A
N
M
C
D
E
第三題
o
8.如圖已知?C??AOC,OC平分?AOD,OC?OE?C?63求?D,?BOF的度
數(shù)
第四題
9.已知如圖DB//FG//EC,若?ABD?60,?ACE?36AP平分?BAC求?PAG的度數(shù)
第五題
10.,已知如圖AC//DE,DC//FE,CD平分?BCA,那么EF平分?BED?為什么?
B
11.1)已知三角形三邊長分別是4,5,6-x,求x的取值范圍
(2)已知三角形三邊長分別是m,m-1,m+1,求m的取值范圍
oo
12.在?ABC中,?B?70?BAC:?BCA?3:2,CD?AD垂足為D且?ACD?35
oo
求?BAE的度數(shù)
?A?50o?D?44 13.已知AC,BD交與O,BE,CE分別平分?ABD,?ACD且交與E,o
求?E的度數(shù)。
E
o
14.?ACE?90AC=CE,B為AE上的一點,ED?CB于D,AF?CB交CB的延長
線于F,求證:AF=CD
第22題
15,已知AB=CD,BC=DA,E,F(xiàn)為AC上的兩個點,且AE=CF,求證BF//DE
第23題
16.AD,BC交于D,BE?AD于E,DF?BC于F且AO=CO,BE=DF,求證 AB=CD
o
17.中AB=AC,?BAC?90分別過BC做過A點的直線的垂線,垂足為D,E,求證DE=BD+CE
第25題
第四篇:空間幾何證明
立體幾何中平行、垂直關(guān)系證明的思路
平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:
線∥線???線∥面???面∥面性質(zhì)
?判定???線⊥線???線⊥面???面⊥面????
線∥線???線⊥面???面∥面
線面平行的判定:
a∥b,b?面?,a???a∥面?
a b ??
線面平行的性質(zhì):
?∥面?,??面?,????b?a∥b
三垂線定理(及逆定理):
PA⊥面?,AO為PO在?內(nèi)射影,a?面?,則
a⊥OA?a⊥PO;a⊥PO?a⊥AO
P ??O a
線面垂直:
a⊥b,a⊥c,b,c??,b?c?O?a⊥?
a O α b c
面面垂直:
a⊥面?,a?面???⊥?
面?⊥面?,????l,a??,a⊥l?a⊥?
α a l β
a⊥面?,b⊥面??a∥b
面?⊥a,面?⊥a??∥?
a b ??
定理:
1.如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)。作用:判斷直線是否在平面內(nèi);證明點在平面內(nèi);檢驗平面。2.過不在一條直線上的三點,有且只有一個平面。
作用:確定平面;判斷兩個平面是否重合;證明點線共面。推論:a.經(jīng)過一條直線和這條直線外的一點,有且只有一個平面;
b.經(jīng)過兩相交直線,有且只有一個平面;
c.經(jīng)過兩條平行直線,有且只有一個平面。
3.如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。
作用:a.判定兩個不重合平面是否相交;
b.判斷點在直線上。
4.平行于同一條直線的兩條直線互相平行。(平行線的傳遞性)。5.等角定理:空間中如果兩個角的兩邊分別對應(yīng)平行,那么這兩個角相等或互補。6.(直線與平面平行的判定定理)
平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與該平面平行。條件:a.一條直線在平面外;
b.一條直線在平面內(nèi);
c..這兩條直線互相平行。7.(平面與平面平行的判定定理)
一個平面內(nèi)的兩條相交直線與另一個平面平行,則這兩個平面平行。條件:a.兩條相交直線;
b.相交直線在一個平面內(nèi);
c.對應(yīng)平行。
8.(直線與平面平行的性質(zhì)定理)
一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。
條件:a.一條直線與一個平面平行;
b.過這條直線的任一個平面與此平面相交;
c.交線與直線平行。9.(平面與平面平行的性質(zhì)定理)
如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。條件:a.兩個平行平面:平面1和平面2和第三個平面:平面3
b.平面1與3相交,平面2與3相交
c.交線平行
點、線、面的相關(guān)證明
一.多點共線和多線共點問題證明
方法:公理3的熟練應(yīng)用;兩個相交平面有且只有一條公共直線。
1.如下圖,在四邊形ABCD中,已知AB//CD,直線AB,BC,AD,DC分別與平面α相交于點E,F(xiàn),G,H。求證:E,F(xiàn),G,H四點必定共線。
2.如圖所示,在正方體ABCD-A1B1C1D1中,設(shè)線段A1C與平面ABC1D1交于Q.求證:B,Q,D1三點共線。
3.在正方體ABCD-A1B1C1D1中,E為AB 的中點,F(xiàn)為AA1的中點,求證:
a.E,C,D1,F(xiàn)四點共面;
b.CE,D1F,DA三線共點。
二.計算異面直線所成角度
方法:平移法和輔助線(中位線)構(gòu)造角度
1.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,則異面直線BA1與AC1所成的角度為______________.2.如圖所示,正四棱錐P-ABCD的底面面積為3,體積為√2/2,E為側(cè)棱PC的中點,則PA與BE 所成的角為____________.3.如圖所示,正三棱錐S-ABC(側(cè)面為全等的等腰三角形,底面為正三角形)的側(cè)棱長與底面邊長相等,E、F分別是SC、AB的中點,異面直線EF與SA所成的角為____________.4.如下圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中點,已知AB=2,AD=2√2,PA=2.求:(1)三角形PCD的面積;
(2)異面直線BC與AE所成的角的大小.5.在正方體ABCD—A1B1C1D1中,M、N、P、Q分別是棱AB、BC、CD、CC1的中點,直線MN與PQ所成的度數(shù)_______________.
第五篇:幾何證明定理
幾何證明定理
一.直線與平面平行的(判定)
1.判定定理.平面外一條直線如果平行于平面內(nèi)的一條直線,那么這條直線與這個平面平行.2.應(yīng)用:反證法(證明直線不平行于平面)
二.平面與平面平行的(判定)
1.判定定理:一個平面上兩條相交直線都平行于另一個平面,那么這兩個平面平行
2.關(guān)鍵:判定兩個平面是否有公共點
三.直線與平面平行的(性質(zhì))
1.性質(zhì):一條直線與一個平面平行,則過該直線的任一與此平面的交線與該直線平行2.應(yīng)用:過這條直線做一個平面與已知平面相交,那么交線平行于這條直線
四.平面與平面平行的(性質(zhì))
1.性質(zhì):如果兩個平行平面同時和第三個平面相交,那么他們的交線平行
2.應(yīng)用:通過做與兩個平行平面都相交的平面得到交線,實現(xiàn)線線平行
五:直線與平面垂直的(定理)
1.判定定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直
2.應(yīng)用:如果一條直線與一個平面垂直,那么這條直線垂直于這個平面內(nèi)所有的直線(線面垂直→線線垂直)
六.平面與平面的垂直(定理)
1.一個平面過另一個平面的垂線,則這兩個平面垂直
(或者做二面角判定)
2.應(yīng)用:在其中一個平面內(nèi)找到或做出另一個平面的垂線,即實現(xiàn)線面垂直證面面垂直的轉(zhuǎn)換
七.平面與平面垂直的(性質(zhì))
1.性質(zhì)一:垂直于同一個平面的兩條垂線平行
2.性質(zhì)二:如果兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直
3.性質(zhì)三:如果兩個平面互相垂直,那么經(jīng)過第一個平面內(nèi)的一點垂直于第二個平面內(nèi)的直線,在第一個平面內(nèi)(性質(zhì)三沒什么用,可以不用記)
以上,是立體幾何的定理和性質(zhì)整理.是一定要記住的基本!
31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形
36推論2有一個角等于60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關(guān)于某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上
45逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c
47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a+b=c,那么這個三角形是直角三角形
48定理四邊形的內(nèi)角和等于360°
49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對角相等
53平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1矩形的四個角都是直角
61矩形性質(zhì)定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形。