第一篇:Jvgllw高考數學難點突破 難點18 不等式的證明策略
秋風清,秋月明,落葉聚還散,寒鴉棲復驚。
難點18 不等式的證明策略
不等式的證明,方法靈活多樣,它可以和很多內容結合.高考解答題中,常滲透不等式證明的內容,純不等式的證明,歷來是高中數學中的一個難點,本難點著重培養考生數學式的變形能力,邏輯思維能力以及分析問題和解決問題的能力.●難點磁場
(★★★★)已知a>0,b>0,且a+b=1.求證:(a+1a1b254)(b+)≥.●案例探究
[例1]證明不等式1?12?13???1n?2n(n∈N)
*命題意圖:本題是一道考查數學歸納法、不等式證明的綜合性題目,考查學生觀察能力、構造能力以及邏輯分析能力,屬★★★★★級題目.知識依托:本題是一個與自然數n有關的命題,首先想到應用數學歸納法,另外還涉及不等式證明中的放縮法、構造法等.錯解分析:此題易出現下列放縮錯誤:
這樣只注重形式的統一,而忽略大小關系的錯誤也是經常發生的.技巧與方法:本題證法一采用數學歸納法從n=k到n=k+1的過渡采用了放縮法;證法二先放縮,后裂項,有的放矢,直達目標;而證法三運用函數思想,借助單調性,獨具匠心,發人深省.證法一:(1)當n等于1時,不等式左端等于1,右端等于2,所以不等式成立;
(2)假設n=k(k≥1)時,不等式成立,即1+12131k?11k?112?13???1k<2k,則1??????2k??2k(k?1)?1k?1?k?(k?1)?1k?1
?2k?1,∴當n=k+1時,不等式成立.綜合(1)、(2)得:當n∈N*時,都有1+
12?13???1n<2n.另從k到k+1時的證明還有下列證法:
?2(k?1)?1?2k(k?1)?k?2k(k?1)?(k?1)?(k?k?1)?0,2?2k(k?1)?1?2(k?1),?k?1?0,?2k?1k?1?2k?1.2k?1?k?2k?1?k?1?1k?1,又如:?2k?1?2k?1k?1?2k??2k?1.*證法二:對任意k∈N,都有:
1k?2k?12?k13?2k????k?11n?2(k?k?1),2)???2(n?n?1)?2n.因此1??2?2(2?1)?2(3?12131n證法三:設f(n)=2n?(1?*
????),那么對任意k∈N 都有:
f(k?1)?f(k)?2(k?1??1k?11k?1k)?1k?1[2(k?1)?2k(k?1)?1](k?1?k?1k)2
?0??[(k?1)?2k(k?1)?k]?∴f(k+1)>f(k)因此,對任意n∈N* 都有f(n)>f(n-1)>?>f(1)=1>0,∴1?12?13???1n?2n.x?y(x>0,y>0)恒成立的a的最小值.[例2]求使x?y≤a命題意圖:本題考查不等式證明、求最值函數思想、以及學生邏輯分析能力,屬于★★★★★級題目.知識依托:該題實質是給定條件求最值的題目,所求a的最值蘊含于恒成立的不等式中,因此需利用不等式的有關性質把a呈現出來,等價轉化的思想是解決題目的突破口,然后再利用函數思想和重要不等式等求得最值.錯解分析:本題解法三利用三角換元后確定a的取值范圍,此時我們習慣是將x、y與cosθ、sinθ來對應進行換元,即令x=cosθ,y=sinθ(0<θ<
?2),這樣也得a≥sinθ+cosθ,但是這種換元是錯誤的.其原因是:(1)縮小了x、y的范圍;(2)這樣換元相當于本題又增加了“x、y=1”這樣一個條件,顯然這是不對的.技巧與方法:除了解法一經常用的重要不等式外,解法二的方法也很典型,即若參數a滿足不等關系,a≥f(x),則amin=f(x)max;若 a≤f(x),則amax=f(x)min,利用這一基本事實,可
以較輕松地解決這一類不等式中所含參數的值域問題.還有三角換元法求最值用的恰當好處,可以把原問題轉化.解法一:由于a的值為正數,將已知不等式兩邊平方,得:
x+y+2xy≤a2(x+y),即2xy≤(a2-1)(x+y),∴x,y>0,∴x+y≥
2xy,① ②
當且僅當x=y時,②中有等號成立.2比較①、②得a的最小值滿足a-1=1,∴a2=2,a=2(因a>0),∴a的最小值是2.x?x?yy(x?x?yy)2解法二:設u???x?y?2xyx?y?1?2xyx?y.∵x>0,y>0,∴x+y≥22xy2xyxy(當x=y時“=”成立),∴x?y≤1,x?y的最大值是1.從而可知,u的最大值為1?1?2,又由已知,得a≥u,∴a的最小值為2.解法三:∵y>0,∴原不等式可化為
xy+1≤a
xy?1,設xy=tanθ,θ∈(0,?2).2∴tanθ+1≤atan??1;即tanθ+1≤asecθ
∴a≥sinθ+cosθ=2sin(θ+又∵sin(θ+?4?4),?4).③)的最大值為1(此時θ=由③式可知a的最小值為2.●錦囊妙計
1.不等式證明常用的方法有:比較法、綜合法和分析法,它們是證明不等式的最基本的方法.(1)比較法證不等式有作差(商)、變形、判斷三個步驟,變形的主要方向是因式分解、配方,判斷過程必須詳細敘述;如果作差以后的式子可以整理為關于某一個變量的二次式,則考慮用判別式法證.(2)綜合法是由因導果,而分析法是執果索因,兩法相互轉換,互相滲透,互為前提,充分運用這一辯證關系,可以增加解題思路,開擴視野.2.不等式證明還有一些常用的方法:換元法、放縮法、反證法、函數單調性法、判別式法、數形結合法等.換元法主要有三角代換,均值代換兩種,在應用換元法時,要注意代換的等價性.放縮性是不等式證明中最重要的變形方法之一,放縮要有的放矢,目標可以從要證的結論中考查.有些不等式,從正面證如果不易說清楚,可以考慮反證法.凡是含有“至少”“惟一”或含有其他否定詞的命題,適宜用反證法.證明不等式時,要依據題設、題目的特點和內在聯系,選擇適當的證明方法,要熟悉各種證法中的推理思維,并掌握相應的步驟、技巧和語言特點.●殲滅難點訓練
一、填空題
1.(★★★★★)已知x、y是正變數,a、b是正常數,且
ax?by=1,x+y的最小值為__________.2.(★★★★)設正數a、b、c、d滿足a+d=b+c,且|a-d|<|b-c|,則ad與bc的大小關系是__________.3.(★★★★)若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,則m、n、p、q的大小順序是__________.二、解答題
4.(★★★★★)已知a,b,c為正實數,a+b+c=1.求證:(1)a2+b2+c2≥
(2)3a?2?3b?2?3c?2≤6 5.(★★★★★)已知x,y,z∈R,且x+y+z=1,x+y+z=6.(★★★★★)證明下列不等式:(1)若x,y,z∈R,a,b,c∈R+,則(2)若x,y,z∈R+,且x+y+z=xyz,則y?zx?z?xy?x?yz
222
12,證明:x,y,z∈[0,23]
b?cax?2c?aby?2a?bcz2≥2(xy+yz+zx)
≥2(1x?1y?1z)7.(★★★★★)已知i,m、n是正整數,且1<i≤m<n.(1)證明:nAim<mAin;(2)證明:(1+m)n>(1+n)m
8.(★★★★★)若a>0,b>0,a3+b3=2,求證:a+b≤2,ab≤1.參考答案
難點磁場
證法一:(分析綜合法)
欲證原式,即證4(ab)2+4(a2+b2)-25ab+4≥0,即證4(ab)2-33(ab)+8≥0,即證ab≤ab≥8.ii
14或
∵a>0,b>0,a+b=1,∴ab≥8不可能成立 ∵1=a+b≥2ab,∴ab≤證法二:(均值代換法)設a=1214,從而得證.+t1,b=12+t2.12∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|<?(a?(?121a)(b?2,|t2|<
1b)?(1a?1a22?b?1b(?14?t1?t1?1)((222?t1)?112?t12?2?t2)?11214?t21412?t2?t2?1)?t2)2212?t1)(22(?14?t1?t1?1)(14?t2?t2?1)?2(54?t2)?t214?t22
?t2425?16?1432t2?t2222525?16?.144?t2顯然當且僅當t=0,即a=b=證法三:(比較法)
12時,等號成立.∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤1125222214
a?1b?1254ab?33ab?8(1?4ab)(8?ab)(a?)(b?)???????0ab4ab44ab4ab 1125?(a?)(b?)?ab4證法四:(綜合法)∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤
14.?2?(1?ab)?125?? ??ab4???25?2(1?ab)?1??139?162?1?ab?1???(1?ab)???4416? 1?4?ab?即(a?1a)(b?1b)?254
證法五:(三角代換法)
∵ a>0,b>0,a+b=1,故令a=sinα,b=cosα,α∈(0,2
2?2)
(a??1a4)(b?1b)?(sin??4221sin?22)(cos2??1cos?222)2sin??cos??2sin?cos??24sin2?222?(4?sin?)?164sin2??sin2??1,?4?sin2??4?1?3.4?2sin2??16?25?22(4?sin2?)25????11244sin2???24sin2??即得(a?1a)(b?1b)?254.22 殲滅難點訓練
一、1.解析:令ax=cos2θ,by=sin2θ,則x=asec2θ,y=bcsc2θ,∴x+y=asec2θ+bcsc2θ=a+b+atan2θ+bcot2θ≥a+b+2atan2??bcot2??a?b?2ab.答案:a+b+2ab
2.解析:由0≤|a-d|<|b-c|?(a-d)2<(b-c)2?(a+b)2-4ad<(b+c)2-4bc ∵a+d=b+c,∴-4ad<-4bc,故ad>bc.答案:ad>bc
3.解析:把p、q看成變量,則m<p<n,m<q<n.答案:m<p<q<n
二、4.(1)證法一:a2+b2+c2-===13131313=
13(3a2+3b2+3c2-1)[3a2+3b2+3c2-(a+b+c)2]
[3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc] [(a-b)2+(b-c)2+(c-a)2]≥0 ∴a2+b2+c2≥
222
證法二:∵(a+b+c)=a+b+c+2ab+2ac+2bc≤a+b+c2+a2+b2+a2+c2+b2+c2 ∴3(a2+b2+c2)≥(a+b+c)2=1 ∴a2+b2+c2≥a?b?c32222
a?b?c3證法三:∵∴a2+b2+c2≥
?a?b?c3∴a2+b2+c2≥
13證法四:設a=+α,b=
13+β,c=
13+γ.∵a+b+c=1,∴α+β+γ=0 ∴a+b+c=(22213+α)+(2
13+β)+(2
13+γ)
==1313+23(α+β+γ)+α+β+γ
13222 +α2+β2+γ2≥13
∴a2+b2+c2≥(2)證法一:?同理?
3a?2?3b?32(3a?2)?1?3c?323(a?b?c)?92?63a?2?12,3b?2?,3c?2?3c?2?
3a?2?3b?2?∴原不等式成立.證法二:3a?2?3b?2?33c?2?(3a?2)?(3b?2)?(3c?2)3
?3(a?b?c)?63?3
∴3a?2?3b?2?3c?2≤33<6 ∴原不等式成立.5.證法一:由x+y+z=1,x2+y2+z2=次方程得:
2y2-2(1-x)y+2x2-2x+
1212,得x2+y2+(1-x-y)2=
12,整理成關于y的一元二
=0,∵y∈R,故Δ≥0
12∴4(1-x)2-4×2(2x2-2x+同理可得y,z∈[0,證法二:設x=于是==1313121323)≥0,得0≤x≤
23,∴x∈[0,23]
]
132+x′,y=2
+y′,z=
13132
+z′,則x′+y′+z′=0,=(13+x′)+(13+y′)+(23+z′)
+x′2+y′2+z′2+222
(x′+y′+z′)
13+x′+y′+z′≥2
+x′+
132
(y??z?)22=
13+
2332x′2
23故x′≤19,x′∈[-,13],x∈[0,],同理y,z∈[0,]
12證法三:設x、y、z三數中若有負數,不妨設x<0,則x2>0,=x2+y2+z2≥
x+2(y?z)22?(1?x)22?x?232x?x?212>
12,矛盾.23x、y、z三數中若有最大者大于x+
2,不妨設x>
23,則
12=x2+y2+z2≥(y?z)22=x+232(1?x)22=1223232x2-x+
=32x(x-)+12>;矛盾.]
c?abcby?22故x、y、z∈[0,6.(1)證明:??(?(?bax?baax?x?22b?c22x?a?bc2z?2(xy?yz?zx)accaz?222aby?2xy)?(aby)?(y?2y?bc2bcz?2yz)?(2cax?2zx)2cby?z)?(acz?x)?0b?cc?aba?bcz?2(xy?yz?zx)(2)證明:所證不等式等介于xyz(222y?zx?z?xy?x?yz)?2(xy?yz?zx)2
2?xyz?[yz(y?z)?zx(z?x)?xy(x?y)]?2(xy?yz?zx)?(x?y?z)(yz?yz22222222?zx?zx222?xy?xy)2222?2(xy?yz?zx)?4(xyz?xyz?xyz)?yz?yz?zx?zx?xy?xy22333333?2xyz?2xyz?2xyz2222222222?yz(y?z)?zx(z?x)?xy(x?y)?x(y?z)?y(z?x)?z(x?y)?0∵上式顯然成立,∴原不等式得證.7.證明:(1)對于1<i≤m,且Aim =m·?·(m-i+1),AmmiiAmmm?1m?i?1nn?1n?i?1?????,同理?????,immmnnnnn?kn?m?kmi由于m<n,對于整數k=1,2,?,i-1,有Annii,所以?Ammii,即mAn?nAm
iiii(2)由二項式定理有:
2n2n(1+m)n=1+C1nm+Cnm+?+Cnm,2mm(1+n)m=1+C1mn+C2mn+?+Cmn,ii由(1)知miAi>niAiiAnnm(1<i≤m,而Ci=
Ammi!,Cn?i!
∴miCiin>nCim(1<m<n)
∴m0C0=n0C0=1,mC1=nC12nnnm=m·n,m2C2n>n2Cm,?,mmCmn>nmCmm,mm+1Cm?1n>0,?,mnCnn>0,∴1+C1m+C2m2nn+?+Cnnmn>1+C1mn+C2mn2+?+Cmmnm,即(1+m)n>(1+n)m成立.8.證法一:因a>0,b>0,a
3+b3
=2,所以(a+b)3-23=a3+b3+3a
2b+3ab2
-8=3a2
b+3ab2
-6 =3[ab(a+b)-2]=3[ab(a+b)-(a3
+b3)]=-3(a+b)(a-b)2
≤0.即(a+b)3≤23,又a+b>0,所以a+b≤2,因為2ab≤a+b≤2,所以ab≤1.證法二:設a、b為方程x2-mx+n=0的兩根,則a?b??m?,?n?ab因為a>0,b>0,所以m>0,n>0,且Δ=m
2-4n≥0
因為2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n)2所以n=m23?3m
將②代入①得m2-4(m23?23m)≥0,3即?m?83m≥0,所以-m3+8≥0,即m≤2,所以a+b≤2,由2≥m 得4≥m2,又m2≥4n,所以4≥4n,即n≤1,所以ab≤1.證法三:因a>0,b>0,a3+b3=2,所以
2=a3+b3=(a+b)(a2+b2
-ab)≥(a+b)(2ab-ab)=ab(a+b)于是有6≥3ab(a+b),從而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,所以a+b≤2,(下略)33證法四:因為a?b32?(a?b2)
2222?(a?b)[4a?4b?4ab?a?b?2ab]8?3(a?b)(a?b)28≥0,所以對任意非負實數a、b,有
a3?b332≥(a?b2)因為a>0,b>0,a3
+b3
33=2,所以1=a?ba?b32≥(2),∴a?b2≤1,即a+b≤2,(以下略)
證法五:假設a+b>2,則
①②
a+b=(a+b)(a-ab+b)=(a+b)[(a+b)-3ab]>(a+b)ab>2ab,所以ab<1,又a+b=(a+b)[a-ab+b]=(a+b)[(a+b)-3ab]>2(2-3ab)因為a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)332
233222
第二篇:高考數學難點突破_難點不等式的證明策略
不等式的證明策略
不等式的證明,方法靈活多樣,它可以和很多內容結合.高考解答題中,常滲透不等式證明的內容,純不等式的證明,歷來是高中數學中的一個難點,本難點著重培養考生數學式的變形能力,邏輯思維能力以及分析問題和解決問題的能力.●難點磁場
(★★★★)已知a>0,b>0,且a+b=1.求證:(a+1125)(b+)≥.ba41?1???1?2n(n∈N*)●案例探究
23n命題意圖:本題是一道考查數學歸納法、不等式證明的綜合性題目,考查學生觀察能力、構造能力以及邏輯分析能力,屬★★★★★級題目.知識依托:本題是一個與自然數n有關的命題,首先想到應用數學歸納法,另外還涉及不等式證明中的放縮法、構造法等.錯解分析:此題易出現下列放縮錯誤: [例1]證明不等式1?
這樣只注重形式的統一,而忽略大小關系的錯誤也是經常發生的.技巧與方法:本題證法一采用數學歸納法從n=k到n=k+1的過渡采用了放縮法;證法二先放縮,后裂項,有的放矢,直達目標;而證法三運用函數思想,借助單調性,獨具匠心,發人深省.證法一:(1)當n等于1時,不等式左端等于1,右端等于2,所以不等式成立;
111????(2)假設n=k(k≥1)時,不等式成立,即1+<2k,23k則1??12?13????1k?1k?1?2k?1k?1
2k(k?1)?1k?1k?(k?1)?1?2k?1,∴當n=k+1時,不等式成立.綜合(1)、(2)得:當n∈N*時,都有1+
12?13???1n<2n.另從k到k+1時的證明還有下列證法:
?2(k?1)?1?2k(k?1)?k?2k(k?1)?(k?1)?(k?k?1)2?0,?2k(k?1)?1?2(k?1),?k?1?0,?2k?1k?1?2k?1.2k?1?k?2k?1?k?1?1k?1,又如:?2k?1?2k?k?1證法二:對任意k∈N*,都有: ?2k?1?2k?1.?2(k?k?1),k?kk?k?1
111因此1??????2?2(2?1)?2(3?2)???2(n?n?1)?2n.23nk證法三:設f(n)=2n?(1?*1?2?212?13???1n),那么對任意k∈N 都有:
f(k?1)?f(k)?2(k?1?k)???1k?11k?1[2(k?1)?2k(k?1)?1]?[(k?1)?2k(k?1)?k]?1k?1
(k?1?k)2k?1?0∴f(k+1)>f(k)因此,對任意n∈N* 都有f(n)>f(n-1)>?>f(1)=1>0,111?????2n.∴1?23n[例2]求使x?y≤ax?y(x>0,y>0)恒成立的a的最小值.命題意圖:本題考查不等式證明、求最值函數思想、以及學生邏輯分析能力,屬于★★★★★級題目.知識依托:該題實質是給定條件求最值的題目,所求a的最值蘊含于恒成立的不等式中,因此需利用不等式的有關性質把a呈現出來,等價轉化的思想是解決題目的突破口,然后再利用函數思想和重要不等式等求得最值.錯解分析:本題解法三利用三角換元后確定a的取值范圍,此時我們習慣是將x、y與cosθ、sinθ來對應進行換元,即令x=cosθ,y=sinθ(0<θ<
?2),這樣也得a≥sinθ+cosθ,但是這種換元是錯誤的.其原因是:(1)縮小了x、y的范圍;(2)這樣換元相當于本題又增加了“x、y=1”這樣一個條件,顯然這是不對的.技巧與方法:除了解法一經常用的重要不等式外,解法二的方法也很典型,即若參數a滿足不等關系,a≥f(x),則amin=f(x)max;若 a≤f(x),則amax=f(x)min,利用這一基本事實,可以較輕松地解決這一類不等式中所含參數的值域問題.還有三角換元法求最值用的恰當好處,可以把原問題轉化.解法一:由于a的值為正數,將已知不等式兩邊平方,得:
x+y+2xy≤a2(x+y),即2xy≤(a2-1)(x+y),∴x,y>0,∴x+y≥2xy,① ②
當且僅當x=y時,②中有等號成立.比較①、②得a的最小值滿足a2-1=1,∴a2=2,a=2(因a>0),∴a的最小值是2.解法二:設u?x?y(x?y)2??x?yx?yx?y?2xy2xy.?1?x?yx?y∵x>0,y>0,∴x+y≥2xy(當x=y時“=”成立),∴2xy2xy≤1,的最大值是1.x?yx?y從而可知,u的最大值為1?1?2,又由已知,得a≥u,∴a的最小值為2.解法三:∵y>0,∴原不等式可化為
x+1≤ayx?1,y設x?=tanθ,θ∈(0,).y2∴tanθ+1≤atan2??1;即tanθ+1≤asecθ ∴a≥sinθ+cosθ=2sin(θ+又∵sin(θ+
?4),③
?4)的最大值為1(此時θ=
?4).由③式可知a的最小值為2.●錦囊妙計
1.不等式證明常用的方法有:比較法、綜合法和分析法,它們是證明不等式的最基本的方法.(1)比較法證不等式有作差(商)、變形、判斷三個步驟,變形的主要方向是因式分解、配方,判斷過程必須詳細敘述;如果作差以后的式子可以整理為關于某一個變量的二次式,則考慮用判別式法證.(2)綜合法是由因導果,而分析法是執果索因,兩法相互轉換,互相滲透,互為前提,充分運用這一辯證關系,可以增加解題思路,開擴視野.2.不等式證明還有一些常用的方法:換元法、放縮法、反證法、函數單調性法、判別式法、數形結合法等.換元法主要有三角代換,均值代換兩種,在應用換元法時,要注意代換的等價性.放縮性是不等式證明中最重要的變形方法之一,放縮要有的放矢,目標可以從要證的結論中考查.有些不等式,從正面證如果不易說清楚,可以考慮反證法.凡是含有“至少”“惟一”或含有其他否定詞的命題,適宜用反證法.證明不等式時,要依據題設、題目的特點和內在聯系,選擇適當的證明方法,要熟悉各種證法中的推理思維,并掌握相應的步驟、技巧和語言特點.●殲滅難點訓練
一、填空題
1.(★★★★★)已知x、y是正變數,a、b是正常數,且
ab?=1,x+y的最小值為xy__________.2.(★★★★)設正數a、b、c、d滿足a+d=b+c,且|a-d|<|b-c|,則ad與bc的大小關系是__________.3.(★★★★)若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,則m、n、p、q的大小順序是__________.二、解答題
4.(★★★★★)已知a,b,c為正實數,a+b+c=1.求證:(1)a2+b2+c2≥3(2)3a?2?3b?2?3c?2≤6 5.(★★★★★)已知x,y,z∈R,且x+y+z=1,x2+y2+z2=6.(★★★★★)證明下列不等式:(1)若x,y,z∈R,a,b,c∈R+,則
12,證明:x,y,z∈[0,] 23b?c2c?a2a?b
2z≥2(xy+yz+zx)x?y?abc(2)若x,y,z∈R+,且x+y+z=xyz,y?zz?xx?y111??則≥2(??)xyzxyz7.(★★★★★)已知i,m、n是正整數,且1<i≤m<n.(1)證明:niAim<miAin;
(2)證明:(1+m)n>(1+n)m
8.(★★★★★)若a>0,b>0,a3+b3=2,求證:a+b≤2,ab≤1.參考答案
難點磁場
證法一:(分析綜合法)
欲證原式,即證4(ab)2+4(a2+b2)-25ab+4≥0,即證4(ab)2-33(ab)+8≥0,即證ab≤ab≥8.∵a>0,b>0,a+b=1,∴ab≥8不可能成立
∵1=a+b≥2ab,∴ab≤證法二:(均值代換法)設a=
1或41,從而得證.411+t1,b=+t2.2211,|t2|< 22∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|<11a2?1b2?1?(a?)(b?)??abab111122(?t1)2?1(?t2)2?1(?t1?t1?1)(?t2?t2?1)4?2?2?41111?t1?t2(?t1)(?t2)22221152222(?t1?t1?1)(?t2?t2?1)(?t2)2?t24?4?41122?t2?t2442532254?t2?t225?162?16?.1124?t244顯然當且僅當t=0,即a=b=證法三:(比較法)
∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤
1時,等號成立.21 41125a2?1b2?1254a2b2?33ab?8(1?4ab)(8?ab)(a?)(b?)???????0ab4ab44ab4ab 1125?(a?)(b?)?ab4證法四:(綜合法)
1∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤.425??2(1?ab)?1??139??(1?ab)2?12516?2 ?1?ab?1???(1?ab)??????14416?ab4 ?4???ab??1125 即(a?)(b?)?ab4證法五:(三角代換法)
∵ a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,?2)11112(a?)(b?)?(sin2??)(cos??)22absin?cos?sin4??cos4??2sin2?cos2??2(4?sin2?)2?16??24sin2?4sin22??sin22??1,?4?sin22??4?1?3.2 4?2sin22??16?25??(4?sin22?)225???11244sin2???2sin2?4?1125即得(a?)(b?)?.ab4殲滅難點訓練
一、1.解析:令
ba=cos2θ,=sin2θ,則x=asec2θ,y=bcsc2θ,∴x+y=asec2θ+bcsc
2yxθ=a+b+atan2θ+bcot2θ≥a+b+2atan2??bcot2??a?b?2ab.答案:a+b+2ab
2.解析:由0≤|a-d|<|b-c|?(a-d)2<(b-c)2?(a+b)2-4ad<(b+c)2-4bc
∵a+d=b+c,∴-4ad<-4bc,故ad>bc.答案:ad>bc
3.解析:把p、q看成變量,則m<p<n,m<q<n.答案:m<p<q<n
二、4.(1)證法一:a2+b2+c2-=
11=(3a2+3b2+3c2-1)331[3a2+3b2+3c2-(a+b+c)2] 31=[3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc] 311=[(a-b)2+(b-c)2+(c-a)2]≥0 ∴a2+b2+c2≥ 33證法二:∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤a2+b2+c2+a2+b2+a2+c2+b2+c2 ∴3(a2+b2+c2)≥(a+b+c)2=1 ∴a2+b2+c2≥3a2?b2?c2a?b?ca?b?c?證法三:∵∴a2+b2+c2≥
3331 3111證法四:設a=+α,b=+β,c=+γ.333∴a2+b2+c2≥∵a+b+c=1,∴α+β+γ=0 ∴a2+b2+c2=(=111+α)2+(+β)2+(+γ)2 3332 12+(α+β+γ)+α2+β2+γ3311=+α2+β2+γ2≥ 331∴a2+b2+c2≥
3(2)證法一:?3a?2?(3a?2)?1?同理3b?2?3a?2?1,23b?33c?3 ,3c?2?223(a?b?c)?9?3a?2?3b?2?3c?2??62∴原不等式成立.證法二:3a?2?3b?2?3c?2(3a?2)?(3b?2)?(3c?2)?
33?3(a?b?c)?6?3
3∴3a?2?3b?2?3c?2≤33<6 ∴原不等式成立.5.證法一:由x+y+z=1,x2+y2+z2=次方程得:
11,得x2+y2+(1-x-y)2=,整理成關于y的一元二221=0,∵y∈R,故Δ≥0 2122∴4(1-x)2-4×2(2x2-2x+)≥0,得0≤x≤,∴x∈[0,]
2332同理可得y,z∈[0,]
3111證法二:設x=+x′,y=+y′,z=+z′,則x′+y′+z′=0,3331111于是=(+x′)2+(+y′)2+(+z′)2
233312=+x′2+y′2+z′2+(x′+y′+z′)33211132222(y??z?)=+x′+y′+z′≥+x′+=+x′2
2333211122故x′2≤,x′∈[-,],x∈[0,],同理y,z∈[0,]
933332y2-2(1-x)y+2x2-2x+證法三:設x、y、z三數中若有負數,不妨設x<0,則x2>0,21222
=x+y+z≥2(y?z)2(1?x)2311??x2?x2?x?>,矛盾.x+22222221x、y、z三數中若有最大者大于,不妨設x>,則=x2+y2+z2≥
33222312(y?z)2(1?x)x+=x+=x2-x+
22223211x(x-)+>;矛盾.23222故x、y、z∈[0,]
3b?c2c?a2a?b26.(1)證明:?x?y?z?2(xy?yz?zx)2bcbacbac?(x2?y2?2xy)?(y2?z2?2yz)?(z2?x2?2zx)abbccaba2cb2ac2?(x?y)?(y?z)?(z?x)?0abbccab?c2c?aa?b2?x?y?z?2(xy?yz?zx)abc(2)證明:所證不等式等介于y?zz?xx?yx2y2z2(??)?2(xy?yz?zx)2xyz=
?xyz?[yz(y?z)?zx(z?x)?xy(x?y)]?2(xy?yz?zx)2?(x?y?z)(y2z?yz2?z2x?zx2?x2y?xy2)?2(x2y2?y2z2?z2x2)?4(x2yz?xy2z?xyz2)?y3z?yz3?z3x?zx3?x3y?xy3?2x2yz?2xy2z?2xyz2?yz(y?z)2?zx(z?x)2?xy(x?y)2?x2(y?z)2?y2(z?x)2?z2(x?y)2?0∵上式顯然成立,∴原不等式得證.7.證明:(1)對于1<i≤m,且Aim =m·?·(m-i+1),Aimmm?1Aimnn?1m?i?1n?i?1?????,同理?????,iimmmnnnmn由于m<n,對于整數k=1,2,?,i-1,有
n?km?k,?nmAinAim所以i?i,即miAin?niAim
nm(2)由二項式定理有:
22nn(1+m)n=1+C1nm+Cnm+?+Cnm,22mm(1+n)m=1+C1mn+Cmn+?+Cmn,由(1)知mAini>nAimi
(1<i≤m),而
CimAimiAin,Cn?= i!i!∴miCin>niCim(1<m<n)
00222211∴m0C0n=nCn=1,mCn=nCm=m·n,mCn>nCm,?,mmm+1m?1mmCmCn>0,?,mnCnn>nCm,mn>0,∴1+C122nn1+C122mmnm+Cnm+?+Cnm>mn+Cmn+?+Cmn,即(1+m)n>(1+n)m成立.8.證法一:因a>0,b>0,a3+b3=2,所以(a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6 =3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(a-b)2≤0.即(a+b)3≤23,又a+b>0,所以a+b≤2,因為2ab≤a+b≤2,所以ab≤1.證法二:設a、b為方程x2-mx+n=0的兩根,則??m?a?b?n?ab,因為a>0,b>0,所以m>0,n>0,且Δ=m2-4n≥0
因為2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n)m2所以n=3?23m
將②代入①得m2-4(m23?23m)≥0,即?m3?83m≥0,所以-m3+8≥0,即m≤2,所以a+b≤2,由2≥m 得4≥m2,又m2≥4n,所以4≥4n,即n≤1,所以ab≤1.證法三:因a>0,b>0,a3+b3=2,所以
2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=ab(a+b)于是有6≥3ab(a+b),從而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,所以a+b≤2,(下略)
證法四:因為a3?b32?(a?b32)(a?b)[4a2??4b2?4ab?a2?b2?2ab]3(a?b8?)(a?b)28≥0,a、b,有a3?b3所以對任意非負實數a?b32≥(2)
>0,b>0,a+b=2,所以1=a3因為a33
?b3a?b32≥(2),∴a?b2≤1,即a+b≤2,(以下略)
證法五:假設a+b>2,則
a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>(a+b)ab>2ab,所以ab<1,又a3+b3=(a+b)[a2-ab+b2]=(a+b)[(a+b)2-3ab]>2(22-3ab)因為a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)
①②
第三篇:高考數學難點歸納18 不等式的證明策略教案
高考網
http://www.tmdps.cnm+?+Cnm,n2n
2mm(1+n)m=1+C1mn+C2mn+?+Cmn,ii由(1)知mA>nA(1<i≤m∴mCn>nCm(1<m<n)iiiiinim,而C=
imAmi!i,Cin?Ani!i
01122∴mC0n=nCn=1,mCn=nCm=m·n,mCn>nCm,?,0022mmCmn>nCm,mmmm+
1?1Cm>0,?,mCnnn>0,n
京翰教育http://www.tmdps.cnmn>1+C122nnnmn+Cmn+?+Cmmnm,即(1+m)n>(1+n)m成立.8.證法一:因a>0,b>0,a3+b
3=2,所以(a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6 =3[ab(a+b)-2]=3[ab(a+b)-(a3
+b3)]=-3(a+b)(a-b)
2≤0.即(a+b)3≤23,又a+b>0,所以a+b≤2,因為2ab≤a+b≤2,所以ab≤1.證法二:設a、b為方程x
2-mx+n=0的兩根,則?b??m?a,?n?ab因為a>0,b>0,所以m>0,n>0,且Δ=m2
-4n≥0
因為2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n)2所以n=m3?23m
將②代入①得m2-4(m223?3m)≥0,3即?m?8≥0,所以-m33m+8≥0,即m≤2,所以a+b≤2,由2≥m 得4≥m2,又m2≥4n,所以4≥4n,即n≤1,所以ab≤1.證法三:因a>0,b>0,a3+b3=2,所以
2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=ab(a+b)于是有6≥3ab(a+b),從而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,所以a+b≤2,(下略)證法四:因為a3?b3?b32?(a2)
(a?b)[4a2?4b2?4ab?a2?b2??2ab]8?3(a?b)(a?b)28≥0,a3?b3所以對任意非負實數a、b,有
2≥(a?b32)因為a>0,b>0,a3
+b3
33=2,所以1=a?b≥(a?b322),∴a?b2≤1,即a+b≤2,(以下略)
證法五:假設a+b>2,則
a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2
-3ab]>(a+b)ab>2ab,所以ab<1,又a3+b3=(a+b)[a2-ab+b2]=(a+b)[(a+b)2-3ab]>2(22-3ab)因為a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)京翰教育http://www.tmdps.cn/
①②
第四篇:高考數學難點歸納18_不等式的證明策略學案
不等式的證明
[例1]證明不等式1?1
2?1
3???1
n?2n(n∈N*)
[例2]求使x?y≤ax?y(x>0,y>0)恒成立的a的最小值.一、填空題
1.已知x、y是正變數,a、b是正常數,且ab?=1,x+y的最小值為__________.xy
2.設正數a、b、c、d滿足a+d=b+c,且|a-d|<|b-c|,則ad與bc的大小關系是__________.3.若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,則m、n、p、q的大小順序是__________.二、解答題(2)a?2?b?2?3c?2≤6 3
125.已知x,y,z∈R,且x+y+z=1,x2+y2+z2=,證明:x,y,z∈[0,] 234.已知a,b,c為正實數,a+b+c=1.求證:(1)a2+b2+c2≥
6.證明下列不等式:
b?c2c?a2a?b2z≥2(xy+yz+zx)x?y?abc
y?zz?xx?y111??(2)若x,y,z∈R+,且x+y+z=xyz,則≥2(??)xyzxyz(1)若x,y,z∈R,a,b,c∈R+,則
7.已知i,m、n是正整數,且1<i≤m<n.(1)證明:niAi
m<miAi
n;(2)證明:(1+m)n>(1+n)m
8.若a>0,b>0,a3+b3=2,求證:a+b≤2,ab≤1.京翰教育
第五篇:數學教學突出重點,突破難點
數學教學突出重點,突破難點
2011-12-01 15:09:58|分類: 默認分類 |標簽: |舉報 |字號大
所謂教學重點,就是學生必須掌握的基本技能。如:意義、性質、法則、計算等等。如何在數學教學中突破重點和難點呢?這就需要我們每一位數學教師在教學實踐中不斷地學習、總結、摸索。
1、認真備課,吃透教材,抓住教材的重難點是突破重難點的前提
做為一個數學教師,把我們的主要精力,放在發展學生智力上,著眼于培養和調動學生的積極性和主動性,引導學生學會自己走路,首先自己要識途。我感到,要把數學之路探清認明,唯一的辦法就是深鉆教材,抓住各章節的重點和難點,備課時既能根據知識的特點,又能根據學生認識事物的規律,精心設計,精心安排,取得事半功倍的效果。因此,有課前的充實準備,就為教學時突破重點和難點提供了有利條件。
2、以舊知識為生長點,突破重點和難點
數學是系統性很強的學科,每項新知識往往是舊知識的延伸和發展,又是后續知識的基礎。知識的鏈條節節相連、環環相扣、舊里蘊新,又不斷化新為舊,不僅縱的有這樣的聯系,還有橫的聯系,縱橫交錯,形成知識網絡,學生能認識知識之間的聯系,才能深刻理解,融匯貫通。數學教學就是要借助于數學知識的邏輯結構,引導學生由舊入新,組織積極的遷移,促成由已知到未知的推理,認識簡單與復雜問題的連結,用數學學科本身的邏輯關系,訓練學生的思維。數學教學并沒有固定模式,實際教學中還要考慮到教學內容的一些特點,當新舊知識之間有緊密的邏輯關系或所學知識與舊知識之間沒有實質性的變化,只是認知結構中原有知識的特例時,教學時就以原有知識為生長點,直接由舊到新,即從學生已有的知識和經驗出發。因為學生獲取知識,總是在已有的知識經驗的參與下進行的,脫離了已有的知識經驗基礎進行教學,其原有的知識經驗就無法參與,而新舊知識連結紐帶的斷裂,必然會給學生帶來理解上的困難,使其難以掌握所學的知識。正因如此,自己在教學中運用了遷移規律,來實現重、難點的突破。
3、處理好尊重教材與靈活處理教材的關系
隨著新課程改革的深入,“靈活處理教材”或者說“創造性使用教材”已經為廣大教師們所認同。“創造性使用教材”的觀點主要指:教材是落實教學大綱,實現教學計劃的重要載體,也是教師進行課堂教學的主要依據。教學內容不僅包括教材內容,而且還包括師生在教學過程中的活動,教材內容只不過是教學內容的重要部分。教師必須充分發揮自身的創造性,把學生作為教學的基本出發點重新處理教材,做到尊重教材與靈活處理教材相結合,確定符合實際的內容范圍和難度要求。