第一篇:不等式證明經(jīng)典[精選]
金牌師資,笑傲高考
2013年數(shù)學(xué)VIP講義
【例1】 設(shè)a,b∈R,求證:a2+b2≥ab+a+b-1。
【例2】 已知0 【例3】 設(shè)A=a+d,B=b+c,a,b,c,d∈R+,ad=bc,a=max{a,b,c,d},試比較A與B的大小。 因A、B的表達(dá)形式比較簡(jiǎn)單,故作差后如何對(duì)因式進(jìn)行變形是本題難點(diǎn)之一。利用等式ad=bc,借助于消元思想,至少可以消去a,b,c,d中的一個(gè)字母。關(guān)鍵是消去哪個(gè)字母,因條件中已知a的不等關(guān)系:a>b,a>c,a>d,故保留a,消b,c,d中任一個(gè)均可。 由ad=bc得:d?bca1?ab?bc?caa?b?c?abc≥1。 bca??b?c?a?b?(a?b)(a?c)a?0bc?acaA-B=a+d-(b+c)=a? =a?b? c(a?b)a 【例4】 a,b,c∈R,求證:a4+b4+c4≥(a+b+c)。 不等號(hào)兩邊均是和的形式,利用一次基本不等式顯然不行。不等號(hào)右邊為三項(xiàng)和,根據(jù)不等號(hào)方向,應(yīng)自左向右運(yùn)用基本不等式后再同向相加。因不等式左邊只有三項(xiàng),故把三項(xiàng)變化六項(xiàng)后再利用二元基本不等式,這就是“化奇為偶”的技巧。 左=12(2a4?2b224?2c)?22412[(a24?b)?(b22244?c)?(c2244?a)]24 ≥12(2ab?2bc?2ca)?ab?bc?ca 2發(fā)現(xiàn)縮小后沒有達(dá)到題目要求,此時(shí)應(yīng)再利用不等式傳遞性繼續(xù)縮小,處理的方法與剛才類似。 中天教育咨詢電話:0476-8705333 第1頁/共9頁 金牌師資,笑傲高考 ab?1212 2013年數(shù)學(xué)VIP講義 22?bc2222?ca2222?212(2ab2222?2bc2222?2ca)22 ?ca)?(ca2[(ab?bc)?(bc22?ab)]22≥(2abc?2abc2?2abc)?ab(a?b?c)1a ?1c?【例5】(1)a,b,c為正實(shí)數(shù),求證:?(2)a,b,c為正實(shí)數(shù),求證: a21bb2≥ c21ab?1bc?1ac; b?c?a?ca?b≥ a?b?c2。 (1)不等式的結(jié)構(gòu)與例4完全相同,處理方法也完全一樣。 (2)同學(xué)們可試一試,再用剛才的方法處理該題是行不通的。注意到從左向右,分式變成了整式,可考慮在左邊每一個(gè)分式后配上該分式的分母,利用二元基本不等式后約去分母,再利用不等式可加性即可達(dá)到目的。試一試行嗎? a2b?cb2?(b?c)≥2a2b?cb2?(b?c)?2a a?cc2?(a?c)≥2a?c?(a?c)?2ba?b?(a?b)≥2c2a?b?(a?b)?2c 相加后發(fā)現(xiàn)不行,a,b,c的整式項(xiàng)全消去了。為了達(dá)到目的,應(yīng)在系數(shù)上作調(diào)整。 a2b?c?b?c4≥a,b2a?c?a?c4≥b,c2a?b?a?b4≥a 相向相加后即可。 【例6】 x,y為正實(shí)數(shù),x+y=a,求證:x+y≥ 2a22。 思路一;根據(jù)x+y和x2+y2的結(jié)構(gòu)特點(diǎn),聯(lián)想到算術(shù)平均數(shù)與平方平均數(shù)之間的不等關(guān)系?!?x?y22≤2x2?y22 2∴ x?y≥(x?y)2?a22 思路二:因所求不等式右邊為常數(shù),故可從求函數(shù)最小值的角度去思考。思路一所用的是基本不等式法,這里采用消元思想轉(zhuǎn)化為一元函數(shù),再用單調(diào)性求解。換元有下列三種途徑: 途徑1:用均值換元法消元: 令 x?2a2?m,y?aa22?m 22則 x?y?(?m)?(?m)?2m?222aa22≥ a22 途徑2:代入消元法: y=a-x,0 a2)2?a22≥ a22 中天教育咨詢電話:0476-8705333 第2頁/共9頁 金牌師資,笑傲高考 途徑3:三角換元法消元: 令 x=acos2θ,y=asin2θ,θ∈(0,] 2?2013年數(shù)學(xué)VIP講義 則 x2+y2=a2(cos4θ+sin4θ)=a2[(sin2θ+cos2θ)2-2sin2θcos2θ] =a[1-2(sin2θ)]=a(1-22122 12sin2θ)≥ a22 注:為了達(dá)到消元的目的,途徑1和途徑3引入了適當(dāng)?shù)膮?shù),也就是找到一個(gè)中間變量表示x,y。這種引參的思想是高中數(shù)學(xué)常用的重要方法?!纠?】 已知a>b>0,求證:(a?b)8a2?a?b2?ab?(a?b)8b2。 12所證不等式的形式較復(fù)雜(如從次數(shù)看,有二次,一次,次等),難以從某個(gè)角度著手。故考慮用分析法證明,即執(zhí)果索因,尋找使不等式成立的必要條件。實(shí)際上就是對(duì)所證不等式進(jìn)行適當(dāng)?shù)幕?jiǎn)、變形,實(shí)際上這種變形在相當(dāng)多的題目里都是充要的。 a?b2?ab?a?b?2ab2b)(a?(a??(a?2b)2 a?b?(a?b)b)(a?8a2所證不等式可化為∵ a>b>0 ∴ a?b ∴ a?b?0 b)2?(a?2b)2?(a?b)(a?8b2b)2 ∴ 不等式可化為:(a?4ab)2?1?(a?4bb)2 2??(a?b)?4a即要證? 2??4b?(a?b)??a?b?2a只需證? ?2b?a?b?在a>b>0條件下,不等式組顯然成立 ∴ 原不等式成立 【例8】 已知f(x)=24xx?3?8,求證:對(duì)任意實(shí)數(shù)a,b,恒有f(a) 112.不等號(hào)兩邊字母不統(tǒng)一,采用常規(guī)方法難以著手。根據(jù)表達(dá)式的特點(diǎn),借助于函數(shù)思想,可分別求f(a)及g(b)=b2-4b+f(a)?112的最值,看能否通過最值之間的大小關(guān)系進(jìn)行比較。 ?8?2(2)a2a24aa?3?8?8?2a8?82a≤ 2?82?a?82a842?2 令 g(b)=b2-4b+11232 ≥32 g(b)=(b-2)2+ 中天教育咨詢電話:0476-8705333 第3頁/共9頁 金牌師資,笑傲高考 ∵ 32?22013年數(shù)學(xué)VIP講義 ∴ g(b)>f(a)注:本題實(shí)際上利用了不等式的傳遞性,只不過中間量為常數(shù)而已,這種思路在兩數(shù)大小比較時(shí)曾講過。由此也說明,實(shí)數(shù)大小理論是不等式大小理論的基礎(chǔ)。 【例9】 已知a,b,c∈R,f(x)=ax2+bx+c,當(dāng)|x|≤1時(shí),有|f(x)|≤1,求證: (1)|c|≤1,|b|≤1; (2)當(dāng)|x|≤1時(shí),|ax+b|≤2。 這是一個(gè)與絕對(duì)值有關(guān)的不等式證明題,除運(yùn)用前面已介紹的不等式性質(zhì)和基本不等式以外,還涉及到與絕對(duì)值有關(guān)的基本不等式,如|a|≥a,|a|≥-a,||a|-|b||≤|a±b|≤|a|+|b|,|a1±a2±?±an|≤|a1|+|a2|+?+|an|。就本題來說,還有一個(gè)如何充分利用條件“當(dāng)|x|≤1時(shí),|f(x)|≤1”的解題意識(shí)。 從特殊化的思想出發(fā)得到: 令 x=0,|f(0)|≤1 即 |c|≤1 當(dāng)x=1時(shí),|f(1)|≤1;當(dāng)x=-1時(shí),|f(-1)|≤1 下面問題的解決試圖利用這三個(gè)不等式,即把f(0),f(1),f(-1)化作已知量,去表示待求量。∵ f(1)=a+b+c,f(-1)=a-b+c ∴ b?12[f(1)?f(?1)] 12|f(1)?f(?1)|≤12[|f(1)|?|f(?1)|]≤ 12(1?1)≤1 ∴ |b|?(2)思路一:利用函數(shù)思想,借助于單調(diào)性求g(x)=ax+b的值域。 當(dāng)a>0時(shí),g(x)在[-1,1]上單調(diào)遞增 ∴ g(-1)≤g(x)≤g(1)∵ g(1)=a+1=f(1)-f(0)≤|f(1)-f(0)|≤|f(1)|+|f(0)|≤2 g(-1)=-a+b=f(0)-f(-1)=-[f(-1)-f(0)] ≥-|f(-1)-f(0)|≥-[|f(-1)|+|f(0)|]≥-2 ∴-2≤g(x)≤2 即 |g(x)|≤2 當(dāng)a<0時(shí),同理可證。 思路二:直接利用絕對(duì)值不等式 為了能將|ax+b|中的絕對(duì)值符號(hào)分配到a,b,可考慮a,b的符號(hào)進(jìn)行討論。當(dāng)a>0時(shí) |ax+b|≤|ax|+|b|=|a||x|+|b|≤|a|+|b|≤a+|b| 下面對(duì)b討論 ① b≥0時(shí),a+|b|=a+b=|a+b|=|f(1)-f(0)| ≤ |f(1)|+|f(0)|≤2; ② b<0時(shí),a+|b|=a-b=|a-b|=|f(-1)-f(0)|≤|f(-1)|+f(0)|≤2?!?|ax+b|≤2 當(dāng)a<0時(shí),同理可證。 評(píng)注:本題證明過程中,還應(yīng)根據(jù)不等號(hào)的方向,合理選擇不等式,例如:既有|a-b|≥|a|-|b|,又有|a-b|≥|b|-|a|,若不適當(dāng)選擇,則不能滿足題目要求。 中天教育咨詢電話:0476-8705333 第4頁/共9頁 金牌師資,笑傲高考 2013年數(shù)學(xué)VIP講義 1、設(shè)a,b為正數(shù),且a+b≤4,則下列各式一定成立的是 A、C、1a12?1b1a≤?141b B、≤1 D、141a≤ ?1a?1b≤ ≤ 1b≥1 2、已知a,b,c均大于1,且logac·logbc=4,則下列各式中一定正確的是 A、ac≥b B、ab≥c C、bc≥a D、ab≤c 5、已知a,b,c>0,且a+b>c,設(shè)M= a4?a?bb?cc4?c,N=,則MN的大小關(guān)系是 A、M>N B、M=N C、M 6、已知函數(shù)f(x)=-x-x3,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的值 A、一定大于零 B、一定小于零 C、一定等于零 D、正負(fù)都有可能 7、若a>0,b>0,x?111(?)2ab1a?b1ab,y?,z?,則 A、x≥y>z B、x≥z>y C、y≥x>z D、y>z≥x 8、設(shè)a,b∈R,下面的不等式成立的是 A、a+3ab>b B、ab-a>b+ab C、(二)填空題 9、設(shè)a>0,b>0,a≠b,則aabb與abba的大小關(guān)系是__________。 10、若a,b,c是不全相等的正數(shù),則(a+b)(b+c)(c+a)______8abc(用不等號(hào)填空)。 12、當(dāng)00且t≠1時(shí),logat與log21t?1a2 2ab?a?1b?1 D、a+b≥2(a-b-1) 22的大小關(guān)系是__________。 n13、若a,b,c為Rt△ABC的三邊,其中c為斜邊,則an+bn與c(其中n∈N,n>2)的大小關(guān)系是________________。 (三)解答題 14、已知a>0,b>0,a≠b,求證:a? 15、已知a,b,c是三角形三邊的長(zhǎng),求 證:1? 中天教育咨詢電話:0476-8705333 第5頁/共9頁 ab?c?ba?c?ca?b?2。 b?ab?ba。金牌師資,笑傲高考 16、已知a≥0,b≥0,求證: 18、若a,b,c為正數(shù),求證: 19、設(shè)a>0,b>0,且a+b=1,求證:(a? 20、已知a+b+c>0,ab+bc+ca>0,abc>0,求證:a,b,c全為正數(shù)。 1a)(b?1b)2541a?1b?1ca82013年數(shù)學(xué)VIP講義 12(a?b)2?14(a?b)≥aa?ba。 ≤ ?b383?c38。 abc≥。 中天教育咨詢電話:0476-8705333 第6頁/共9頁 不等式證明 1.比較法: 比較法是證明不等式的最基本、最重要的方法之一,它可分為作差法、作商法 (1)作差比較: ①理論依據(jù)a-b>0 a>b;a-b=0 a=b;a-b<0 a ⑴作差:對(duì)要比較大小的兩個(gè)數(shù)(或式)作差。 ⑵變形:對(duì)差進(jìn)行因式分解或配方成幾個(gè)數(shù)(或式)的完全平方和。⑶判斷差的符號(hào):結(jié)合變形的結(jié)果及題設(shè)條件判斷差的符號(hào)。 注意:若兩個(gè)正數(shù)作差比較有困難,可以通過它們的平方差來比較大小。(2)作商法:①要證A>B(B>0),只要證 ;要證A0),只要證 ②證明步驟:作商→變形→判斷與1的關(guān)系 常用變形方法:一是配方法,二是分解因式 2.綜合法:所謂綜合法,就是從題設(shè)條件和已經(jīng)證明過的基本不等式和不等式的性質(zhì)推導(dǎo)出所要證明的不等式成立,可簡(jiǎn)稱為由因?qū)Ч?。常見的基本不等式?|a|≥0, a2?b2?2ab,a?b?ab 2,a?b?a?b?a?b 分析法:從求證的不等式出發(fā),逐步尋求使不等式成立的充分條件,直至所需條件被確認(rèn)成立,就斷定求證的不等式成立,這種證明方法叫分析法,分析法的思想是“執(zhí)果索因”:即從求證的不等式出發(fā),探求使結(jié)論成立的充分條件,直至已成立的不等式。 基本步驟:要證??只需證??,只需證?? 4 分析綜合法 單純地應(yīng)用分析法證題并不多見,常常是在分析的過程中,又綜合條件、定理、常識(shí)等因素進(jìn)行探索,把分析與綜合結(jié)合起來,形成分析綜合法。反證法:先假設(shè)所要證明的不等式不成立,即要證的不等式的反面成立,如要證明不等式M 具體放縮方式有公式放縮和利用某些函數(shù)的單調(diào)性放縮。常用的技巧有:舍去一些正項(xiàng)或負(fù)項(xiàng);在和或積中換大(或換小)某些項(xiàng);擴(kuò)大(或縮?。┓质降姆肿樱ɑ蚍帜福┑?,放縮時(shí)要注意不等號(hào)的一致性。放縮法的方法有: ⑴添加或舍去一些項(xiàng),如:a2?1?a;n(n?1)?n ⑵將分子或分母放大(或縮?。抢没静坏仁?,如:lg3?lg5?(n?(n?1)2⑷利用常用結(jié)論: n(n?1)?lg3?lg5)?lg15?lg16?lg4 2Ⅰ、k?1?k?1k?1?k?12k; Ⅱ、1111; ???k2k(k?1)k?1k1111(程度大)???2k(k?1)kk?1kⅢ、12?k11111??(?);(程度小)2k?1(k?1)(k?1)2k?1k?17 換元法:換元的目的就是減少不等式中變量,以使問題化難為易,化繁為簡(jiǎn),常用的換元有三角換元和代數(shù)換元。如: 已知x2?y2?a2,可設(shè)x?acos?,y?asin?; 已知x2?y2?1,可設(shè) x?rcos?,y?rsin?(0?r?1); x2y2已知2?2?1,可設(shè)x?acos?,y?bsin?; abx2y2已知2?2?1,可設(shè)x?asec?,y?btan?; ab8、判別式法:判別式法是根據(jù)已知或構(gòu)造出來的一元二次方程,一元二次不等式,二次函數(shù)的根、解集、函數(shù)的性質(zhì)等特征確定出其判別式所應(yīng)滿足的不等式,從而推出欲證的不等式的方法。 9、其它方法 最值法:恒成立 恒成立 構(gòu)造法:通過構(gòu)造函數(shù)、方程、數(shù)列、向量或不等式來證明不等式; §14不等式的證明 不等式在數(shù)學(xué)中占有重要地位,由于其證明的困難性和方法的多樣性,而成為競(jìng)賽和高考的熱門題型.證明不等式就是對(duì)不等式的左右兩邊或條件與結(jié)論進(jìn)行代數(shù)變形和化歸,而變形的依據(jù)是不等式的性質(zhì),不等式的性分類羅列如下: 不等式的性質(zhì):a?b?a?b?0,a?b?a?b?0.這是不等式的定義,也是比較法的依據(jù).對(duì)一個(gè)不等式進(jìn)行變形的性質(zhì): (1)a?b?b?a(對(duì)稱性) (2)a?b?a?c?b?c(加法保序性) (3)a?b,c?0?ac?bc;a?b,c?0?ac?bc.(4)a?b?0?an?bn,na?nb(n?N*).對(duì)兩個(gè)以上不等式進(jìn)行運(yùn)算的性質(zhì).(1)a?b,b?c?a?c(傳遞性).這是放縮法的依據(jù).(2)a?b,c?d?a?c?b?d.(3)a?b,c?d?a?c?b?d.(4)a?b?0,d?c?0,?含絕對(duì)值不等式的性質(zhì): (1)|x|?a(a?0)?x2?a2??a?x?a.(2)|x|?a(a?0)?x2?a2?x?a或x??a.(3)||a|?|b||?|a?b|?|a|?|b|(三角不等式).(4)|a1?a2???an|?|a1|?|a2|???|an|.ab?,ad?bc.cd 證明不等式的常用方法有:比較法、放縮法、變量代換法、反證法、數(shù)學(xué)歸納法、構(gòu)造函數(shù)方法等.當(dāng)然在證題過程中,??伞坝梢?qū)Ч被颉皥?zhí)果索因”.前者我們稱之為綜合法;后者稱為分析法.綜合法和分析法是解決一切數(shù)學(xué)問題的常用策略,分析問題時(shí),我們往往用分析法,而整理結(jié)果時(shí)多用綜合法,這兩者并非證明不等式的特有方法,只是在不等式證明中使用得更為突出而已.此外,具體地證明一個(gè)不等式時(shí),可能交替使用多種方法.例題講解 1.a(chǎn),b,c?0,求證:ab(a?b)?bc(b?c)?ca(c?a)?6abc.a?b?c32.a(chǎn),b,c?0,求證:abc?(abc) abc.a2?b2b2?c2c2?a2a3b3c3?????.3.:a,b,c?R,求證a?b?c?2c2a2bbccaab? 4.設(shè)a1,a2,?,an?N*,且各不相同,求證:1????? 12131aa3an?a1?2????..n2232n25.利用基本不等式證明a2?b2?c2?ab?bc?ca.446.已知a?b?1,a,b?0,求證:a?b?1.8 7.利用排序不等式證明Gn?An 8.證明:對(duì)于任意正整數(shù)R,有(1? 1n1n?1)?(1?).nn?11119.n為正整數(shù),證明:n[(1?n)?1]?1??????n?(n?1)nn?1.23n 1n? 課后練習(xí) 1.選擇題 (1)方程x-y=105的正整數(shù)解有().(A)一組(B)二組 (C)三組 (D)四組 (2)在0,1,2,?,50這51個(gè)整數(shù)中,能同時(shí)被2,3,4整除的有().(A)3個(gè)(B)4個(gè) (C)5個(gè) (D)6個(gè) 2.填空題 (1)的個(gè)位數(shù)分別為_________及_________.4 5422(2)滿足不________.等式10?A?10的整數(shù)A的個(gè)數(shù)是x×10+1,則x的值(3)已知整數(shù)y被7除余數(shù)為5,那么y被7除時(shí)余數(shù)為________.(4)求出任何一組滿足方程x-51y=1的自然數(shù)解x和y_________.3.求三個(gè)正整數(shù)x、y、z滿足 23.4.在數(shù)列4,8,17,77,97,106,125,238中相鄰若干個(gè)數(shù)之和是3的倍數(shù),而不是9的倍數(shù)的數(shù)組共有多少組? 5.求的整數(shù)解.6.求證可被37整除.7.求滿足條件的整數(shù)x,y的所有可能的值.8.已知直角三角形的兩直角邊長(zhǎng)分別為l厘米、m厘米,斜邊長(zhǎng)為n厘米,且l,m,n均為正整數(shù),l為質(zhì)數(shù).證明:2(l+m+n)是完全平方數(shù).9.如果p、q、、都是整數(shù),并且p>1,q>1,試求p+q的值.課后練習(xí)答案 1.D.C.2.(1)9及1.(2)9.(3)4.(4)原方程可變形為x=(7y+1)+2y(y-7),令y=7可得x=50.223.不妨設(shè)x?y?z,則,故x?3.又有故x?2.若x=2,則,故y?6.又有,故y?4.若y=4,則z=20.若y=5,則z=10.若y=6,則z無整數(shù)解.若x=3,類似可以確定3?y?4,y=3或4,z都不能是整數(shù).4.可仿例2解.5.分析:左邊三項(xiàng)直接用基本不等式顯然不行,考察到不等式的對(duì)稱性,可用輪換的方法... 略解:a2?b2?2ab,同理b2?c3?2bc,c2?a2?2ca;三式相加再除以2即得證.評(píng)述:(1)利用基本不等式時(shí),除了本題的輪換外,一般還須掌握添項(xiàng)、連用等技巧.22xnx12x2如?????x1?x2???xn,可在不等式兩邊同時(shí)加上x2x3x1x2?x3???xn?x1.再如證(a?1)(b?1)(a?c)3(b?c)3?256a2b2c3(a,b,c?0)時(shí),可連續(xù)使用基本不等式.a?b2a2?b2)?(2)基本不等式有各種變式 如(等.但其本質(zhì)特征不等式兩邊的次22數(shù)及系數(shù)是相等的.如上式左右兩邊次數(shù)均為2,系數(shù)和為1.6.8888≡8(mod37),∴8888333 3222 2≡8(mod37).2222 27777≡7(mod37),7777≡7(mod37),8888238+7=407,37|407,∴37|N.22 3+7777 3333 ≡(8+7)(mod37),而 237.簡(jiǎn)解:原方程變形為3x-(3y+7)x+3y-7y=0由關(guān)于x的二次方程有解的條件△?0及y為整數(shù)可得0?y?5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程僅有兩組解(4,5)、(5,4).8.∵l+m=n,∴l(xiāng)=(n+m)(n-m).∵l為質(zhì)數(shù),且n+m>n-m>0,∴n+m=l,n-m=1.于是2222l=n+m=(m+1)+m=2m+1,2m=l-1,2(l+m+1)=2l+2+2m=l+2l+1=(l+1).即2(l+m+1)是完全平方數(shù).222 229.易知p≠q,不妨設(shè)p>q.令(4-mn)p=m+2,解此方程可得p、q之值.=n,則m>n由此可得不定方程 例題答案: 1.證明:?ab(a?b)?bc(b?c)?ca(c?a)?6abc ?a(b2?c2?2bc)?b(a2?c2?2ac)?c(a2?b2?2ab) ?a(b?c)2?b(c?a)2?c(a?b)2 ?0 ?ab(a?b)?bc(b?c)?ca(c?a)?6ab.c 評(píng)述:(1)本題所證不等式為對(duì)稱式(任意互換兩個(gè)字母,不等式不變),在因式分解或配方時(shí),往往采用輪換技巧.再如證明a2?b2?c2?ab?bc?ca時(shí),可將a2?b2 1?(ab?bc?ca)配方為[(a?b)2?(b?c)2?(c?a)2],亦可利用a2?b2?2ab,2b2?c2?2bc,c2?a2?2ca,3式相加證明.(2)本題亦可連用兩次基本不等式獲證.2.分析:顯然不等式兩邊為正,且是指數(shù)式,故嘗試用商較法.不等式關(guān)于a,b,c對(duì)稱,不妨a?b?c,則a?b,b?c,a?c?R?,且 ab,,bca都大于等于1.caabbcc(abc)a?b?c3?a2a?b?c3b2b?a?c3c2c?a?b3?aa?b3?aa?c3?bb?a3?bb?c3?cc?a3?cc?b3 a?b3a?()bb?()cb?c3a?()ca?c3?1.評(píng)述:(1)證明對(duì)稱不等式時(shí),不妨假定n個(gè)字母的大小順序,可方便解題.(2)本題可作如下推廣:若ai?0(i?1,2,?,n),則a11a22?anaaan?(a1a2?an)a1?a2???ann.(3)本題還可用其他方法得證。因aabb?abba,同理bbcc?bccb,ccaa?caac,另aabbcc?aabbcc,4式相乘即得證.(4)設(shè)a?b?c?0,則lga?lgb?lgc.例3等價(jià)于alga?blgb?algb?blga,類似例4可證alga?blgb?clgc?algb?blgc?clga?algc?blgb?clga.事實(shí)上,一般地有排序不等式(排序原理): 設(shè)有兩個(gè)有序數(shù)組a1?a2???an,b1?b2???bn,則a1b1?a2b2???anbn(順序和) ?a1bj1?a2bj2???anbjn(亂序和)?a1bn?a1bn?1???anb1(逆序和) 其中j1,j2,?,jn是1,2,?,n的任一排列.當(dāng)且僅當(dāng)a1?a2???an或b1?b2???bn時(shí)等號(hào)成立.排序不等式應(yīng)用較為廣泛(其證明略),它的應(yīng)用技巧是將不等式兩邊轉(zhuǎn)化為兩個(gè)有序數(shù)組的積的形式.如a,b,c?R?時(shí),a3?b3?c3?a2b?b2c?c2a?a2?a?b2?b?c2?c a2b2c2111111?a?b?b?c?c?a;???a?b?c?a2??b2??c2??a2??b2??c2?bcabcaabc222.3.思路分析:中間式子中每項(xiàng)均為兩個(gè)式子的和,將它們拆開,再用排序不等式證明.111111??,則a2??b2??c2?(亂序和)cbacab111111?a2??b2??c2?(逆序和),同理a2??b2??c2?(亂序和)abccab111?a2??b2??c2?(逆序和)兩式相加再除以2,即得原式中第一個(gè)不等式.再考慮數(shù)abc111333??組a?b?c及,仿上可證第二個(gè)不等式.bcacab 222不妨設(shè)a?b?c,則a?b?c,4.分析:不等式右邊各項(xiàng) ai1?a?;可理解為兩數(shù)之積,嘗試用排序不等式.i22ii設(shè)b1,b2,?,bn是a1,a2,?,an的重新排列,滿足b1?b2???bn,又1?111????.22223nanbna2a3b2b3.由于b1,b2,?bn是互不相同的正整數(shù),?????b?????122222n2323nb3bnb11故b1?1,b2?2,?,bn?n.從而b1?2,原式得證.?????1????2222n23n所以a1?評(píng)述:排序不等式應(yīng)用廣泛,例如可證我們熟悉的基本不等式,a2?b2?a?b?b?a,a3?b3?c3?a2?b?b2?c?c2?a?a?ab?b?bc?c?ca?a?bc?b?ac?c?ab?3abc.5.思路分析:左邊三項(xiàng)直接用基本不等式顯然不行,考察到不等式的對(duì)稱性,可用輪換的方..法.a2?b2?2ab,同理b2?c3?2bc,c2?a2?2ca;三式相加再除以2即得證.評(píng)述:(1)利用基本不等式時(shí),除了本題的輪換外,一般還須掌握添項(xiàng)、連用等技巧.22xnx12x2如?????x1?x2???xn,可在不等式兩邊同時(shí)加上x2x3x1x2?x3???xn?x1.再如證(a?1)(b?1)(a?c)3(b?c)3?256a2b2c3(a,b,c?0)時(shí),可連續(xù)使用基本不等式.a?b2a2?b2)?(2)基本不等式有各種變式 如(等.但其本質(zhì)特征不等式兩邊的次數(shù)及22系數(shù)是相等的.如上式左右兩邊次數(shù)均為2,系數(shù)和為1.6.思路分析:不等式左邊是a、b的4次式,右邊為常數(shù)式呢.44要證a?b?1,如何也轉(zhuǎn)化為a、b的4次811,即證a4?b4?(a?b)4.8833評(píng)述:(1)本題方法具有一定的普遍性.如已知x1?x2?x3?1,xi?0,求證:x1 ?x211133求證:x1x2?x2x3 ?x3?.右側(cè)的可理解為(x1?x2?x3).再如已知x1?x2?x3?0,3332+x3x1?0,此處可以把0理解為(x1?x2?x3),當(dāng)然本題另有簡(jiǎn)使證法.38(2)基本不等式實(shí)際上是均值不等式的特例.(一般地,對(duì)于n個(gè)正數(shù)a1,a2,?an) 調(diào)和平均Hn?n111????a1a2an 幾何平均Gn?na1?a2?an 算術(shù)平均An?a1?a2???an n22a12?a2???an平方平均Qn? 2這四個(gè)平均值有以下關(guān)系:Hn?Gn?An?Qn,其中等號(hào)當(dāng)且僅當(dāng)a1?a2???an時(shí)成立.7.證明: 令bi?ai,(i?1,2,?,n)則b1b2?bn?1,故可取x1,x2,?xn?0,使得 Gnb1? xxx1x,b2?2,?,bn?1?n?1,bn?n由排序不等式有: x2x3xnx1b1?b2???bn =xx1x2????n(亂序和)x2x3x1111?x2????xn?(逆序和)x1x2xn ?x1? =n,?aa?a2???ana1a2????n?n,即1?Gn.GnGnGnn111,?,各數(shù)利用算術(shù)平均大于等于幾何平均即可得,Gn?An.a1a2an 評(píng)述:對(duì)8.分析:原不等式等價(jià)于n?1(1?)?1?平均,而右邊為其算術(shù)平均.n?11nn1,故可設(shè)法使其左邊轉(zhuǎn)化為n個(gè)數(shù)的幾何n?111111n?21(1?)n?(1?)?(1?)?1?(1?)?(1?)?1??1?.n?1nnnnnn?1n?1??????????????n個(gè)n?1 評(píng)述:(1)利用均值不等式證明不等式的關(guān)鍵是通過分拆和轉(zhuǎn)化,使其兩邊與均值不等式形式相近.類似可證(1?1n?11n?2)?(1?).nn?1(2)本題亦可通過逐項(xiàng)展開并比較對(duì)應(yīng)項(xiàng)的大小而獲證,但較繁.9.證明:先證左邊不等式 111?????(1?n)?1?23n1111??????n123n ?(1?n)n? n111(1?1)?(?1)?(?1)???(?1)123n ?(1?n)n?n34n?12?????23n?n1?n?(*) nn[(1?n)?1]?1?2?1n1n1?111????23n n 34n?1????23n?n2?3?4???n?1?nn?1.n23n ?(*)式成立,故原左邊不等式成立.其次證右邊不等式 ?1111??????n?(n?1)?nn?1 23n1 ?n1?n?1n?(1??111111????)(1?)?(1?)???(1?)23n?n?11?23n n?1nn?112n?1????123n (**)? n?1?nn?1 (**)式恰符合均值不等式,故原不等式右邊不等號(hào)成立. 學(xué)習(xí)資 料 教學(xué)目標(biāo) (1)理解證明不等式的三種方法:比較法、綜合法和分析法的意義; (2)掌握用比較法、綜合法和分析法來證簡(jiǎn)單的不等式; (3)能靈活根據(jù)題目選擇適當(dāng)?shù)刈C明方法來證不等式; (4)能用不等式證明的方法解決一些實(shí)際問題,培養(yǎng)學(xué)生分析問題、解決問題的能力; (6)通過不等式證明,培養(yǎng)學(xué)生邏輯推理論證的能力和抽象思維能力; (7)通過組織學(xué)生對(duì)不等式證明方法的意義和應(yīng)用的參與,培養(yǎng)學(xué)生勤于思考、善于思考的良好學(xué)習(xí)習(xí)慣. 教學(xué)建議 (一)教材分析 1.知識(shí)結(jié)構(gòu) 2.重點(diǎn)、難點(diǎn)分析 重點(diǎn):不等式證明的主要方法的意義和應(yīng)用; 難點(diǎn):①理解分析法與綜合法在推理方向上是相反的; ②綜合性問題選擇適當(dāng)?shù)淖C明方法. (1)不等式證明的意義 不等式的證明是要證明對(duì)于滿足條件的所有數(shù)都成立(或都不成立),而并非是帶入具體的數(shù)值去驗(yàn)證式子是否成立. (2)比較法證明不等式的分析 ①在證明不等式的各種方法中,比較法是最基本、最重要的方法. ②證明不等式的比較法,有求差比較法和求商比較法兩種途徑. 以上資料均從網(wǎng)絡(luò)收集而來 學(xué)習(xí)資 料 由于 種證法就是求差比較法.,因此,證明,可轉(zhuǎn)化為證明與之等價(jià)的 .這 由于當(dāng) 時(shí),因此,證明 可以轉(zhuǎn)化為證明與之等價(jià)的 定要注意 .這種證法就是求商比較法,使用求商比較法證明不等式 的前提條件. 時(shí),一 ③求差比較法的基本步驟是:“作差——變形——斷號(hào)”. 其中,作差是依據(jù),變形是手段,判斷符號(hào)才是目的. 變形的目的全在于判斷差的符號(hào),而不必考慮差值是多少. 變形的方法一般有配方法、通分的方法和因式分解的方法等,為此,有時(shí)把差變形為一個(gè)常數(shù),或者變形為一個(gè)常數(shù)與一個(gè)或幾個(gè)數(shù)的平方和的形式.或者變形為一個(gè)分式,或者變形為幾個(gè)因式的積的形式等. 總之.能夠判斷出差的符號(hào)是正或負(fù)即可. ④作商比較法的基本步驟是:“作商——變形——判斷商式與1的大小關(guān)系”,需要注意的是,作商比較法一般用于不等號(hào)兩側(cè)的式子同號(hào)的不等式的證明. (3)綜合法證明不等式的分析 ①利用某些已經(jīng)證明過的不等式和不等式的性質(zhì)推倒出所要證明的不等式成立,這種證明方法通常叫做綜合法. ②綜合法的思路是“由因?qū)Ч保簭囊阎牟坏仁匠霭l(fā),通過一系列的推出變換,推倒出求證的不等式. ③綜合法證明不等式的邏輯關(guān)系是: ? . (已知)(逐步推演不等式成立的必要條件)(結(jié)論) 以上資料均從網(wǎng)絡(luò)收集而來 學(xué)習(xí)資 料 ④利用綜合法由因?qū)ЧC明不等式,就要揭示出條件與結(jié)論之間的因果關(guān)系,為此要著力分析已知與求證之間的差異和聯(lián)系、不等式左右兩端的差異和聯(lián)系,在分析所證不等式左右兩端的差異后,合理應(yīng)用已知條件,進(jìn)行有效的變換是證明不等式的關(guān)鍵. (4)分析法證明不等式的分析 ①?gòu)那笞C的不等式出發(fā),逐步尋求使不等式成立的充分條件,直至所需條件被確認(rèn)成立,就斷定求證的不等式成立,這種證明方法就是分析法. 有時(shí),我們也可以首先假定所要證明的不等式成立,逐步推出一個(gè)已知成立的不等式,只要這個(gè)推出過程中的每一步都是可以逆推的,那么就可以斷定所給的不等式成立.這也是用分析法,注意應(yīng)強(qiáng)調(diào)“以上每一步都可逆”,并說出可逆的根據(jù). ②分析法的思路是“執(zhí)果導(dǎo)因”:從求證的不等式出發(fā),探索使結(jié)論成立的充分條件直至已成立的不等式.它與綜合法是對(duì)立統(tǒng)一的兩種方法. ③用分析法證明不等式的邏輯關(guān)系是: ? . (已知)(逐步推演不等式成立的必要條件)(結(jié)論) ④分析法是教學(xué)中的一個(gè)難點(diǎn),一是難在初學(xué)時(shí)不易理解它的本質(zhì)是從結(jié)論分析出使結(jié)論成立的“充分”條件,二是不易正確使用連接有關(guān)(分析推理)步驟的關(guān)鍵詞.如“為了證明”“只需證明”“即”以及“假定??成立”等. ⑤分析法是證明不等式時(shí)一種常用的基本方法.當(dāng)證明不知從何入手時(shí),有時(shí)可以運(yùn)用分析法而獲得解決.特別對(duì)于條件簡(jiǎn)單而結(jié)論復(fù)雜的題目往往更是行之有效. (5)關(guān)于分析法與綜合法 ①分析法與綜合法是思維方向相反的兩種思考方法. ②在數(shù)學(xué)解題中,分析法是從數(shù)學(xué)題的待證結(jié)論或需求問題出發(fā),一步一步地探索下去,最后達(dá)到題設(shè)的已知條件.即推理方向是:結(jié)論 已知. 綜合法則是從數(shù)學(xué)題的已知條件出發(fā),經(jīng)過逐步的邏輯推理,最后達(dá)到待證結(jié)論或需求問題.即:已知 結(jié)論. 以上資料均從網(wǎng)絡(luò)收集而來 學(xué)習(xí)資 料 ③分析法的特點(diǎn)是:從“結(jié)論”探求“需知”,逐步靠攏“已知”,其逐步推理實(shí)際上是要尋找結(jié)論的充分條件. 綜合法的特點(diǎn)是:從“已知”推出“可知”,逐步推向“未知”,其逐步推理實(shí)際上是要尋找已知的必要條件. ④各有其優(yōu)缺點(diǎn): 從尋求解題思路來看:分析法是執(zhí)果索因,利于思考,方向明確,思路自然,有希望成功;綜合法由因?qū)Ч?jié)橫生,不容易達(dá)到所要證明的結(jié)論. 從書寫表達(dá)過程而論:分析法敘述繁鎖,文辭冗長(zhǎng);綜合法形式簡(jiǎn)潔,條理清晰. 也就是說,分析法利于思考,綜合法宜于表達(dá). ⑤一般來說,對(duì)于較復(fù)雜的不等式,直接運(yùn)用綜合法往往不易入手,用分析法來書寫又比較麻煩.因此,通常用分析法探索證題途徑,然后用綜合法加以證明,所以分析法和綜合法經(jīng)常是結(jié)合在一起使用的. (二)教法建議 ①選擇例題和習(xí)題要注意層次性. 不等式證明的三種方法主要是通過例題來說明的.教師在教學(xué)中要注意例題安排要由易到難,由簡(jiǎn)單到綜合,層層深入,啟發(fā)學(xué)生理解各種證法的意義和邏輯關(guān)系.教師選擇的訓(xùn)練題也要與所講解的例題的難易程度的層次相當(dāng). 要堅(jiān)持精講精練的原則.通過一題多法和多變挖掘各種方法的內(nèi)在聯(lián)系,對(duì)知識(shí)進(jìn)行拓展、延伸,使學(xué)生溝通知識(shí),有效地提高解題能力. ②在教學(xué)過程中,應(yīng)通過精心設(shè)置的一個(gè)個(gè)問題,激發(fā)學(xué)生的求知欲,調(diào)動(dòng)學(xué)生在課堂活動(dòng)中積極參與. 通過學(xué)生參與教學(xué)活動(dòng),理解不等式證明方法的實(shí)質(zhì)和幾種證明方法的意義,通過訓(xùn)練積累經(jīng)驗(yàn),能夠總結(jié)出比較法的實(shí)質(zhì)是把實(shí)數(shù)的大小順序通過實(shí)數(shù)運(yùn)算變成一個(gè)數(shù)與0(或1)比較大??;復(fù)雜的習(xí)題能夠利用綜合法發(fā)展條件向結(jié)論方向轉(zhuǎn)化,利用分析法能夠把結(jié)論向條件靠攏,最終達(dá)到結(jié)合點(diǎn),從而解決問題. ③學(xué)生素質(zhì)較好的,教師可在教學(xué)中適當(dāng)增加反證法和用函數(shù)單調(diào)性來證明不等式的內(nèi)容,但內(nèi)容不易過多過難. 以上資料均從網(wǎng)絡(luò)收集而來 學(xué)習(xí)資 料 第一課時(shí) 教學(xué)目標(biāo) 1.掌握證明不等式的方法——比較法; 2.熟悉并掌握比較法證明不等式的意義及基本步驟. 教學(xué)重點(diǎn) 比較法的意義和基本步驟.教學(xué)難點(diǎn) 常見的變形技巧.教學(xué)方法 啟發(fā)引導(dǎo)式.教學(xué)過程 (-)導(dǎo)入新課 (教師活動(dòng))教師提問:根據(jù)前一節(jié)學(xué)過的知識(shí),我們?nèi)绾斡脤?shí)數(shù)運(yùn)算來比較兩個(gè)實(shí)數(shù) 與 的大???. (學(xué)生活動(dòng))學(xué)生思考問題,找學(xué)生甲口答問題. (學(xué)生甲回答:,,) [點(diǎn)評(píng)](待學(xué)生回答問題后)要比較兩個(gè)實(shí)數(shù) 與 的大小,只要考察 與 的差值的符號(hào)就可以了,這種證明不等式的方法稱為比較法.現(xiàn)在我們就來學(xué)習(xí):用比較法證明不等式.(板書課題) 設(shè)計(jì)意圖:通過教師設(shè)置問題,引導(dǎo)學(xué)生回憶所學(xué)的知識(shí),引出用比較法證明不等式,導(dǎo)入本節(jié)課學(xué)習(xí)的知識(shí). (二)新課講授 【嘗試探索,建立新知】 (教師活動(dòng))教師板書問題(證明不等式),寫出一道例題的題目 以上資料均從網(wǎng)絡(luò)收集而來 學(xué)習(xí)資 料 [問題] 求證 教師引導(dǎo)學(xué)生分析、思考,研究不等式的證明. (學(xué)生活動(dòng))學(xué)生研究證明不等式,嘗試完成問題. (得出證明過程后) [點(diǎn)評(píng)] ①通過確定差的符號(hào),證明不等式的成立.這一方法,在前面比較兩個(gè)實(shí)數(shù)的大小、比較式子的大小、證明不等式性質(zhì)就已經(jīng)用過. ②通過求差將不等問題轉(zhuǎn)化為恒等問題,將兩個(gè)一般式子大小比較轉(zhuǎn)化為一個(gè)一般式子與0的大小比較,使問題簡(jiǎn)化. ③理論依據(jù)是: ④由 要證明,知:要證明 只要證 ;這種證明不等式的方法通常叫做比較法. 設(shè)計(jì)意圖:幫助學(xué)生構(gòu)建用比較法證明不等式的知識(shí)體系,培養(yǎng)學(xué)生化歸的數(shù)學(xué)思想. 【例題示范,學(xué)會(huì)應(yīng)用】 (教師活動(dòng))教師板書例題,引導(dǎo)學(xué)生研究問題,構(gòu)思證題方法,學(xué)會(huì)解題過程中的一些常用技巧,并點(diǎn)評(píng). 例1 求證 (學(xué)生活動(dòng))學(xué)生在教師引導(dǎo)下,研究問題.與教師一道完成問題的論證. [分析]由比較法證題的方法,先將不等式兩邊作差,得 將此式看作關(guān)于 的二次函數(shù),由配方法易知函數(shù)的最小值大干零,從而使問題獲證. 以上資料均從網(wǎng)絡(luò)收集而來,學(xué)習(xí)資 料 證明:∵ = =,∴ . [點(diǎn)評(píng)] ①作差后是通過配方法對(duì)差式進(jìn)行恒等變形,確定差的符號(hào). ②作差后,式于符號(hào)不易確定,配方后變形為一個(gè)完全平方式子與一個(gè)常數(shù)和的形式,使差式的符號(hào)易于確定. ③不等式兩邊的差的符號(hào)是正是負(fù),一般需要利用不等式的性質(zhì)經(jīng)過變形后,才能判斷. 變形的目的全在于判斷差的符號(hào),而不必考慮差的值是多少.至于怎樣變形,要靈活處理,例1介紹了變形的一種常用方法——配方法. 例2 已知都是正數(shù),并且,求證: [分析]這是分式不等式的證明題,依比較法證題將其作差,確定差的符號(hào),應(yīng)通分,由分子、分母的值的符號(hào)推出差值的符合,從而得證. 證明: = 以上資料均從網(wǎng)絡(luò)收集而來 學(xué)習(xí)資 料 = . 因?yàn)?都是正數(shù),且,所以 . ∴ . 即: [點(diǎn)評(píng)] ①作差后是通過通分法對(duì)差式進(jìn)行恒等變形,由分子、分母的值的符號(hào)推出差的符號(hào). ②本例題介紹了對(duì)差變形,確定差值的符號(hào)的一種常用方法——通分法. ③例2的結(jié)論反映了分式的一個(gè)性質(zhì)(若都是正數(shù). 1.當(dāng) 時(shí),2.當(dāng) 時(shí),.以后要記?。?/p> 設(shè)計(jì)意圖:鞏固用比較法證明不等式的知識(shí),學(xué)會(huì)在用比較法證明不等式中,對(duì)差式變形的常用方法——配方法、通分法. 【課堂練習(xí)】 (教師活動(dòng))打出字幕(練習(xí)),要求學(xué)生獨(dú)立思考.完成練習(xí);請(qǐng)甲、乙兩學(xué)生板演;巡視學(xué)生的解題情況,對(duì)正確的證法給予肯定和鼓勵(lì),對(duì)偏差點(diǎn)撥和糾正;點(diǎn)評(píng)練習(xí)中存在的問題. 以上資料均從網(wǎng)絡(luò)收集而來 學(xué)習(xí)資 料 [字幕] 練習(xí):1.求證 2.已知,,d都是正數(shù),且,求證 (學(xué)生活動(dòng))在筆記本上完成練習(xí),甲、乙兩位同學(xué)板演. 設(shè)計(jì)意圖,掌握用比較法證明不等式,并會(huì)靈活運(yùn)用配方法和通分法變形差式,確定差式符號(hào).反饋課堂教學(xué)效果,調(diào)節(jié)課堂教學(xué). 【分析歸納、小結(jié)解法】 (教學(xué)活動(dòng))分析歸納例題和練習(xí)的解題過程,小結(jié)用比較法證明不等式的解題方法. (學(xué)生活動(dòng))與教師一道分析歸納,小結(jié)解題方法,并記錄筆記. 比較法是證明不等式的一種最基本、重要的方法.用比較法證明不等式的步驟是:作差、變形、判斷符號(hào).要靈活掌握配方法和通分法對(duì)差式進(jìn)行恒等變形. 設(shè)計(jì)意圖:培養(yǎng)學(xué)生分析歸納問題的能力,掌握用比較法證明不等式的方法. (三)小結(jié) (教師活動(dòng))教師小結(jié)本節(jié)課所學(xué)的知識(shí). (學(xué)生活動(dòng))與教師一道小結(jié),并記錄筆記. 本節(jié)課學(xué)習(xí)了用比較法證明不等式,用比較法證明不等式的步驟中,作差是依據(jù),變形是手段,判斷符號(hào)才是目的.掌握求差后對(duì)差式變形的常用方法:配方法和通分法.并在下節(jié)課繼續(xù)學(xué)習(xí)對(duì)差式變形的常用方法. 設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)知識(shí). (四)布置作業(yè) 1.課本作業(yè):P16.1,2,3. 以上資料均從網(wǎng)絡(luò)收集而來 學(xué)習(xí)資 料 2.思考題:已知,求證: 3.研究性題:設(shè),都是正數(shù),且,求證: 設(shè)計(jì)意圖,課本作業(yè)供學(xué)生鞏固基礎(chǔ)知識(shí);思考題供學(xué)有余力的學(xué)生完成,培養(yǎng)其靈活掌握用比較法證明不等式的能力;研究性題是為培養(yǎng)學(xué)生創(chuàng)新意識(shí). (五)課后點(diǎn)評(píng) 1.本節(jié)課是用比較法證明不等式的第一節(jié)課,在導(dǎo)入新課時(shí),教師提出問題,讓學(xué)生回憶所學(xué)知識(shí)中,是如何比較兩個(gè)實(shí)數(shù)大小的,從而引入用比較法證明不等式.這樣處理合情合理,順理成章. 2.在建立新知過程中,教師引導(dǎo)學(xué)生分析研究證明不等式,使學(xué)生在嘗試探索過程中形成用比較法證明不等式的感性認(rèn)識(shí). 3.例1,例2兩道題主要目的在于讓學(xué)生歸綱、總結(jié),求差后對(duì)差式變形、并判斷符號(hào)的方法,以及求差比較法的步驟.在這里如何對(duì)差式變形是難點(diǎn),應(yīng)著重解決.首先讓學(xué)生明確變形目的,減少變形的盲目性;其次是總結(jié)變形時(shí)常用方法,有利于難點(diǎn)的突破. 4.本節(jié)課采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,學(xué)生獲取知識(shí)必須通過學(xué)生自己一系列思維活動(dòng)完成.教師通過啟發(fā)誘導(dǎo)學(xué)生深入思考問題,培養(yǎng)學(xué)生思維靈活、嚴(yán)謹(jǐn)、深刻等良好思維品質(zhì). 作業(yè)答實(shí) 思考題: 又,獲證.,研究性題: . 所以,以上資料均從網(wǎng)絡(luò)收集而來 本資料從網(wǎng)上收集整理 難點(diǎn)18 不等式的證明策略 不等式的證明,方法靈活多樣,它可以和很多內(nèi)容結(jié)合.高考解答題中,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來是高中數(shù)學(xué)中的一個(gè)難點(diǎn),本難點(diǎn)著重培養(yǎng)考生數(shù)學(xué)式的變形能力,邏輯思維能力以及分析問題和解決問題的能力.●難點(diǎn)磁場(chǎng) (★★★★)已知a>0,b>0,且a+b=1.求證:(a+1a1b254)(b+)≥.●案例探究 [例1]證明不等式1?12?13???1n?2n(n∈N) *命題意圖:本題是一道考查數(shù)學(xué)歸納法、不等式證明的綜合性題目,考查學(xué)生觀察能力、構(gòu)造能力以及邏輯分析能力,屬★★★★★級(jí)題目.知識(shí)依托:本題是一個(gè)與自然數(shù)n有關(guān)的命題,首先想到應(yīng)用數(shù)學(xué)歸納法,另外還涉及不等式證明中的放縮法、構(gòu)造法等.錯(cuò)解分析:此題易出現(xiàn)下列放縮錯(cuò)誤: 這樣只注重形式的統(tǒng)一,而忽略大小關(guān)系的錯(cuò)誤也是經(jīng)常發(fā)生的.技巧與方法:本題證法一采用數(shù)學(xué)歸納法從n=k到n=k+1的過渡采用了放縮法;證法二先放縮,后裂項(xiàng),有的放矢,直達(dá)目標(biāo);而證法三運(yùn)用函數(shù)思想,借助單調(diào)性,獨(dú)具匠心,發(fā)人深省.證法一:(1)當(dāng)n等于1時(shí),不等式左端等于1,右端等于2,所以不等式成立; (2)假設(shè)n=k(k≥1)時(shí),不等式成立,即1+12131k?11k?112?13???1k<2k,則1??????2k??2k(k?1)?1k?1?k?(k?1)?1k?1 ?2k?1,∴當(dāng)n=k+1時(shí),不等式成立.綜合(1)、(2)得:當(dāng)n∈N*時(shí),都有1+ 12?13???1n<2n.另從k到k+1時(shí)的證明還有下列證法: ?2(k?1)?1?2k(k?1)?k?2k(k?1)?(k?1)?(k?k?1)?0,2?2k(k?1)?1?2(k?1),?k?1?0,?2k?1k?1?2k?1.2k?1?k?2k?1?k?1?1k?1,又如:?2k?1?2k? 本資料從網(wǎng)上收集整理 ?2k?1k?1?2k?1.證法二:對(duì)任意k∈N*,都有: 1k?2k?12?k13?2k????k?11n?2(k?k?1),2)???2(n?n?1)?2n.因此1??2?2(2?1)?2(3?12131n證法三:設(shè)f(n)=2n?(1?* ????),那么對(duì)任意k∈N 都有: f(k?1)?f(k)?2(k?1??1k?11k?1k)?1k?1[2(k?1)?2k(k?1)?1](k?1?k?1k)2 ?0??[(k?1)?2k(k?1)?k]?∴f(k+1)>f(k)因此,對(duì)任意n∈N 都有f(n)>f(n-1)>?>f(1)=1>0,∴1?12?13???1n?2n.x?y(x>0,y>0)恒成立的a的最小值.*[例2]求使x?y≤a命題意圖:本題考查不等式證明、求最值函數(shù)思想、以及學(xué)生邏輯分析能力,屬于★★★★★級(jí)題目.知識(shí)依托:該題實(shí)質(zhì)是給定條件求最值的題目,所求a的最值蘊(yùn)含于恒成立的不等式中,因此需利用不等式的有關(guān)性質(zhì)把a(bǔ)呈現(xiàn)出來,等價(jià)轉(zhuǎn)化的思想是解決題目的突破口,然后再利用函數(shù)思想和重要不等式等求得最值.錯(cuò)解分析:本題解法三利用三角換元后確定a的取值范圍,此時(shí)我們習(xí)慣是將x、y與cosθ、sinθ來對(duì)應(yīng)進(jìn)行換元,即令x=cosθ,y=sinθ(0<θ< ?2),這樣也得a≥sinθ+cosθ,但是這種換元是錯(cuò)誤的.其原因是:(1)縮小了x、y的范圍;(2)這樣換元相當(dāng)于本題又增加了“x、y=1”這樣一個(gè)條件,顯然這是不對(duì)的.技巧與方法:除了解法一經(jīng)常用的重要不等式外,解法二的方法也很典型,即若參數(shù)a滿足不等關(guān)系,a≥f(x),則amin=f(x)max;若 a≤f(x),則amax=f(x)min,利用這一基本事實(shí),可以較輕松地解決這一類不等式中所含參數(shù)的值域問題.還有三角換元法求最值用的恰當(dāng)好處,可以把原問題轉(zhuǎn)化.解法一:由于a的值為正數(shù),將已知不等式兩邊平方,得: 22x+y+2xy≤a(x+y),即2xy≤(a-1)(x+y),① ② ∴x,y>0,∴x+y≥2xy,當(dāng)且僅當(dāng)x=y時(shí),②中有等號(hào)成立.本資料從網(wǎng)上收集整理 比較①、②得a的最小值滿足a-1=1,∴a2=2,a=2(因a>0),∴a的最小值是2.x?x?yy(x?x?yy)22解法二:設(shè)u???x?y?2xyx?y?1?2xyx?y.∵x>0,y>0,∴x+y≥22xy2xyxy(當(dāng)x=y時(shí)“=”成立),∴x?y≤1,x?y的最大值是1.從而可知,u的最大值為1?1?2,又由已知,得a≥u,∴a的最小值為2.解法三:∵y>0,∴原不等式可化為 xy+1≤a xy?1,設(shè)xy=tanθ,θ∈(0,?2).∴tanθ+1≤atan2??1;即tanθ+1≤asecθ ∴a≥sinθ+cosθ=2sin(θ+又∵sin(θ+?4?4),?4).③)的最大值為1(此時(shí)θ=由③式可知a的最小值為2.●錦囊妙計(jì) 1.不等式證明常用的方法有:比較法、綜合法和分析法,它們是證明不等式的最基本的方法.(1)比較法證不等式有作差(商)、變形、判斷三個(gè)步驟,變形的主要方向是因式分解、配方,判斷過程必須詳細(xì)敘述;如果作差以后的式子可以整理為關(guān)于某一個(gè)變量的二次式,則考慮用判別式法證.(2)綜合法是由因?qū)Ч?,而分析法是?zhí)果索因,兩法相互轉(zhuǎn)換,互相滲透,互為前提,充分運(yùn)用這一辯證關(guān)系,可以增加解題思路,開擴(kuò)視野.2.不等式證明還有一些常用的方法:換元法、放縮法、反證法、函數(shù)單調(diào)性法、判別式法、數(shù)形結(jié)合法等.換元法主要有三角代換,均值代換兩種,在應(yīng)用換元法時(shí),要注意代換的等價(jià)性.放縮性是不等式證明中最重要的變形方法之一,放縮要有的放矢,目標(biāo)可以從要證的結(jié)論中考查.有些不等式,從正面證如果不易說清楚,可以考慮反證法.凡是含有“至少”“惟一”或含有其他否定詞的命題,適宜用反證法.證明不等式時(shí),要依據(jù)題設(shè)、題目的特點(diǎn)和內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各 本資料從網(wǎng)上收集整理 種證法中的推理思維,并掌握相應(yīng)的步驟、技巧和語言特點(diǎn).●殲滅難點(diǎn)訓(xùn)練 一、填空題 1.(★★★★★)已知x、y是正變數(shù),a、b是正常數(shù),且 ax?by=1,x+y的最小值為__________.2.(★★★★)設(shè)正數(shù)a、b、c、d滿足a+d=b+c,且|a-d|<|b-c|,則ad與bc的大小關(guān)系是__________.3.(★★★★)若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,則m、n、p、q的大小順序是__________.二、解答題 4.(★★★★★)已知a,b,c為正實(shí)數(shù),a+b+c=1.求證:(1)a2+b2+c2≥ (2)3a?2?3b?2?3c?2≤6 5.(★★★★★)已知x,y,z∈R,且x+y+z=1,x2+y2+z2=6.(★★★★★)證明下列不等式:(1)若x,y,z∈R,a,b,c∈R,則(2)若x,y,z∈R,且x+y+z=xyz,則y?zx?z?xy?x?yz+ + 12,證明:x,y,z∈[0,23] b?cax?2c?aby?2a?bcz≥2(xy+yz+zx) 2≥2(1x?1y?1z)7.(★★★★★)已知i,m、n是正整數(shù),且1<i≤m<n.(1)證明:niAim<miAin; (2)證明:(1+m)n>(1+n)m 338.(★★★★★)若a>0,b>0,a+b=2,求證:a+b≤2,ab≤1.參考答案 難點(diǎn)磁場(chǎng) 證法一:(分析綜合法) 欲證原式,即證4(ab)+4(a+b)-25ab+4≥0,即證4(ab)-33(ab)+8≥0,即證ab≤ab≥8.∵a>0,b>0,a+b=1,∴ab≥8不可能成立 ∵1=a+b≥2ab,∴ab≤證法二:(均值代換法)設(shè)a=121 4222 14或,從而得證.+t1,b=12+t2.12∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|<,|t2|< 本資料從網(wǎng)上收集整理 ?(a?(?121a)(b?21b)?(1a?1a22?b?1b(?14?t1?t1?1)((222?t1)?112?t12?2?t2)?11214?t21412?t2?t2?1)?t2)2212?t1)(22(?14?t1?t1?1)(14?t2?t2?1)?2(54?t2)?t214?t22 ?t2425?16?1432t2?t2222525?16?.144?t2顯然當(dāng)且僅當(dāng)t=0,即a=b=證法三:(比較法) 12時(shí),等號(hào)成立.∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤1125222214 a?1b?1254ab?33ab?8(1?4ab)(8?ab)(a?)(b?)???????0ab4ab44ab4ab 1125?(a?)(b?)?ab4證法四:(綜合法)∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤ 14.?2?(1?ab)?125?? ??ab4???25?2(1?ab)?1??139?162?1?ab?1???(1?ab)???4416? 1?4?ab?即(a?1a)(b?1b)?254 證法五:(三角代換法) ∵ a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,?2) 本資料從網(wǎng)上收集整理 (a??1a4)(b?1b)?(sin??4221sin?22)(cos2??1cos?222)2sin??cos??2sin?cos??24sin2?222?(4?sin?)?164sin2??sin2??1,?4?sin2??4?1?3.4?2sin2??16?25?22(4?sin2?)25????11244sin2???24sin2??即得(a?1a)(b?1b)?254.22 殲滅難點(diǎn)訓(xùn)練 一、1.解析:令ax=cos2θ,by=sin2θ,則x=asec2θ,y=bcsc2θ,∴x+y=asec2θ+bcsc2θ=a+b+atan2θ+bcot2θ≥a+b+2atan2??bcot2??a?b?2ab.答案:a+b+2ab 2.解析:由0≤|a-d|<|b-c|?(a-d)2<(b-c)2?(a+b)2-4ad<(b+c)2-4bc ∵a+d=b+c,∴-4ad<-4bc,故ad>bc.答案:ad>bc 3.解析:把p、q看成變量,則m<p<n,m<q<n.答案:m<p<q<n 二、4.(1)證法一:a2+b2+c2-===13131313= 13(3a2+3b2+3c2-1)[3a2+3b2+3c2-(a+b+c)2] [3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc] [(a-b)2+(b-c)2+(c-a)2]≥0 ∴a2+b2+c2≥ 222 證法二:∵(a+b+c)=a+b+c+2ab+2ac+2bc≤a+b+c2+a2+b2+a2+c2+b2+c2 ∴3(a2+b2+c2)≥(a+b+c)2=1 ∴a2+b2+c2≥a?b?c32222 a?b?c3證法三:∵∴a2+b2+c2≥ ?a?b?c3∴a2+b2+c2≥ 13證法四:設(shè)a=+α,b= 13+β,c= 13+γ.∵a+b+c=1,∴α+β+γ=0 ∴a+b+c=(22213+α)+(2 13+β)+(2 13+γ) 本資料從網(wǎng)上收集整理 ==1313+23(α+β+γ)+α+β+γ 13222 +α2+β2+γ2≥13 ∴a2+b2+c2≥(2)證法一:?同理? 3a?2?3b?32(3a?2)?1?3c?323(a?b?c)?92?63a?2?12,3b?2?,3c?2?3c?2? 3a?2?3b?2?∴原不等式成立.證法二:3a?2?3b?2?33c?2?(3a?2)?(3b?2)?(3c?2)3 ?3(a?b?c)?63?3 ∴3a?2?3b?2?3c?2≤33<6 ∴原不等式成立.5.證法一:由x+y+z=1,x2+y2+z2=次方程得: 2y2-2(1-x)y+2x2-2x+ 1212,得x2+y2+(1-x-y)2= 12,整理成關(guān)于y的一元二 =0,∵y∈R,故Δ≥0 12∴4(1-x)2-4×2(2x2-2x+同理可得y,z∈[0,證法二:設(shè)x=于是==1313121323)≥0,得0≤x≤ 23,∴x∈[0,23] ] 132+x′,y=2 +y′,z= 13132 +z′,則x′+y′+z′=0,=(13+x′)+(13+y′)+(23+z′) +x′2+y′2+z′2+222 (x′+y′+z′) 13+x′+y′+z′≥2 +x′+ 132 (y??z?)22= 13+ 2332x′2 23故x′≤19,x′∈[-,13],x∈[0,],同理y,z∈[0,] 12證法三:設(shè)x、y、z三數(shù)中若有負(fù)數(shù),不妨設(shè)x<0,則x2>0,=x2+y2+z2≥ 本資料從網(wǎng)上收集整理 x+2(y?z)22?(1?x)22?x?232x?x?212> 12,矛盾.23x、y、z三數(shù)中若有最大者大于x+ 2,不妨設(shè)x> 23,則 12=x2+y2+z2≥(y?z)22=x+232(1?x)22=1223232x2-x+ =32x(x-)+12>;矛盾.] c?abcby?22故x、y、z∈[0,6.(1)證明:??(?(?bax?baax?x?22b?c22x?a?bc2z?2(xy?yz?zx)accaz?222aby?2xy)?(aby)?(y?2y?bc2bcz?2yz)?(2cax?2zx)2cby?z)?(acz?x)?0b?cc?aba?bcz?2(xy?yz?zx)(2)證明:所證不等式等介于xyz(222y?zx?z?xy?x?yz)?2(xy?yz?zx)2 2?xyz?[yz(y?z)?zx(z?x)?xy(x?y)]?2(xy?yz?zx)?(x?y?z)(yz?yz22222222?zx?zx222?xy?xy)2222?2(xy?yz?zx)?4(xyz?xyz?xyz)?yz?yz?zx?zx?xy?xy22333333?2xyz?2xyz?2xyz2222222222?yz(y?z)?zx(z?x)?xy(x?y)?x(y?z)?y(z?x)?z(x?y)?0∵上式顯然成立,∴原不等式得證.7.證明:(1)對(duì)于1<i≤m,且Aim =m·?·(m-i+1),AmmiiAmmm?1m?i?1nn?1n?i?1?????,同理?????,immmnnnnn?kn?m?kmi由于m<n,對(duì)于整數(shù)k=1,2,?,i-1,有Annii,所以?Ammii,即mAn?nAm iiii(2)由二項(xiàng)式定理有: 2n2n(1+m)n=1+C1nm+Cnm+?+Cnm,2mm(1+n)m=1+C1mn+C2mn+?+Cmn,本資料從網(wǎng)上收集整理 ii由(1)知miAi>niAi(1<i≤miAmnm,而Cm= i!,Cin?Ani! ∴miCin>niCim(1<m<n) ∴m0C0n=n0C0n=1,mC1n=nC1m=m·n,m2C2n>n2C2m,?,mmCmn>nmCmm,mm+1Cm?1n>0,?,mnCnn>0,∴1+C1nm+C2nm2+?+Cnnmn>1+C1mn+C2mn2+?+Cmmnm,即(1+m)n>(1+n)m成立.8.證法一:因a>0,b>0,a 3+b3 =2,所以(a+b)3-23=a3+b3+3a 2b+3ab2 -8=3a2 b+3ab2 -6 =3[ab(a+b)-2]=3[ab(a+b)-(a3 +b3)]=-3(a+b)(a-b)2 ≤0.即(a+b)3≤23,又a+b>0,所以a+b≤2,因?yàn)?ab≤a+b≤2,所以ab≤1.證法二:設(shè)a、b為方程x2-mx+n=0的兩根,則a?b??m?,?n?ab因?yàn)閍>0,b>0,所以m>0,n>0,且Δ=m 2-4n≥0 因?yàn)?=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n)2所以n=m3?23m 將②代入①得m2-4(m23?23m)≥0,3即?m?83m≥0,所以-m3+8≥0,即m≤2,所以a+b≤2,由2≥m 得4≥m2,又m2≥4n,所以4≥4n,即n≤1,所以ab≤1.證法三:因a>0,b>0,a3+b3=2,所以 2=a3+b3=(a+b)(a2+b2 -ab)≥(a+b)(2ab-ab)=ab(a+b)于是有6≥3ab(a+b),從而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,所以a+b≤2,(下略)33證法四:因?yàn)閍?b2?(a?b32) 22?4ab?a2?b2?(a?b)[4a?4b?2ab])(a?b)28?3(a?b8≥0,所以對(duì)任意非負(fù)實(shí)數(shù)a、b,有 a3?b32≥(a?b32)3 b3 33因?yàn)閍>0,b>0,a+=2,所以1=a?ba?b32≥(2),∴a?b2≤1,即a+b≤2,(以下略) 證法五:假設(shè)a+b>2,則 ①② 本資料從網(wǎng)上收集整理 a+b=(a+b)(a-ab+b)=(a+b)[(a+b)-3ab]>(a+b)ab>2ab,所以ab<1,又a+b=(a+b)[a-ab+b]=(a+b)[(a+b)-3ab]>2(2-3ab)因?yàn)閍3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)332 233222第二篇:不等式證明
第三篇:不等式證明
第四篇:不等式的證明
第五篇:不等式證明1