第一篇:數據轉換器英文文獻
12-Bit A/D Converter
CIRCUIT OPERATION The AD574A is a complete 12-bit A/D converter which requires no external components to provide the complete successive approximation analog-to-digital conversion function.A block diagram of the AD574A is shown in Figure 1.Figure 1.Block Diagram of AD574A 12-Bit A-to-D Converter
When the control section is commanded to initiate a conversion(as described later), it enables the clock and resets the successiveapproximation register(SAR)to all zeros.Once a conversion cycle has begun, it cannot be stopped or restarted and data is not available from the output buffers.The SAR, timed by the clock, will sequence through the conversion cycle and return an end-of-convert flag to the control section.The control section will then disable the clock, bring the output status flag low, and enable control functions to allow data read functions by external command.During the conversion cycle, the internal 12-bit current output DAC is sequenced by the SAR from the most significant bit(MSB)to least significant bit(LSB)to provide an output current which accurately balances the input signal current through the 5kΩ(or10kΩ)input resistor.The comparator determines whether the addition of each successively-weighted bit current causes the DAC current sum to be greater or less than the input current;if the sum is less, the bit is left on;if more, the bit is turned off.After testing all the bits, the SAR contains a 12-bit binary code which accurately represents the input signal to within 1/2 LSB.The temperature-compensated buried Zener reference provides the primary voltage reference to the DAC and guarantees excellent stability with both time and temperature.The reference is trimmed to 10.00 volts ?0.2%;it can supply up to 1.5 mA to an external load in addition to the requirements of the reference input resistor(0.5 mA)and bipolar offset resistor(1 mA)when the AD574A is powered from ?15 V supplies.If the AD574A is used with ?12 V supplies, or if external current must be supplied over the full temperature range, an external buffer amplifier is recommended.Any external load on the AD574A reference must remain constant during conversion.The thin-film application resistors are trimmed to match the full-scale output current of the DAC.There are two 5 k??input scaling resistors to allow either a 10 volt or 20 volt span.The 10 k??bipolar offset resistor is grounded for unipolar operation and connected to the 10 volt reference for bipolar operation.DRIVING THE AD574 ANALOG INPUT
Figure 2.Op Amp – AD574A Interface
The output impedance of an op amp has an open-loop value which, in a closed loop, is divided by the loop gain available at the frequency of interest.The amplifier should have acceptable loop gain at 500 kHz for use with the AD574A.To check whether the output properties of a signal source are suitable, monitor the AD574’s input with an oscilloscope while a conversion is in progress.Each of the 12 disturbances should subside in sorless.For applications involving the use of a sample-and-hold amplifier, the AD585 is recommended.The AD711 or AD544 op amps are recommended for dc applications.SAMPLE-AND-HOLD AMPLIFIERS Although the conversion time of the AD574A is a maximum of 35 ?s, to achieve accurate 12-bit conversions of frequencies greater than a few Hz requires the use of a sample-and-hold amplifier(SHA).If the voltage of the analog input signal driving the AD574A changes by more than 1/2 LSB over the time interval needed to make a conversion, then the input requires a SHA.The AD585 is a high linearity SHA capable of directly driving the analog input of the AD574A.The AD585’s fast acquisition time, low aperture and low aperture jitter are ideally suited for high-speed data acquisition systems.Consider the AD574A converter with a 35 ?s conversion time and an input signal of 10 V p-p: the maximum frequency which may be applied to achieve rated accuracy is 1.5 Hz.However, with the addition of an AD585, as shown in Figure 3, the maximum frequency increases to 26 kHz.The AD585’s low output impedance, fast-loop response, and low droop maintain 12-bits of accuracy under the changing load conditions that occur during a conversion, making it suitable for use in high accuracy conversion systems.Many other SHAs cannot achieve 12-bits of accuracy and can thus compromise a system.The AD585 is recommended for AD574A applications requiring a sample and hold.Figure 3.AD574A with AD585 Sample and Hold
SUPPLY DECOUPLING AND LAYOUT CONSIDERATIONS It is critically important that the AD574A power supplies be filtered, well regulated, and free from high frequency noise.Use of noisy supplies will cause unstable output codes.Switching power supplies are not recommended for circuits attempting to achieve 12-bit accuracy unless great care is used in filtering any switching spikes present in the output.Remember that a few millivolts of noise represents several counts of error in a 12-bit ADC.Circuit layout should attempt to locate the AD574A, associated analog input circuitry, and interconnections as far as possible from logic circuitry.For this reason, the use of wire-wrap circuit construction is not recommended.Careful printed circuit construction is preferred.UNIPOLAR RANGE CONNECTIONS FOR THE AD574A The AD574A contains all the active components required to perform a complete 12-bit A/D conversion.Thus, for most situations, all that is necessary is connection of the power supplies(+5 V, +12 V/+15 V and –12 V/–15 V), the analog input, and the conversion initiation command, as discussed on the next page.Analog input connections and calibration are easily accomplished;the unipolar operating mode is shown in Figure 4.Figure 4.Unipolar Input Connections
All of the thin-film application resistors of the AD574A are trimmed for absolute calibration.Therefore, in many applications, no calibration trimming will be required.The absolute accuracy for each grade is given in the specification tables.For example, if no trims are used, the AD574AK guarantees ?1 LSB max zero offset error and ?0.25%(10 LSB)max full-scale error.(Typical full-scale error is ?2 LSB.)If the offset trim is not required, Pin 12 can be connected directly to Pin 9;the two resistors and trimmer for Pin 12 are then not needed.If the full-scale trim is not needed, a 50 ???1% metal film resistor should be connected between Pin 8 and Pin 10.The analog input is connected between Pin 13 and Pin 9 for a 0 V to +10 V input range, between 14 and Pin 9 for a 0 V to +20 V input range.The AD574A easily accommodates an input signal beyond the supplies.For the 10 volt span input, the LSB has a nominal value of 2.44 mV;for the 20 volt span, 4.88 mV.If a 10.24 V range is desired(nominal 2.5 mV/bit), the gain trimmer(R2)should be replaced by a 50Ωesistor, and a 200Ωtrimmer inserted in series with the analog input to Pin 13 for a full-scale range of 20.48 V(5 mV/bit), use a 500 ??trimmer into Pin 14.The gain trim described below is now done with these trimmers.The nominal input impedance into Pin 13 is 5kΩ, and 10kΩinto Pin 14.UNIPOLAR CALIBRATION The AD574A is intended to have a nominal 1/2 LSB offset so that the exact analog input for a given code will be in the middle of that code(halfway between the transitions to the codes above and below it).Thus, the first transition(from 0000 0000 0000 to 0000 0000 0001)will occur for an input level of +1/2 LSB(1.22 mV for 10 V range).If Pin 12 is connected to Pin 9, the unit will behave in this manner, within specifications.If the offset trim(R1)is used, it should be trimmed as above, although a different offset can be set for a particular system requirement.This circuit will give approximately ?15 mV of offset trim range.The full-scale trim is done by applying a signal 1/2 LSB below the nominal full scale(9.9963 for a 10 V range).Trim R2 to give the last transition(1111 1111 1110 to 1111 1111 1111).BIPOLAR OPERATION The connections for bipolar ranges are shown in Figure 5.Again, as for the unipolar ranges, if the offset and gain specifications are sufficient, one or both of the trimmers shown can be replaced by a 50 ???1% fixed resistor.Bipolar calibration is similar to unipolar calibration.Figure 5.Bipolar Input Connections
CONTROL LOGIC The AD574A contains on-chip logic to provide conversion initiation and data read operations from signals commonly available in microprocessor systems.Figure 6 shows the internal logic circuitry of the AD574A.The control signals CE, CS, and R/C control the operation of the converter.The state of R/C when CE and CS are both asserted determines whether a data read(R/C = 1)or a convert(R/C = 0)is in progress.The register control inputs AO and 12/8 control conversion length and data format.The AO line is usually tied to the least significant bit of the address bus.If a conversion is started with AO low, a full 12-bit conversion cycleis initiated.If AO is high during a convert start, a shorter 8-bit conversion cycle results.During data read operations, AO determines whether the three-state buffers containing the 8 MSBs of the conversion result(AO = 0)or the 4 LSBs(AO = 1)are enabled.The 12/8 pin determines whether the output data is to be organized as two 8-bit words(12/8 tied to DIGITAL COMMON)or a single 12-bit word(12/8 tied to VLOGIC).The 12/8 pin is not TTL-compatible and must be hard-wired to either VLOGIC or DIGITAL COMMON.In the 8-bit mode, the byte addressed when AO is high contains the 4 LSBs from the conversion followed by four trailing zeroes.This organization allows the data lines to be overlapped for direct interface to 8-bit buses without the need for external three-state buffers.It is not recommended that AO change state during a data read operation.Asymmetrical enable and disable times of the three-state buffers could cause internal bus contention resulting in potential damage to the AD574A.Figure 6.AD574A Control Logic An output signal, STS, indicates the status of the converter.STS goes high at the beginning of a conversion and returns low when the conversion cycle is complete.TIMING The AD574A is easily interfaced to a wide variety of microprocessors and other digital systems.The following discussion of the timing requirements of the AD574A control signals should provide the system designer with useful insight into the operation of the device.Figure 7 shows a complete timing diagram for the AD574A convert start operation.R/C should be low before both CE and CS are asserted;if R/C is high, a read operation will momentarily occur, possibly resulting in system bus contention.Either CE or CS may be used to initiate a conversion;however, use of CE is recommended since it includes one less propagation delay than CS and is the faster input.In Figure 7, CE is used to initiate the conversion.Figure 7
Once a conversion is started and the STS line goes high, convert start commands will be ignored until the conversion cycle is complete.The output data buffers cannot be enabled during conversion.Figure 8 shows the timing for data read operations.During data read operations, access time is measured from the point where CE and R/C both are high(assuming CS is already low).If CS is used to enable the device, access time is extended by 100 ns.Figure 8.Read Cycle Timing
In the 8-bit bus interface mode(12/8 input wired to DIGITAL COMMON), the address bit, AO, must be stable at least 150 ns prior to CE going high and must remain stable during the entire read cycle.If AO is allowed to change, damage to the AD574A output buffers may result.“STAND-ALONE” OPERATION The AD574A can be used in a ―stand-alone‖ mode, which is useful in systems with dedicated input ports available and thus not requiring full bus interface capability.In this mode, CE and 12/8 are wired high, CS and AO are wired low, and conversion is controlled by R/C.The three-state buffers are enabled when R/C is high and a conversion starts when R/C goes low.This allows two possible control signals—a high pulse or a low pulse.Operation with a low pulse is shown in Figure 11.In this case, the outputs are forced into the high impedance state in response to the falling edge of R/C and return to valid logic levels after the conversion cycle is completed.The STS line goes high 600 ns after R/C goes low and returns low 300 ns after data is valid.Figure 11.Low Pulse for R/C—Outputs Enabled After Conversion
If conversion is initiated by a high pulse as shown in Figure 12, the data lines are enabled during the time when R/C is high.The falling edge of R/C starts the next conversion, and the data lines return to three-state(and remain three-state)until the next high pulse of R/C.Figure 12.High Pulse for R/C—Outputs Enabled While R/C High, Otherwise High-Z
Usually the low pulse for R/C stand-alone mode will be used.Figure 13 illustrates a typical stand-alone configuration for 8086 type processors.The addition of the 74F/S374 latches improves bus access/release times and helps minimize digital feedthrough to the analog portion of the converter.INTERFACING THE AD574A TO MICROPROCESSORS The control logic of the AD574A makes direct connection to most microprocessor system buses possible.While it is impossible to describe the details of the interface connections for every microprocessor type, several representative examples will be described here.GENERAL A/D CONVERTER INTERFACE CONSIDERATIONS A typical A/D converter interface routine involves several operations.First, a write to the ADC address initiates a conversion.The processor must then wait for the conversion cycle to complete, since most ADCs take longer than one instruction cycle to complete a conversion.Valid data can, of course, only be read after the conversion is complete.The AD574A provides an output signal(STS)which indicates when a conversion is in progress.This signal can be polled by the processor by reading it through an external three-state buffer(or other input port).The STS signal can also be used to generate an interrupt upon completion of conversion, if the system timing requirements are critical(bear in mind that the maximum conversion time of the AD574A is only 35 microseconds)and the processor has other tasks to perform during the ADC conversion cycle.Another possible time-out method is to assume that the ADC will take 35 microseconds to convert, and insert a sufficient number of ―do-nothing‖ instructions to ensure that 35 microseconds of processor time is consumed
Once it is established that the conversion is finished, the data can be read.In the case of an ADC of 8-bit resolution(or less), a single data read operation is sufficient.In the case of converters with more data bits than are available on the bus, a choice of data formats is required, and multiple read operations are needed.The AD574A includes internal logic to permit direct interface to 8-bit or 16-bit data buses, selected by connection of the 12/8 input.In 16-bit bus applications(12/8 high)the data lines(DB11 through DB0)may be connected to either the 12 most significant or 12 least significant bits of the data bus.The remaining four bits should be masked in software.The interface to an 8-bit data bus(12/8 low)is done in a left-justified format.The even address(A0 low)contains the 8 MSBs(DB11 through DB4).The odd address(A0 high)contains the 4 LSBs(DB3 through DB0)in the upper half of the byte, followed by four trailing zeroes, thus eliminating bit masking instructions.SPECIFIC PROCESSOR INTERFACE EXAMPLES Z-80 System Interface The AD574A may be interfaced to the Z-80 processor in an I/O or memory mapped configuration.Figure 15 illustrates an I/O or mapped configuration.The Z-80 uses address lines A0–A7 to decode the I/O port address.An interesting feature of the Z-80 is that during I/O operations a single wait state is automatically inserted, allowing the AD574A to be used with Z-80 processors having clock speeds up to 4 MHz.For applications faster than 4 MHz use the wait state generator in Figure 16.In a memory mapped configuration the AD574A may be interfaced to Z-80 processors with clock speeds of up to 2.5 MHz.
第二篇:英文文獻
民營企業文化建設研究
本文轉自淺論天下
民營企業是我國經濟建設中的重要力量。但許多民營企業經營管理上存在一個共同的問題,即忽視企業文化建設,缺乏優秀的企業文化。21世紀的企業競爭將突出地體現在企業文化力的競爭上,企業文化管理將是繼經驗管理和科學管理之后的一種新的管理方式。在文化管理日益受到重視的今天,民營企業必須加強企業文化建設,以此改善經營管理,為企業的發展提供持久的內在動力。民營企業文化的發展有一個歷史的過程,形成了民營企業文化多樣的特征。本文總結了民營企業文化建設的現狀,對目前民營企業文化建設存在的誤區進行了詳細分析。在此基礎上,本文提出了民營企業文化建設的指導原則、方向、方法和相應措施,并對如何培育有特色的民營企業文化提出了相應的對策。最后,以正泰集團為例,進行了民營企業文化建設的案例分析。
Private-owned enterprises are very important force in our country“s economic construction.However, there is a common issue existing in many private-owned enterprises in their business administration that is they neglect the enterprise culture construction and lack of excellent enterprise culture.The competitions of enterprise in 21st century will highlight in competition of culture strength.The enterprise culture management will become a new management way after the management way of experience and science.The private-owned enterprises must strengthen culture construction so as to improve business administration and provide permanent internal impetus for the development of enterprises.The development of the private-owned enterprise”s culture has a historical process and forms a diversiform character.The article sums up the actuality of the Private-owned enterprise“s culture construction and provides detailed analysis for mistakes in the private-owned enterprise”s culture construction at present.On the basis of it, the article put forwards the instructional principia, direction, method and corresponding measure for the private-owned enterprise“s culture construction and provides the corresponding suggestion for how to develop the private-owned enterprise”s culture that has distinguished features.According to the case of Zhengtai Company, this article also gives empirical analysis of the enterprise culture construction.本文轉自淺論天下
第三篇:同軸-波導轉換器英文例句
同軸-波導轉換器英文例句
1.New Structure of Broad Band Coaxial-Rectangular Waveguide Transition in UHF Band
UHF寬帶同軸-矩形波導轉換器新結構 2.Development of a Miniaturized Air-tightness Rectangular Waveguide-coaxial Converter
小型氣密矩形波導-同軸轉換器的研制 3.The design of coaxial-to-rectangular waveguide transitions adapter with SMA connector at high frequency 在高頻段下帶SMA接頭的同軸——矩形波導轉換器的設計 4.rectangular-circular waveguide transducer 矩形-圓形波導轉換器 5.Rectangular-ellioptical waveguide transformer 矩形橢圓波導變換器 6.Research of 8 Millimeter Waveguide to Coaxial Convert, Power Transmit and Detect Technology;8mm波導同軸轉換和波導功率傳輸及檢波技術研究 7.Design of Rectangle Waveguide to High-Power Overmoded Circular Waveguide Mode Convertor
矩形波導到高功率過模圓波導模式轉換器的設計 8.Design of a Ka-Band Coaxial-Waveguide Transition by Mode-Matching and Synthetic Method
模式匹配與綜合方法設計Ka頻段同軸-波導轉換器 9.coaxial to waveguide transducer 同軸線 波導管匹配變換器 10.Exchange of Twisting Moment is Angle of Twint Curve for Cylinder Ipecimen of Plastic Metal with Various Diameter;不同直徑塑性金屬圓軸扭轉試驗的扭矩——扭轉角圓的相互轉換 11.The Design of Ka Band Waveguide/coaxial line Transition Ka全頻段同軸/波導轉接器的設計 12.Design of broad band coaxial waveguide transition of end launcher type 寬頻帶端射式同軸波導變換裝置的設計 13.A practical formula to calculate the cutoff wavelength of square and rectangular coaxial lines 一種方形及矩形同軸線截止波長的實用計算公式 14.rectangular guide ferrite phase shifter 矩形波導鐵氧體移相器 15.Transmission of foil-focused relativistic annular electron beam in coaxial cylindrical waveguide 箔聚焦強流相對論環形束在同軸波導中的傳輸 16.duplexer of coaxial line system 同軸線收發轉換裝置
17.Study on Bent Circular Waveguides TM_(0.1)-TE_(11)Mode Converter;TM_(0.1)-TE_(11)彎形圓波導模式轉換器的研究 18.Simulation Analysis on Propagation of Electromagnetic Wave in Rectangle Wave-guide
矩形波導中電磁波傳播特性仿真分析
第四篇:英文文獻翻譯(模版)
在回顧D和H的文章時,我愿意第一個去單獨地討論每一篇,然后發表一些總體的觀點。
在他的論文中,D系統地發表了一個隱形的問題的分析和當前在教育研究中的兩難問題。他提出了幾個含蓄的假設需要被提問,嚴重地甚至通過定量的和定型的研究者,就像政策的提出者。
在這些假設中,其中一個是關于推論創新的項目的原因。D的總體結論是我們做改革因為他們有有用的政治和經濟的末端。不幸運地是,它看起來很多的項目都被做了因為確實是D提出來的原因。
另一個提出的觀點與被學習變量有關。在討論他的第三章中,D提出了一個觀點,研究需要利用很長的時間,比半年和一年的在校時間還要長。正如第三章,他指出,這個很長的等級觀點是因為巨大的變化。大量的變量需要被考慮進去在下一代被提出之前,或者有龐大地例子在傳統的例子被改革之前。
在最近幾年,研究者已經使用不同的變量,例如盟約。更多的這些是“天資與勤奮相互作用。”然而,僅僅設定了一個標準變量。在第三章中的一個暗示是,我們需要去看多種變量就像我們去看預測的變量。每一個個體的支出都與確定的協變量緊密相關。另外,多種的支出在不同的聯系當中將會代表其他的變量需要去學習。這個提出了一些問題:。足夠的數據分析工具是為了這些分析嗎?他對一些簡單的單一變量有什么作用呢?
同等重要的是。我們需要停止與那些舊的變量保持聯系在一些教育的研究當中。并且這些研究沒有表明新的關系。也許通過定量研究方法和新的理論的結構,我們能辨別一些新的變量。當我們去預測這些方法的時候,將會有新的理解。除此之外,D建議,大多數創新不能使它成為過去的一點。這一點說明。是否在一個控制變量的因素當中,有一個改變。二是在支出中的變量,我自己的研究暗示表明大多數的研究實際上不使它成為一點,例如在一項估計的研究當中,我們發現百分之四十九的老師被叫做控制組在創新當中,當百分之八十四的老師在訓練組正在使用它。依靠是否對控制組和實驗組的數據分析。或者使用者和不使用者的數據分析。支出是完全不同的。針對粒子的設計是不充足的情況,我們需要對暗示是否出現做一個明顯的檢查。
最后,我建議Dawson的文章需要另外一章。我知道來自研究的所有產量在第九章里不是一個相同的尺碼。一些攜帶了大量的重量來解釋更多的變化比起其他。在教室里的老師,例如,占據了大多數的變量與地位和因素的影響有關。另外一章將會展現不同的變量去反應一些關于變量是怎樣相互作用的知識。
根據H的文章,我得到了大量有幫助的思想,我有幾個想發表的觀點。其中一個最重要的和令人興奮的觀點是給每一個網站設計一個全職工作者。這是一條來自最短的報道評估設計,他提供了一個去得到另外一個網站的機會。H描述的策略是為了選擇和訓練這些領域的工人聽起來很受影響,尤其是關于前所未有的領域的關于他們角色的一個有能力的設施。
然而,我是帶著不舒服去嘗試制作領域的工人不引人注目,通過不允許他們在正在學習的領域里辦演。正如H的文件,最后的結果是任何事情除了不引人注目。如果他們已經參與到觀測,看起來將會更少引人注目和驚訝,在當前系統里扮演著一個暫時的角色。
它也會出現失敗,那就是在主題背后會增加領域內工作人員和客戶的困難。鑒于研究的長度和廣度,確定必要的信息去面對主題。幾乎任何數據至少給出客戶一種客戶系統,那就是正在被收集的數據各種數據,去幫助更多在這個領域的信譽和研究本身。
H的建議,學校文化的“客戶”被用來作為領域的工作者是有趣的。我懷疑,盡管“客戶”需要來自美洲的去被招聘,來自這個國家的學校與美國的不同。教育領域之外的美國人不適應于有根據的,或者很少了解美國的學校比起教育家。知道“顧客”是否做是有益的,實際上,與那些被訓練的教育家不同的是,他們收集的數據。
H非常強調合同研究的問題,。我注意到我們已經完全陷入到研究當中,通過不斷地改變權力項目地實施產品的需求的經歷,還有做了的網站評論,還有不斷的不確定支出。這是合同研究專利的事實之一,而且不是質性研究方法的唯一。
根據這些文章我將有兩個觀點。首先,如果D是正確的,對于支出的復雜性而言,還有就是當遇到兩個問題的分析。多種多樣的質性設計在目標上h正確的.。一方面。如果D是正確的話這個有意義的改變在收入和支出的變量中間是不一樣的,我們將學校在傳統的形勢下,他能進入更加有益的改變,然后整個事實在這個實驗學校項目當中有一個大的嘗試,并且在這個嘗試當中有一個小的改變,可能不是一個好的投資。
第二,h的整個項目案例在抵御政治上的需要,為了一個更快的榮譽。d的文章和h的工作建議,我們需要去追求更長的研究,然而,但是在政治和經濟的壓力下會得到更加真實,并且每一個資金都會與那些被選擇的少于批評的有關系。并且在一些長期的研究過程中需要一個穩定。這兩個作者都認為。我懷疑,我們有一些政府的問題需要解決,如果這個問題是為什么做這個演示的項目呢,需要一個積極的答案。
第五篇:英文文獻翻譯
2.2 影響SO3濃度的過程因素
一直減少的體積流量和引入的富氧燃燒過程的煙氣循環增加了煙氣中SO3的濃度。例如Ochs等人計算的SO2濃度從空氣燃燒條件中的200ppm增加到富氧燃燒條件中900ppm,Kakaras等人估算的以褐煤為基礎時模型由空氣到O2/CO2(有循環的)時,SO2濃度從270ppm增加到到800ppm。
試驗結果說明雖然實際中SO2的濃度依賴于很多的因素(概括在表4中),但是從空氣燃燒到富氧燃燒SO2的濃度增加2-4倍。對于同一個研究中濕煙氣循環(沒有凝結水)已經表明它比干煙氣循環(在循環之前使水凝結)的SO2的濃度的高。
表4 富氧燃燒條件下影響熔爐中SO2濃度的因素
變量控制因素相關結果
燃料中硫煤的質量
礦物質煤/灰分的質量
理論配比需煤的質量
求的氧氣量
(燃料/O2比率)
過量O2,火焰的控制
階級風/燃盡風
氧濃度火焰的控制
煙氣循環的比率火焰的控制
一次風/二次風
送風量,速度的型線
煙氣的雜質(空氣分離單元,不
O2,N2,Ar,H2O)控制的空氣入口
酸露點熱量傳遞的控制灰分的化學成分,SO3/SO2的轉化,H2SO4的轉化 飛灰中Na,K,Ca,Mg傾向于形成硫酸鹽從而減少SO2的濃度。在飛灰中硫的捕獲率依賴于數量,微粒粒徑,金屬氧化物在灰分中的形成和分布。更高濃度的水分和灰分使燃料/O2的比值更小。S的生成物H2S和COS在還原氣氛中間斷的形成,焦炭的燃盡影響影響整個燃料中硫元素的轉化。碳的燃盡,火焰的溫度,傳遞給鍋爐的輻射熱。通過燃燒器的煙氣流體積的改變,稀釋/SO2的循環。通過燃燒器的氣體流體積發生改變,SO2稀釋 在煙氣酸露點下運行的熱量交換單元將會導致H2SO4的沉
積而引起腐蝕的問題。在富氧燃燒條件下,特定的煙氣溫度
將發生改變,SO3和H2O的濃度也將隨著改變。