第一篇:代數(shù)式初中數(shù)學(xué)教案(寫(xiě)寫(xiě)幫推薦)
1.使學(xué)生認(rèn)識(shí)字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學(xué)的一大進(jìn)步;
2.了解代數(shù)式的概念,使學(xué)生能說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系;
3.通過(guò)對(duì)用字母表示數(shù)的講解,初步培養(yǎng)學(xué)生觀察和抽象思維的能力;
4.通過(guò)本節(jié)課的教學(xué),使學(xué)生深刻體會(huì)從特殊到一般的的數(shù)學(xué)思想方法。教學(xué)建議
1. 知識(shí)結(jié)構(gòu):本小節(jié)先回顧了小學(xué)學(xué)過(guò)的字母表示的兩種實(shí)例,一是運(yùn)算律,二是公式,從中看出字母表示數(shù)的優(yōu)越性,進(jìn)而引出代數(shù)式的概念。
2.教學(xué)重點(diǎn)分析:教科書(shū),介紹了小學(xué)用字母表示數(shù)的實(shí)例,一個(gè)是運(yùn)算律,一個(gè)是常用公式,上述兩種例子應(yīng)用廣泛,且能很好地體現(xiàn)用字母表示數(shù)所具有的簡(jiǎn)明、普遍的優(yōu)越性,用字母表示是數(shù)學(xué)從算術(shù)到代數(shù)的一大進(jìn)步,是代數(shù)的顯著特點(diǎn)。運(yùn)用算術(shù)的方法解決問(wèn)題,是小學(xué)學(xué)生的思維方法,現(xiàn)在,從具體的數(shù)過(guò)渡到用字母表示數(shù),滲透了抽象概括的思維方法,在認(rèn)識(shí)上是一個(gè)質(zhì)的飛躍。對(duì)代數(shù)式的概念課文沒(méi)有直接給出,而是用實(shí)例形象地說(shuō)明了代數(shù)式的概念。對(duì)代數(shù)式的概念可以從三個(gè)方面去理解:
(1)從具體的數(shù)到用字母表示數(shù),是抽象思維的開(kāi)始,體現(xiàn)了特殊與一般的辨證關(guān)系,用字母表示數(shù)具有簡(jiǎn)明、普遍的優(yōu)越性.(2)代數(shù)式中并不要求數(shù)和表示數(shù)的字母同時(shí)出現(xiàn),單獨(dú)的一個(gè)數(shù)和字母也是代數(shù)式.如:2,都是代數(shù)式.
(3)代數(shù)式是用基本的運(yùn)算符號(hào)把數(shù)、表示數(shù)的字母連接而成的式子,一定要弄清一個(gè)代數(shù)式有幾種運(yùn)算和運(yùn)算順序。代數(shù)式不含表示關(guān)系的符號(hào),如等號(hào)、不等號(hào).如,等都是代數(shù)式,而,,等都不是代數(shù)式.
3.教學(xué)難點(diǎn)分析:能正確說(shuō)出一個(gè)代數(shù)式的數(shù)量關(guān)系,即用語(yǔ)言表達(dá)代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運(yùn)算及其順序。用語(yǔ)言表達(dá)代數(shù)式的意義,具體說(shuō)法沒(méi)有統(tǒng)一規(guī)定,以簡(jiǎn)明而不引起誤會(huì)為出發(fā)點(diǎn)。
如:說(shuō)出代數(shù)式7(a-3)的意義。
分析 7(a-3)讀成7乘a減3,這樣就產(chǎn)生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數(shù)式7(a-3)的最后運(yùn)算是積,應(yīng)把a(bǔ)-3作為一個(gè)整體。所以,7(a-3)的意義是7與(a-3)的積。
4.書(shū)寫(xiě)代數(shù)式的注意事項(xiàng):
(1)代數(shù)式中數(shù)字與字母或者字母與字母相乘時(shí),通常把乘號(hào)簡(jiǎn)寫(xiě)作“·”或省略不寫(xiě),同時(shí)要求數(shù)字應(yīng)寫(xiě)在字母前面.如,應(yīng)寫(xiě)作 或?qū)懽鳎瑧?yīng)寫(xiě)作 或?qū)懽?.帶分?jǐn)?shù)與字母相乘,應(yīng)把帶分?jǐn)?shù)化成假分?jǐn)?shù),如 應(yīng)寫(xiě)成 .?dāng)?shù)字與數(shù)字相乘一般仍用“×”號(hào).(2)代數(shù)式中有除法運(yùn)算時(shí),一般按照分?jǐn)?shù)的寫(xiě)法來(lái)寫(xiě).如: 應(yīng)寫(xiě)作
(3)含有加減運(yùn)算的代數(shù)式需注明單位時(shí),一定要把整個(gè)式子括起來(lái).
5.對(duì)本節(jié)例題的分析:
例1是用代數(shù)式表示幾個(gè)比較簡(jiǎn)單的數(shù)量關(guān)系,這些小學(xué)都學(xué)過(guò).比較復(fù)雜一些的數(shù)量關(guān)系的代數(shù)式表示,課文安排在下一節(jié)中專門(mén)介紹.例2是說(shuō)出一些比較簡(jiǎn)單的代數(shù)式的意義.因?yàn)榇鷶?shù)式中用字母表示數(shù),所以把字母也看成數(shù),一種特殊的數(shù),就可以像看待原來(lái)比較熟悉的數(shù)式一樣,說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系,只是另外還要考慮乘號(hào)可能省略等新規(guī)定而已.6.教法建議
(1)因?yàn)檫@一章知識(shí)大部分在小學(xué)學(xué)習(xí)過(guò),講授新課之前要先復(fù)習(xí)小學(xué)學(xué)過(guò)的運(yùn)算律,在學(xué)生原有的認(rèn)知結(jié)構(gòu)上,提出新的問(wèn)題。這樣即復(fù)習(xí)了舊知識(shí),又引出了新知識(shí),能激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)中,一定要注意發(fā)揮本章承上啟下的作用,搞好小學(xué)數(shù)學(xué)與初中代數(shù)的銜接,使學(xué)生有一個(gè)良好的開(kāi)端。
(2)在本節(jié)的學(xué)習(xí)過(guò)程中,要使學(xué)生理解代數(shù)式的概念,首先要給學(xué)生多舉例子(學(xué)生比較熟悉、貼近現(xiàn)實(shí)生活的例子),使學(xué)生從感性上認(rèn)識(shí)什么是代數(shù)式,理清代數(shù)式中的運(yùn)算和運(yùn)算順序,才能正確說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系,從而認(rèn)識(shí)字母表示數(shù)的意義——普遍性、簡(jiǎn)明性,也為列代數(shù)式做準(zhǔn)備。
(3)條件比較好的學(xué)校,老師可選用一些多媒體課件,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)學(xué)生自主學(xué)習(xí)的能力。
(4)老師在講解第一節(jié)之前,一定要對(duì)全章內(nèi)容和課時(shí)安排有一個(gè)了解,注意前后知識(shí)的銜接,只有這樣,我們老師才能教給學(xué)生系統(tǒng)的而不是一些零散的知識(shí),久而久之,學(xué)生頭腦中自然會(huì)形成一個(gè)完整的知識(shí)體系。
(5)因?yàn)槭切聦W(xué)期代數(shù)的第一節(jié)課,老師一定要給學(xué)生一個(gè)好印象,好的開(kāi)端等于成功了一半。那么,怎么才能給學(xué)生留下好印象呢?首先,你要盡量在學(xué)生面前展示自己的才華。比如,英語(yǔ)口語(yǔ)好的老師,可以用英語(yǔ)做一個(gè)自我介紹,然后為學(xué)生說(shuō)一段祝福語(yǔ)。第二,上課時(shí)盡量使用多種語(yǔ)言與學(xué)生交流,其中包括情感語(yǔ)言(眉目語(yǔ)言、手勢(shì)語(yǔ)言等),讓學(xué)生感受到老師對(duì)他的關(guān)心。
7.教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):用字母表示數(shù)的意義
難點(diǎn):學(xué)會(huì)用字母表示數(shù)及正確說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系。
第二篇:數(shù)學(xué)教案-代數(shù)式
數(shù)學(xué)教案-代數(shù)式
-----------------------------
教學(xué)目標(biāo)
1.使學(xué)生認(rèn)識(shí)字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學(xué)的一大進(jìn)步;
2.了解代數(shù)式的概念,使學(xué)生能說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系;
3.通過(guò)對(duì)用字母表示數(shù)的講解,初步培養(yǎng)學(xué)生觀察和抽象思維的能力;
4.通過(guò)本節(jié)課的教學(xué),使學(xué)生深刻體會(huì)從特殊到一般的的數(shù)學(xué)思想方法。
教學(xué)建議
1. 知識(shí)結(jié)構(gòu):本小節(jié)先回顧了小學(xué)學(xué)過(guò)的字母表示的兩種實(shí)例,一是運(yùn)算律,二是公式,從中看出字母表示數(shù)的優(yōu)越性,進(jìn)而引出代數(shù)式的概念。
2.教學(xué)重點(diǎn)分析:教科書(shū),介紹了小學(xué)用字母表示數(shù)的實(shí)例,一個(gè)是運(yùn)算律,一個(gè)是常用公式,上述兩種例子應(yīng)用廣泛,且能很好地體現(xiàn)用字母表示數(shù)所具有的簡(jiǎn)明、普遍的優(yōu)越性,用字母表示是數(shù)學(xué)從算術(shù)到代數(shù)的一大進(jìn)步,是代數(shù)的顯著特點(diǎn)。運(yùn)用算術(shù)的方法解決問(wèn)題,是小學(xué)學(xué)生的思維方法,現(xiàn)在,從具體的數(shù)過(guò)渡到用字母表示數(shù),滲透了抽象概括的思維方法,在認(rèn)識(shí)上是一個(gè)質(zhì)的飛躍。對(duì)代數(shù)式的概念課文沒(méi)有直接給出,而是用實(shí)例形象地說(shuō)明了代數(shù)式的概念。對(duì)代數(shù)式的概念可以從三個(gè)方面去理解:
(1)從具體的數(shù)到用字母表示數(shù),是抽象思維的開(kāi)始,體現(xiàn)了特殊與一般的辨證關(guān)系,用字母表示數(shù)具有簡(jiǎn)明、普遍的優(yōu)越性.(2)代數(shù)式中并不要求數(shù)和表示數(shù)的字母同時(shí)出現(xiàn),單獨(dú)的一個(gè)數(shù)和字母也是代數(shù)式.如:2,都是代數(shù)式.
(3)代數(shù)式是用基本的運(yùn)算符號(hào)把數(shù)、表示數(shù)的字母連接而成的式子,一定要弄清一個(gè)代數(shù)式有幾種運(yùn)算和運(yùn)算順序。代數(shù)式不含表示關(guān)系的符號(hào),如等號(hào)、不等號(hào).如,等都是代數(shù)式,而,,等都不是代數(shù)式.
3.教學(xué)難點(diǎn) 分析:能正確說(shuō)出一個(gè)代數(shù)式的數(shù)量關(guān)系,即用語(yǔ)言表達(dá)代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運(yùn)算及其順序。用語(yǔ)言表達(dá)代數(shù)式的意義,具體說(shuō)法沒(méi)有統(tǒng)一規(guī)定,以簡(jiǎn)明而不引起誤會(huì)為出發(fā)點(diǎn)。
如:說(shuō)出代數(shù)式7(a-3)的意義。
分析 7(a-3)讀成7乘a減3,這樣就產(chǎn)生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數(shù)式7(a-3)的最后運(yùn)算是積,應(yīng)把a(bǔ)-3作為一個(gè)整體。所以,7(a-3)的意義是7與(a
-3)的積。
4.書(shū)寫(xiě)代數(shù)式的注意事項(xiàng):
(1)代數(shù)式中數(shù)字與字母或者字母與字母相乘時(shí),通常把乘號(hào)簡(jiǎn)寫(xiě)作“·”或省略不寫(xiě),同時(shí)要求數(shù)字應(yīng)寫(xiě)在字母前面.如,應(yīng)寫(xiě)作 或?qū)懽鳎瑧?yīng)寫(xiě)作 或?qū)懽?.帶分?jǐn)?shù)與字母相乘,應(yīng)把帶分?jǐn)?shù)化成假分?jǐn)?shù),如 應(yīng)寫(xiě)成 .?dāng)?shù)字與數(shù)字相乘一般仍用“×”號(hào).(2)代數(shù)式中有除法運(yùn)算時(shí),一般按照分?jǐn)?shù)的寫(xiě)法來(lái)寫(xiě).如: 應(yīng)寫(xiě)作
(3)含有加減運(yùn)算的代數(shù)式需注明單位時(shí),一定要把整個(gè)式子括起來(lái).
5.對(duì)本節(jié)例題的分析:
例1是用代數(shù)式表示幾個(gè)比較簡(jiǎn)單的數(shù)量關(guān)系,這些小學(xué)都學(xué)過(guò).比較復(fù)雜一些的數(shù)量關(guān)系的代數(shù)式表示,課文安排在下一節(jié)中專門(mén)介紹.例2是說(shuō)出一些比較簡(jiǎn)單的代數(shù)式的意義.因?yàn)榇鷶?shù)式中用字母表示數(shù),所以把字母也看成數(shù),一種特殊的數(shù),就可以像看待原來(lái)比較熟悉的數(shù)式一樣,說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系,只是另外還要考慮乘號(hào)可能省略等新規(guī)定而已.6.教法建議
(1)因?yàn)檫@一章知識(shí)大部分在小學(xué)學(xué)習(xí)過(guò),講授新課之前要先復(fù)習(xí)小學(xué)學(xué)過(guò)的運(yùn)算律,在學(xué)生原有的認(rèn)知結(jié)構(gòu)上,提出新的問(wèn)題。這樣即復(fù)習(xí)了舊知識(shí),又引出了新知識(shí),能激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)中,一定要注意發(fā)揮本章承上啟下的作用,搞好小學(xué)數(shù)學(xué)與初中代數(shù)的銜接,使學(xué)生有一個(gè)良好的開(kāi)端。
(2)在本節(jié)的學(xué)習(xí)過(guò)程中,要使學(xué)生理解代數(shù)式的概念,首先要給學(xué)生多舉例子(學(xué)生比較熟悉、貼近現(xiàn)實(shí)生活的例子),使學(xué)生從感性上認(rèn)識(shí)什么是代數(shù)式,理清代數(shù)式中的運(yùn)算和運(yùn)算順序,才能正確說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系,從而認(rèn)識(shí)字母表示數(shù)的意義——普遍性、簡(jiǎn)明性,也為列代數(shù)式做準(zhǔn)備。
(3)條件比較好的學(xué)校,老師可選用一些多媒體課件,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)學(xué)生自主學(xué)習(xí)的能力。
(4)老師在講解第一節(jié)之前,一定要對(duì)全章內(nèi)容和課時(shí)安排有一個(gè)了解,注意前后知識(shí)的銜接,只有這樣,我們老師才能教給學(xué)生系統(tǒng)的而不是一些零散的知識(shí),久而久之,學(xué)生頭腦中自然會(huì)形成一個(gè)完整的知識(shí)體系。
(5)因?yàn)槭切聦W(xué)期代數(shù)的第一節(jié)課,老師一定要給學(xué)生一個(gè)好印象,好的開(kāi)端等于成功了一半。那么,怎么才能給學(xué)生留下好印象呢?首先,你要盡量在學(xué)生面前展示自己的才華。比如,英語(yǔ)口語(yǔ)好的老師,可以用英語(yǔ)做一個(gè)自我介紹,然后為學(xué)生說(shuō)一段祝福語(yǔ)。第二,上課時(shí)盡量使用多種語(yǔ)言與學(xué)生交流,其中包括情感語(yǔ)言(眉目語(yǔ)言、手勢(shì)語(yǔ)言等),讓學(xué)生感受到老師對(duì)他的關(guān)心。
7.教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):用字母表示數(shù)的意義 難點(diǎn):學(xué)會(huì)用字母表示數(shù)及正確說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系。教學(xué)設(shè)計(jì)示例
代數(shù)式
教學(xué)目標(biāo)
1.使學(xué)生認(rèn)識(shí)字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學(xué)的一大進(jìn)步;
2.了解代數(shù)式的概念,使學(xué)生能說(shuō)出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系;
3.通過(guò)對(duì)用字母表示數(shù)的講解,初步培養(yǎng)學(xué)生觀察和抽象思維的能力;
4.通過(guò)本節(jié)課的教學(xué),使學(xué)生深刻體會(huì)從特殊到一般的的數(shù)學(xué)思想方法.教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):用字母表示數(shù)的意義
難點(diǎn):學(xué)會(huì)用字母表示數(shù)及正確地說(shuō)出代數(shù)式所表示的數(shù)量關(guān)系
課堂教學(xué)過(guò)程 設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
1在小學(xué)我們?cè)鴮W(xué)過(guò)幾種運(yùn)算律?都是什么?如可用字母表示它們?
(通過(guò)啟發(fā)、歸納最后師生共同得出用字母表示數(shù)的五種運(yùn)算律)(1)加法交換律 a+b=b+a;
(2)乘法交換律 a·b=b·a;
(3)加法結(jié)合律(a+b)+c=a+(b+c);
(4)乘法結(jié)合律(ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以寫(xiě)成“·”號(hào)或者省略不寫(xiě),但數(shù)與數(shù)之間相乘,一般仍用“×”;(2)上面各種運(yùn)算律中,所用到的字母a,b,c都是表示數(shù)的字母,它代表我們過(guò)去學(xué)過(guò)的一切數(shù)
2(投影)從甲地到乙地的路程是15千米,步行要3小時(shí),騎車(chē)要1小時(shí),乘汽車(chē)要0.25小時(shí),試問(wèn)步行、騎車(chē)、乘汽車(chē)的速度分別是多少?
3若用s表示路程,t表示時(shí)間,ν表示速度,你能用s與t表示ν嗎?
4(投影)一個(gè)正方形的邊長(zhǎng)是a厘米,則這個(gè)正方形的周長(zhǎng)是多少?面積是多少?
(用I厘米表示周長(zhǎng),則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)
此時(shí),教師應(yīng)指出:(1)用字母表示數(shù)可以把數(shù)或數(shù)的關(guān)系,簡(jiǎn)明的表示出來(lái);(2)在公式與中,用字母表示數(shù)也會(huì)給運(yùn)算帶來(lái)方便;(3)像上面出現(xiàn)的a,5,15÷3,4a,a+b,以及a2等等都叫代數(shù)式.那么究竟什么叫代數(shù)式呢?代數(shù)式的意義又是什么呢?這正是本節(jié)課我們將要學(xué)習(xí)的內(nèi)容.
三、講授新課
1代數(shù)式
單獨(dú)的一個(gè)數(shù)字或單獨(dú)的一個(gè)字母以及用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連接而成的式子叫代數(shù)式.學(xué)習(xí)代數(shù),首先要學(xué)習(xí)用代數(shù)式表示數(shù)量關(guān)系,明確代數(shù)上的意義
2舉例說(shuō)明
例1 填空:
(1)每包書(shū)有12冊(cè),n包書(shū)有__________冊(cè);
(2)溫度由t℃下降到2℃后是_________℃;
(3)棱長(zhǎng)是a厘米的正方體的體積是_____立方厘米;
(4)產(chǎn)量由m千克增長(zhǎng)10%,就達(dá)到_______千克
(此例題用投影給出,學(xué)生口答完成)解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m
例2 說(shuō)出下列代數(shù)式的意義:
(1)2a+3(2)2(a+3);(3)(4)a-(5)a2+b2(6)(a+b)2 解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;
(3)的意義是c除以ab的商;(4)a-的意義是a減去 的差;
(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方
說(shuō)明:(1)本題應(yīng)由教師示范來(lái)完成;
(2)對(duì)于代數(shù)式的意義,具體說(shuō)法沒(méi)有統(tǒng)一規(guī)定,以簡(jiǎn)明而不致引起誤會(huì)為出發(fā)點(diǎn)如第(1)小題也可以說(shuō)成“a的2倍加上3”或“a的2倍與3的和”等等
例3 用代數(shù)式表示:
(1)m與n的和除以10的商;
(2)m與5n的差的平方;
(3)x的2倍與y的和;
(4)ν的立方與t的3倍的積
分析:用代數(shù)式表示用語(yǔ)言敘述的數(shù)量關(guān)系要注意:①弄清代數(shù)式中括號(hào)的使用;②字母與數(shù)字做乘積時(shí),習(xí)慣上數(shù)字要寫(xiě)在字母的前面
解:(1);(2)(m-5n)2(3)2x+y;(4)3tν3
四、課堂練習(xí)
1填空:(投影)
(1)n箱蘋(píng)果重p千克,每箱重_____千克;(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_(kāi)____厘米;
(3)底為a,高為h的三角形面積是______;
(4)全校學(xué)生人數(shù)是x,其中女生占48%,則女生人數(shù)是____,男生人數(shù)是____
2說(shuō)出下列代數(shù)式的意義:(投影)
(1)2a-3c;(2);(3)ab+1;(4)a2-b2
3用代數(shù)式表示:(投影)
(1)x與y的和;(2)x的平方與y的立方的差;
(3)a的60%與b的2倍的和;(4)a除以2的商與b除3的商的和
五、師生共同小結(jié)
首先,提出如下問(wèn)題:
1本節(jié)課學(xué)習(xí)了哪些內(nèi)容?2用字母表示數(shù)的意義是什么?
3什么叫代數(shù)式?
教師在學(xué)生回答上述問(wèn)題的基礎(chǔ)上,指出:①代數(shù)式實(shí)際上就是算式,字母像數(shù)字一樣也可以進(jìn)行運(yùn)算;②在代數(shù)式和運(yùn)算結(jié)果中,如有單位時(shí),要正確地使用括號(hào)
六、作業(yè)
1一個(gè)三角形的三條邊的長(zhǎng)分別的a,b,c,求這個(gè)三角形的周長(zhǎng)
2張強(qiáng)比王華大3歲,當(dāng)張強(qiáng)a歲時(shí),王華的年齡是多少?
3飛機(jī)的速度是汽車(chē)的40倍,自行車(chē)的速度是汽車(chē)的,若汽車(chē)的速度是ν千米/時(shí),那么,飛機(jī)與自行車(chē)的速度各是多少?
4a千克大米的售價(jià)是6元,1千克大米售多少元?
5圓的半徑是R厘米,它的面積是多少?
6用代數(shù)式表示:
(1)長(zhǎng)為a,寬為b米的長(zhǎng)方形的周長(zhǎng);
(2)寬為b米,長(zhǎng)是寬的2倍的長(zhǎng)方形的周長(zhǎng);
(3)長(zhǎng)是a米,寬是長(zhǎng)的 的長(zhǎng)方形的周長(zhǎng);
(4)寬為b米,長(zhǎng)比寬多2米的長(zhǎng)方形的周長(zhǎng)
第三篇:初中數(shù)學(xué)教案:七年級(jí)數(shù)學(xué)《代數(shù)式的值》教案
初中數(shù)學(xué)教案:七年級(jí)數(shù)學(xué)《代數(shù)式的值》教案模板
教學(xué)目標(biāo)
1.使學(xué)生掌握代數(shù)式的值的概念,能用具體數(shù)值代替代數(shù)式中的字母,求出代數(shù)式的值; 2.培養(yǎng)學(xué)生準(zhǔn)確地運(yùn)算能力,并適當(dāng)?shù)貪B透特殊與一般的辨證關(guān)系的思想。教學(xué)建議
1.重點(diǎn)和難點(diǎn):正確地求出代數(shù)式的值。2.理解代數(shù)式的值:
(1)一個(gè)代數(shù)式的值是由代數(shù)式中字母的取值而決定的.所以代數(shù)式的值一般不是一個(gè)固定的數(shù),它會(huì)隨著代數(shù)式中字母取值的變化而變化.因此在談代數(shù)式的值時(shí),必須指明在什么條件下.如:對(duì)于代數(shù)式n-2 ;當(dāng)n=2 時(shí),代數(shù)式n-2 的值是0;當(dāng)n=4 時(shí),代數(shù)式n-2 的值是2.
(2)代數(shù)式中字母的取值必須確保做到以下兩點(diǎn):①使代數(shù)式有意義,②使它所表示的實(shí)際數(shù)量有意義,如: 1/(x-1)中
不能取1,因?yàn)閤=1 時(shí),分母為零,式于1/(x-1)無(wú)意義;如果式子中字母表示長(zhǎng)方形的長(zhǎng),那么它必須大于0. 3.求代數(shù)式的值的一般步驟:
在代數(shù)式的值的概念中,實(shí)際也指明了求代數(shù)式的值的方法.即一是代入,二是計(jì)算.求代數(shù)式的值時(shí),一要弄清楚運(yùn)算符號(hào),二要注意運(yùn)算順序.在計(jì)算時(shí),要注意按代數(shù)式指明的運(yùn)算進(jìn)行.
4。求代數(shù)式的值時(shí)的注意事項(xiàng):
(1)代數(shù)式中的運(yùn)算符號(hào)和具體數(shù)字都不能改變。(2)字母在代數(shù)式中所處的位置必須搞清楚。(3)如果字母取值是分?jǐn)?shù)時(shí),作乘方運(yùn)算必須加上小括號(hào),將來(lái)學(xué)了負(fù)數(shù)后,字母給出的值是負(fù)數(shù)也必須加上括號(hào)。5.本節(jié)知識(shí)結(jié)構(gòu):
本小節(jié)從一個(gè)應(yīng)用代數(shù)式的實(shí)例出發(fā),引出代數(shù)式的值的概念,進(jìn)而通過(guò)兩個(gè)例題講述求代數(shù)式的值的方法.6.教學(xué)建議
(1)代數(shù)式的值是由代數(shù)式里的字母所取的值決定的,因此在教學(xué)過(guò)程中,注意滲透對(duì)應(yīng)的思想,這樣有助于培養(yǎng)學(xué)生的函數(shù)觀念.
(2)列代數(shù)式是由特殊到一般, 而求代數(shù)式的值, 則可以看成由一般到特殊,在教學(xué)中,可結(jié)合前一小節(jié),適當(dāng)滲透關(guān)于特殊與一般的辨證關(guān)系的思想.教學(xué)設(shè)計(jì)示例
代數(shù)式的值
(一)教學(xué)目標(biāo)
1使學(xué)生掌握代數(shù)式的值的概念,能用具體數(shù)值代替代數(shù)式中的字母,求出代數(shù)式的值; 2培養(yǎng)學(xué)生準(zhǔn)確地運(yùn)算能力,并適當(dāng)?shù)貪B透特殊與一般的辨證關(guān)系的思想。教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn)和難點(diǎn):正確地求出代數(shù)式的值 課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)識(shí)結(jié)構(gòu)提出問(wèn)題 1用代數(shù)式表示:(投影)(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;(3)a與b的和的50% 2用語(yǔ)言敘述代數(shù)式2n+10的意義
3對(duì)于第2題中的代數(shù)式2n+10,可否編成一道實(shí)際問(wèn)題呢?(在學(xué)生回答的基礎(chǔ)上,教師打投影)某學(xué)校為了開(kāi)展體育活動(dòng),要添置一批排球,每班配2個(gè),學(xué)校另外留10個(gè),如果這個(gè)學(xué)校共有n個(gè)班,總共需多少個(gè)排球? 若學(xué)校有15個(gè)班(即n=15),則添置排球總數(shù)為多少個(gè)?若有20個(gè)班呢? 最后,教師根據(jù)學(xué)生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當(dāng)班數(shù)n取不同的數(shù)值時(shí),代數(shù)式2n+10的計(jì)算結(jié)果也不同,顯然,當(dāng)n=15時(shí),代數(shù)式的值是40;當(dāng)n=20時(shí),代數(shù)式的值是50我們將上面計(jì)算的結(jié)果40和50,稱為代數(shù)式2n+10當(dāng)n=15和n=20時(shí)的值這就是本節(jié)課我們將要學(xué)習(xí)研究的內(nèi)容
二、師生共同研究代數(shù)式的值的意義
1用數(shù)值代替代數(shù)式里的字母,按代數(shù)式指明的運(yùn)算,計(jì)算后所得的結(jié)果,叫做代數(shù)式的值
2結(jié)合上述例題,提出如下幾個(gè)問(wèn)題:(1)求代數(shù)式2x+10的值,必須給出什么條件?(2)代數(shù)式的值是由什么值的確定而確定的? 當(dāng)教師引導(dǎo)學(xué)生說(shuō)出:“代數(shù)式的值是由代數(shù)式里字母的取值的確定而確定的”之后,可用圖示幫助學(xué)生加深印象
然后,教師指出:只要代數(shù)式里的字母給定一個(gè)確定的值,代數(shù)式就有唯一確定的值與它對(duì)應(yīng)
(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應(yīng)注意什么呢? 下面教師結(jié)合例題來(lái)引導(dǎo)學(xué)生歸納,概括出上述問(wèn)題的答案(教師板書(shū)例題時(shí),應(yīng)注意格式規(guī)范化)例1 當(dāng)x=7,y=4,z=0時(shí),求代數(shù)式x(2x-y+3z)的值 解:當(dāng)x=7,y=4,z=0時(shí),x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70
注意:如果代數(shù)式中省略乘號(hào),代入后需添上乘號(hào) 例2 根據(jù)下面a,b的值,求代數(shù)式a-b/a 的值(1)a=4,b=12,(2)a=3/2,b=1 解:(1)當(dāng)a=4,b=12時(shí),a-b/a =4-12/4 =16-3=13;(2)當(dāng)a=3/2,b=1時(shí),2
22注意(1)如果字母取值是分?jǐn)?shù),作乘方運(yùn)算時(shí)要加括號(hào);(2)注意書(shū)寫(xiě)格式,“當(dāng)??時(shí)”的字樣不要丟;
(3)代數(shù)式里的字母可取不同的值,但是所取的值不應(yīng)當(dāng)使代數(shù)式或代數(shù)式所表示的數(shù)量關(guān)系失去實(shí)際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個(gè)數(shù),n不能取分?jǐn)?shù)最后,請(qǐng)學(xué)生總結(jié)出求代數(shù)值的步驟:①代入數(shù)值②計(jì)算結(jié)果
三、課堂練習(xí)
1(1)當(dāng)x=2時(shí),求代數(shù)式x-1的值;
(2)當(dāng)x=1/3,y=1/4 時(shí),求代數(shù)式x(x-y)的值 2當(dāng)a=1/2,b=1/3 時(shí),求下列代數(shù)式的值:(1)(a+b);
(2)(a-b)
3當(dāng)x=5,y=3時(shí),求代數(shù)式(2x-3y)/(3x+2y)的值
222
答案:1.(1)3;(2)1/36 ; 2.(1)25/26 ;(2)1/36; 3.1/21.
四、師生共同小結(jié)
首先,請(qǐng)學(xué)生回答下面問(wèn)題: 1本節(jié)課學(xué)習(xí)了哪些內(nèi)容? 2求代數(shù)式的值應(yīng)分哪幾步? 3在“代入”這一步應(yīng)注意什么”
其次,結(jié)合學(xué)生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母按照代數(shù)式的運(yùn)算順序,直接計(jì)算后所得的結(jié)果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的.
五、作業(yè)
當(dāng)a=2,b=1,c=3時(shí),求下列代數(shù)式的值:(1)c-(c-a)(c-b);
(2)(c-b)/(c+b).代數(shù)式的值
(二)教學(xué)目標(biāo)
1.使學(xué)生掌握代數(shù)式的值的概念,會(huì)求代數(shù)式的值; 2.培養(yǎng)學(xué)生準(zhǔn)確地運(yùn)算能力,并適當(dāng)?shù)貪B透對(duì)應(yīng)的思想. 教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):當(dāng)字母取具體數(shù)字時(shí),對(duì)應(yīng)的代數(shù)式的值的求法及正確地書(shū)寫(xiě)格式. 難點(diǎn):正確地求出代數(shù)式的值. 課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)識(shí)結(jié)構(gòu)提出問(wèn)題 1.用代數(shù)式表示:(投影)(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;(3)a與b的和的50%.
2.用語(yǔ)言敘述代數(shù)式2n+10的意義.
3.對(duì)于第2題中的代數(shù)式2n+10,可否編成一道實(shí)際問(wèn)題呢?(在學(xué)生回答的基礎(chǔ)上,教師打出投影)某學(xué)校為了開(kāi)展體育活動(dòng),要添置一批排球,每班配2個(gè),學(xué)校另外留10個(gè),如果這個(gè)學(xué)校共有n個(gè)班,總共需多少個(gè)排球?
若學(xué)校有15個(gè)班(即n=15),則添置排球總數(shù)為多少個(gè)?若有20個(gè)班呢?
最后,教師根據(jù)學(xué)生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當(dāng)班數(shù)n取不同的數(shù)值時(shí),代數(shù)式2n+10的計(jì)算結(jié)果也不同,顯然,當(dāng)n=15時(shí),代數(shù)式的值是40;當(dāng)n=20時(shí),代數(shù)式的值是50.我們將上面計(jì)算的結(jié)果40和50,稱為代數(shù)式2n+10當(dāng)n=15和n=20時(shí)的值.這就是本節(jié)課我們將要學(xué)習(xí)研究的內(nèi)容.
二、師生共同研究代數(shù)式的值的意義
1.用數(shù)值代替代數(shù)式里的字母,按代數(shù)式指明的運(yùn)算,計(jì)算后所得的結(jié)果,叫做代數(shù)式的值.
2.結(jié)合上述例題,提出如下幾個(gè)問(wèn)題:(1)求代數(shù)式2n+10的值,必須給出什么條件?(2)代數(shù)式的值是由什么值的確定而確定的? 當(dāng)教師引導(dǎo)學(xué)生說(shuō)出:“代數(shù)式的值是由代數(shù)式 里字母的取值的確定而確定的”之后,可用圖示幫助 學(xué)生加深印象.
然后,教師指出:只要代數(shù)式里的字母給定一個(gè)確定的值,代數(shù)式就有唯一確定的值與它應(yīng).(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應(yīng)注意什么呢?
下面教師結(jié)合例題來(lái)引導(dǎo)學(xué)生歸納,概括出上述問(wèn)題的答案.(教師板書(shū)例題時(shí),應(yīng)注意格式規(guī)范化)例1 當(dāng)x=7,y=4,z=0時(shí),求代數(shù)式x(2x-y+3z)的值. 解:當(dāng)x=7,y=4,z=0時(shí),x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70.
注意:如果代數(shù)式中省略乘號(hào),代入后需添上乘號(hào).
注意(1)如果字母取值是分?jǐn)?shù),作乘方運(yùn)算時(shí)要加括號(hào);(2)注意書(shū)寫(xiě)格式,“當(dāng)??時(shí)”的字樣不要丟;
(3)代數(shù)式里的字母可取不同的值,但是所取的值不應(yīng)當(dāng)使代數(shù)式或代數(shù)式所表示的數(shù)量關(guān)系失去實(shí)際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個(gè)數(shù),n不能取分?jǐn)?shù).
最后,請(qǐng)學(xué)生總結(jié)出求代數(shù)值的步驟: ①代入數(shù)值
②計(jì)算結(jié)果
三、課堂練習(xí)
1.(1)當(dāng)x=2時(shí),求代數(shù)式x-1的值;
22.填表:(投影)
四、師生共同小結(jié) 首先,請(qǐng)學(xué)生回答下面問(wèn)題:
1.本節(jié)課學(xué)習(xí)了哪些內(nèi)容?2.求代數(shù)式的值應(yīng)分哪幾步? 3.在“代入”這一步應(yīng)注意什么?
其次,結(jié)合學(xué)生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式的運(yùn)算順序,直接計(jì)算后所得的結(jié)果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的.
五、作業(yè)
1.當(dāng)a=2,b=1,c=3時(shí),求下列代數(shù)式的值:
2.填表
3.填表
課堂教學(xué)設(shè)計(jì)說(shuō)明 由于代數(shù)式的值是由代數(shù)式里的字母所取的值決定的,因此在設(shè)計(jì)教學(xué)過(guò)程中,注意滲透對(duì)應(yīng)的思想,這樣有助于培養(yǎng)學(xué)生的函數(shù)觀念。
第四篇:初中數(shù)學(xué)教案
初中數(shù)學(xué)教案
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
二、重點(diǎn)、難點(diǎn)分析
本節(jié)的重點(diǎn)是:?jiǎn)雾?xiàng)式乘法法則的導(dǎo)出.這是因?yàn)閱雾?xiàng)式乘法法則的導(dǎo)出是對(duì)學(xué)生已有的數(shù)學(xué)知識(shí)的綜合運(yùn)用,滲透了“將未知轉(zhuǎn)化為已知”的數(shù)學(xué)思想,蘊(yùn)含著“從特殊到一般”的認(rèn)識(shí)規(guī)律,是培養(yǎng)學(xué)生思維能力的重要內(nèi)容之一.
本節(jié)的難點(diǎn)是:多種運(yùn)算法則的綜合運(yùn)用.是因?yàn)閱雾?xiàng)式的乘法最終將轉(zhuǎn)化為有理數(shù)乘法、同底數(shù)冪相乘、冪的乘方、積的乘方等運(yùn)算,對(duì)于初學(xué)者來(lái)說(shuō),由于難于正確辯論和區(qū)別各種不同的運(yùn)算以及運(yùn)算所使用的法則,易于將各種法則混淆,造成運(yùn)算結(jié)果的錯(cuò)誤.
三、教法建議
本節(jié)課在教學(xué)過(guò)程中的不同階段可以采用了不同的教學(xué)方法,以適應(yīng)教學(xué)的需要.
(1)在新課學(xué)習(xí)階段的單項(xiàng)式的乘法法則的推導(dǎo)過(guò)程中,可采用引導(dǎo)發(fā)現(xiàn)法.通過(guò)教師精心設(shè)計(jì)的問(wèn)題鏈,引導(dǎo)學(xué)生將需要解決的問(wèn)題轉(zhuǎn)化成用已經(jīng)學(xué)過(guò)的知識(shí)可以解決的問(wèn)題,充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用,學(xué)生始終處在觀察思考之中.
(2)在新課學(xué)習(xí)的例題講解階段,可采用講練結(jié)合法.對(duì)于例題的學(xué)習(xí),應(yīng)圍繞問(wèn)題進(jìn)行,教師引導(dǎo)學(xué)生通過(guò)觀察、思考,尋求解決問(wèn)題的方法,在解題的過(guò)程中展開(kāi)思維.與此同時(shí)還進(jìn)行多次有較強(qiáng)針對(duì)性的練習(xí),分散難點(diǎn).對(duì)學(xué)生分層進(jìn)行訓(xùn)練,化解難點(diǎn).并注意及時(shí)矯正,使學(xué)生在前面出現(xiàn)的錯(cuò)誤,不致于影響后面的學(xué)習(xí),為后而后學(xué)習(xí)掃清障礙.通過(guò)例題的講解,教師給出了解題規(guī)范,并注意對(duì)學(xué)生良好學(xué)習(xí)習(xí)慣的培養(yǎng).
(3)本節(jié)課可以師生共同小結(jié),旨在訓(xùn)練學(xué)生歸納的方法,并形成相應(yīng)的知識(shí)系統(tǒng),進(jìn)一步防范學(xué)生在運(yùn)算中容易出現(xiàn)的錯(cuò)誤.
教學(xué)設(shè)計(jì)示例
一、教學(xué)目的
1.使學(xué)生理解并掌握單項(xiàng)式的乘法法則,能夠熟練地進(jìn)行單項(xiàng)式的乘法計(jì)算.
2.注意培養(yǎng)學(xué)生歸納、概括能力,以及運(yùn)算能力.
3.通過(guò)單項(xiàng)式的乘法法則在生活中的應(yīng)用培養(yǎng)學(xué)生的應(yīng)用意識(shí).
二、重點(diǎn)、難點(diǎn)
重點(diǎn):掌握單項(xiàng)式與單項(xiàng)式相乘的法則.
難點(diǎn):分清單項(xiàng)式與單項(xiàng)式相乘中,冪的運(yùn)算法則.
三、教學(xué)過(guò)程
復(fù)習(xí)提問(wèn):
什么是單項(xiàng)式?什么叫單項(xiàng)式的系數(shù)?什么叫單項(xiàng)式的次數(shù)?
引言 我們已經(jīng)學(xué)習(xí)了冪的運(yùn)算性質(zhì),在這個(gè)基礎(chǔ)上我們可以學(xué)習(xí)整式的乘法運(yùn)算.先來(lái)學(xué)最簡(jiǎn)單的整式乘法,即單項(xiàng)式之間的乘法運(yùn)算(給出標(biāo)題).
新課 看下面的例子:計(jì)算
(1)2x2y·3xy2;(2)4a2x2·(-3a3bx).
同學(xué)們按以下提問(wèn),回答問(wèn)題:
(1)2x2y·3xy2
①每個(gè)單項(xiàng)式是由幾個(gè)因式構(gòu)成的,這些因式都是什么?
2x2y·3xy2=(2·x2·y)·(3·x·y2)
②根據(jù)乘法結(jié)合律重新組合 2x2y·3xy2=2·x2·y·3·x·y2
③根據(jù)乘法交換律變更因式的位置
2x2y·3xy2=2·3·x2·x·y·y2
④根據(jù)乘法結(jié)合律重新組合 2x2y·3xy2=(2·3)·(x2·x)·(y·y2)
⑤根據(jù)有理數(shù)乘法和同底數(shù)冪的乘法法則得出結(jié)論
2x2y·3xy2=6x3y3
按以上的分析,寫(xiě)出(2)的計(jì)算步驟:
(2)4a2x2·(-3a3bx)
=4a2x2·(-3)a3bx
=[4·(-3)]·(a2·a3)·(x2·x)·b
=(-12)·a5·x3·b
=-12a5bx3.
通過(guò)以上兩題,讓學(xué)生總結(jié)回答,歸納出單項(xiàng)式乘單項(xiàng)式的運(yùn)算步驟是:
①系數(shù)相乘為積的系數(shù);
②相同字母因式,利用同底數(shù)冪的乘法相乘,作為積的因式;
③只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)也作為積的一個(gè)因式;
④單項(xiàng)式與單項(xiàng)式相乘,積仍是一個(gè)單項(xiàng)式;
⑤單項(xiàng)式乘法法則,對(duì)于三個(gè)以上的單項(xiàng)式相乘也適用.
看教材,讓學(xué)生仔細(xì)閱讀單項(xiàng)式與單項(xiàng)式相乘的法則,邊讀邊體會(huì)邊記憶.
利用法則計(jì)算以下各題. 例1 計(jì)算以下各題:
(1)4n2·5n3;
(2)(-5a2b3)·(-3a);
(3)(-5an+1b)·(-2a);
(4)(4×105)·(5×106)·(3×104).
解:(1)4n2·5n3
=(4·5)·(n2·n3)
=20n5;
(2)(-5a2b3)·(-3a)
=[(-5)·(-3)]·(a2·a)·b3
=15a3b3;
(3)(-5an+1b)·(-2a)
=[(-5)·(-2)]·(an+1·a)b
=10an+2b;
(4)(4·105)·(5·106)·(3·104)
=(4·5·3)·(105·106·104)
=60·1015
=6·1016.
例2 計(jì)算以下各題(讓學(xué)生回答):
(3)(-5amb)·(-2b2);
(4)(-3ab)(-a2c)·6ab2.
=3x3y3;
(3)(-5amb)·(-2b2);
=[(-5)·(-2)]·am·(b·b2)
=10amb3
(4)(-3ab)·(-a2c)·6ab2
=[(-3)·(-1)·6]·(aa2a)·(bb2)·c
=18a4b3c.
小結(jié) 單項(xiàng)式與單項(xiàng)式相乘是整式乘法中的重要內(nèi)容,它的運(yùn)算法則的導(dǎo)出主要依據(jù)是,乘法的交換律與結(jié)合律以及冪的運(yùn)算性質(zhì).
第五篇:初中數(shù)學(xué)教案
初中數(shù)學(xué)教案 第七章:圓
第17課時(shí):三角形的內(nèi)切圓
教學(xué)目標(biāo):
1、使學(xué)生學(xué)會(huì)作三角形的內(nèi)切圓.
2、理解三角形內(nèi)切圓的有關(guān)概念.
3、掌握三角形的內(nèi)心、外心的位置、數(shù)量特征.
4、會(huì)關(guān)于內(nèi)心的一些角度的計(jì)算. 教學(xué)重點(diǎn):
掌握三角形內(nèi)切圓的畫(huà)法、理解三角形內(nèi)切圓的有關(guān)概念.同三角形的外接圓一樣,務(wù)必使學(xué)生準(zhǔn)確掌握三角形內(nèi)切圓的畫(huà)法. 教學(xué)難點(diǎn):
畫(huà)鈍角三角形的內(nèi)切圓,學(xué)生極有可能畫(huà)出與三角形的邊相交或相離的情形. 資源鏈接:
百度百科:http://baike.baidu.com/view/608209.htm
圖片:http://www.tmdps.cn/courses/rdfz/czts/chusan/sx/kcjzjy/images0301/07.gif http://www.tmdps.cn/courses/rdfz/czts/chusan/sx/kcjy/images0301/02.gif
http://wenwen.soso.com/p/20101204/20101204211849-926372078.jpg
http://www.tmdps.cn/UploadFiles/qmgc/2010/12/***117.png
教學(xué)過(guò)程:
一、新課引入:
我們已經(jīng)學(xué)習(xí)過(guò)三角形的外接圓的畫(huà)法及有關(guān)概念,現(xiàn)在我們用同樣的思想方法來(lái)研究三角形的內(nèi)切圓的畫(huà)法及有關(guān)概念.
二、新課講解:
在一塊三角形的紙片上,怎樣才能剪下一個(gè)面積最大的圓呢?實(shí)際上它就是作圖問(wèn)題: 例1 作圓,使它和已知三角形的各邊都相切. 已知:△ABC.
求作:和△ABC的三邊都相切的圓.
讓學(xué)生展開(kāi)討論,教師指導(dǎo)學(xué)生發(fā)現(xiàn),作圓的關(guān)鍵是確定圓心,因?yàn)樗髨A與△ABC的三邊都相切,所以圓心到三邊的距離相等,顯然這個(gè)點(diǎn)既要在∠B的平分線上,又要在∠C的平分線上.那它就應(yīng)該是兩條角平分線的交點(diǎn),而交點(diǎn)到任何一邊的垂線段長(zhǎng)就是該圓的半徑. 學(xué)生動(dòng)手畫(huà),教師巡視.當(dāng)所有學(xué)生把銳角三角形的內(nèi)切圓畫(huà)出來(lái)時(shí),教師可打開(kāi)計(jì)算機(jī)或幻燈機(jī)給同學(xué)們作演示,演示的過(guò)程一定要分步驟進(jìn)行.然后學(xué)生按左右分別畫(huà)直角三角形和鈍角三角形的內(nèi)切圓.這時(shí)學(xué)生在畫(huà)鈍角三角形的內(nèi)切圓時(shí),可能出現(xiàn)與邊相交或相離的情形,這很正常,教師要幫助學(xué)生加以糾正,并最終指導(dǎo)學(xué)生完成下列問(wèn)題:
l.三角形的內(nèi)切圓、內(nèi)心、圓的外切三角形:
和三角形各邊都相切的圓叫做三角形的內(nèi)切圓,內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個(gè)三角形叫做圓的外切三角形.
2.多邊形的內(nèi)切圓、圓的外切多邊形:
和多邊形的各邊都相切的圓叫做多邊形的內(nèi)切圓,這個(gè)多邊形叫做圓的外切多邊形. 3.內(nèi)心是什么的交點(diǎn)?
內(nèi)心是三角形三個(gè)角的平分線的交點(diǎn). 4.內(nèi)心有什么數(shù)量特征?
內(nèi)心到三角形各邊的距離相等.
5.內(nèi)心的位置:三角形的內(nèi)心都在三角形的內(nèi)部.
三、重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過(guò)程.
關(guān)于三角形內(nèi)切圓的有關(guān)概念,與三角形的外接圓類(lèi)似,三角形的內(nèi)切圓是直線和圓的位置關(guān)系中的一個(gè)非常重要的位置.待學(xué)生理解了有關(guān)概念后,可在黑板上采取對(duì)比的方式.如:
三角形的外接圓 三角形的內(nèi)切圓 1.定義 1.定義 2.外心 2.內(nèi)心
3.圓的內(nèi)接三角形 3.圓的外切三角形 4.外心是誰(shuí)的交點(diǎn) 4.內(nèi)心是誰(shuí)的交點(diǎn) 5.外心的數(shù)量特征 5.內(nèi)心的數(shù)量特征 6.外心的位置 6.內(nèi)心的位置
7.三角形外接圓的畫(huà)法 7.三角形內(nèi)切圓的畫(huà)法 8.外接圓的唯一性與內(nèi)接
8.內(nèi)切圓的唯一性與外切
三角形的多重性 三角形的多重性. 練習(xí)一,O是△ABC的內(nèi)心,則OA平分∠BAC對(duì)不對(duì)?為什么?
練習(xí)二,O是△ABC的內(nèi)心,∠BAC=100°,則∠OAC=50°,對(duì)不對(duì)? 練習(xí)三,∠OAC=40°,則∠B+∠C等于多少度?
教材P、114中例2中如圖7-63,在△ABC中,∠ABC=50°,∠ACB=75°,點(diǎn)O是內(nèi)心,求∠BOC的度數(shù).
分析:此例題是邊推理邊計(jì)算的問(wèn)題,教師在指導(dǎo)學(xué)生運(yùn)用內(nèi)心的性質(zhì)的同時(shí),也應(yīng)指導(dǎo)學(xué)生的解題步驟.
解:
答:∠BOC=117.5°.
練習(xí)四,O是△ABC的內(nèi)心,∠A=80°,求∠BOC的度數(shù).
解:
這是一組強(qiáng)化三角形內(nèi)心性質(zhì)的習(xí)題,逐題增加了靈活度,教學(xué)中也可就不同班級(jí)選用.
四、課堂小結(jié):
學(xué)生閱讀教材后總結(jié)出本課的主要內(nèi)容: 1.會(huì)作各種三角形的內(nèi)切圓.
2.定義三角形的內(nèi)切圓、內(nèi)心及圓的外切三角形. 3.內(nèi)心是誰(shuí)的交點(diǎn):位置如何?它有什么位置關(guān)系?
五、布置作業(yè)
(1)教材P.116中10、11、12.(2)教材P.117B組3.