第一篇:小學六年級數學知識點總結
小學六年級數學知識點總結
1. 每份數×份數=總數總數÷每份數=份數總數÷份數=每份數2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、速度×時間=路程路程÷速度=時間路程÷時間=速度4、單價×數量=總價總價÷單價=數量總價÷數量=單價
5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6、加數+加數=和和-一個加數=另一個加數、被減數-減數=差被減數-差=減數差+減數=被減數
8、因數×因數=積積÷一個因數=另一個因數
9、被除數÷除數=商被除數÷商=除數商×除數=被除數
小學數學圖形計算公式正方形
C周長 S面積 a邊長周長=邊長×4C=4a面積=邊長×邊長S=a×a2 正方體
V:體積 a:棱長表面積=棱長×棱長×6S表=a×a×6體積=棱長×棱長×棱長V=a×a×a3 長方形
C周長 S面積 a邊長周長=(長+寬)×2C=2(a+b)面積=長×寬S=ab4 長方體V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2S=2(ab+ah+bh)(2)體積=長×寬×高V=abh5 三角形
s面積 a底 h高面積=底×高÷2s=ah÷2三角形高=面積 ×2÷底三角形底=面積 ×2÷高6平行四邊形
s面積 a底 h高面積=底×高s=ah7 梯形
s面積 a上底 b下底 h高面積=(上底+下底)×高÷2s=(a+b)× h÷28 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑C=∏d=2∏r(2)面積=半徑×半徑×∏S=∏rr 9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(1)側面積=底面周長×高(2)表面積=側面積+底面積×2
第二篇:小學六年級數學知識點總結
小學六年級數學知識點總結
1. 每份數×份數=總數總數÷每份數=份數總數÷份數=每份數2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、速度×時間=路程路程÷速度=時間路程÷時間=速度4、單價×數量=總價總價÷單價=數量總價÷數量=單價
5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、加數+加數=和和-一個加數=另一個加數、被減數-減數=差被減數-差=減數差+減數=被減數
8、因數×因數=積積÷一個因數=另一個因數
9、被除數÷除數=商被除數÷商=除數商×除數=被除數小學數學圖形計算公式正方形
C周長 S面積 a邊長周長=邊長×4C=4a
面積=邊長×邊長S=a×a正方體
V:體積 a:棱長表面積=棱長×棱長×6S表=a×a×6體積=棱長×棱長×棱長V=a×a×a長方形
C周長 S面積 a邊長周長=(長+寬)×2C=2(a+b)面積=長×寬S=ab長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2S=2(ab+ah+bh)
(2)體積=長×寬×高V=abh三角形
s面積 a底 h高面積=底×高÷2s=ah÷2
三角形高=面積 ×2÷底三角形底=面積 ×2÷高平行四邊形
s面積 a底 h高面積=底×高s=ah梯形
s面積 a上底 b下底 h高面積=(上底+下底)×高÷2s=(a+b)× h÷28 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑C=∏d=2∏r
(2)面積=半徑×半徑×∏S=∏rr圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數小數×倍數=大數(或者 和-小數=大數)差倍問題
差÷(倍數-1)=小數小數×倍數=大數(或 小數+差=大數)小學奧數公式和差問題的公式
(和+差)÷2=大數(和-差)÷2=小數
和倍問題的公式
和÷(倍數-1)=小數 小數×倍數=大數(或者 和-小數=大數)
差倍問題的公式
差÷(倍數-1)=小數 小數×倍數=大數(或 小數+差=大數)
植樹問題的公式非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那么:
株數=段數+1=全長÷株距-1全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那么:
株數=段數=全長÷株距全長=株距×株數株距=全長÷株數⑶如果在非封閉線路的兩端都不要植樹,那么:
株數=段數-1=全長÷株距-1全長=株距×(株數+1)
株距=全長÷(株數+1)封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距全長=株距×株數株距=全長÷株數盈虧問題的公式
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題的公式
相遇路程=速度和×相遇時間相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題的公式
追及距離=速度差×追及時間追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2水流速度=(順流速度-逆流速度)÷2濃度問題的公式
溶質的重量+溶劑的重量=溶液的重量溶質的重量÷濃度=溶液的重量 溶質的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質的重量利潤與折扣問題的公式
利潤=售出價-成本漲跌金額=本金×漲跌百分比
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間稅后利息=本金×利率×時間×(1-20%)
(一)數的讀法和寫法 1.整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2.整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3、小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作“點”,小數部分從左向右順次讀出每一位數位上的數字。
4、小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5、分數的讀法:讀分數時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數的讀法來讀。
6.分數的寫法:先寫分數線,再寫分母,最后寫分子,按照整數的寫法來寫。
7.百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8.百分數的寫法:百分數通常不寫成分數形式,而在原來的分子后面加上百分號“%”來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數。有時還可以根據需要,省略這個數某一位后面的數,寫成近似數。
1.準確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫后的數是原數的準確數。例如把 1254300000
改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2.近似數:根據實際需要,我們還可以把一個較大的數,省略某一位后面的尾數,用一個近似數來表示。例如: 1302490015 省略億后面的尾數是 13 億。
3.四舍五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數舍去,并向它的前一位進1。例如:省略
345900 萬后面的尾數約是 35 萬。省略 4725097420 億后面的尾數約是 47 億。
4.大小比較
1.比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2.比較小數的大小:先看它們的整數部分,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3.比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1.小數化成分數:原來有幾位小數,就在1的后面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2.分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3.一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4.小數化成百分數:只要把小數點向右移動兩位,同時在后面添上百分號。
5.百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6.分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7.百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1.把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2.求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然后把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。
3.求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然后把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4.成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質;
兩個合數的公約數只有1時,這兩個合數互質。
(五)約分和通分
1、約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
2、通分的方法:先求出原來的幾個分數分母的最小公倍數,然后把各分數化成用這個最小公倍數作分母的分數。
小數、小數的意義 把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位“十分之一”和整數部分的最低單位“一”之間的進率也是10。
2、小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25、0.368 都是純小數。帶小數:整數部分不是零的小數,叫做帶小數。例如: 3.25、5.26 都是帶小數。有限小數:小數部分的數位是有限的小數,叫做有限小數。例如: 41.7、25.3、0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。例如: 4.33 ……
3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。例如: 3.99 ……的循環節是“ 9 ”,0.5454 ……的循環節是“ 54
”。純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。例如:
3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。
3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,并在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作。
(六)分數分數的意義
把單位“1”平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位“1”平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。把單位“1”平均分成若干份,表示其中的一份的數,叫做分數單位。分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小于1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大于或等于1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。3 約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數,叫做約分。分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(七)百分數
表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率或百分比。百分數通常用“%”來表示。百分號是表示百分數的符號。
第三篇:【數學】小學六年級數學知識點歸納
小學六年級數學知識點歸納
六年級上冊
知識點概念總結
1.分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。
2.分數乘法的計算法則:
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。3.分數乘法意義
分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。4.分數乘整數:數形結合、轉化化歸 5.倒數:乘積是1的兩個數叫做互為倒數。6.分數的倒數
找一個分數的倒數,例如3/4 把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。7.整數的倒數
找一個整數的倒數,例如12,把12化成分數,即12/1,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數。
8.小數的倒數:
普通算法:找一個小數的倒數,例如0.25,把0.25化成分數,即1/4,再把1/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1 9.用1計算法:也可以用1去除以這個數,例如0.25,1/0.25等于4,所以0.25的倒數4,因為乘積是1的兩個數互為倒數。分數、整數也都使用這種規律。10.分數除法:分數除法是分數乘法的逆運算。
11.分數除法計算法則: 甲數除以乙數(0除外),等于甲數乘乙數的倒數。12.分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。
13.分數除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。14.比和比例: 比和比例一直是學數學容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括: 比,等同于算式中等號左邊的式子,是式子的一種(如:a:b);比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同(如:a:b=c:d)。
所以,比和比例的聯系就可以說成是:比是比例的一部分;而比例是由至少兩個比值相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項后項各2個.15.比的基本性質:比的前項和后項都乘以或除以一個不為零的數。比值不變。比的性質用于化簡比。
比表示兩個數相除;只有兩個項:比的前項和后項。
比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。16.比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積。比例的性質用于解比例。
17.比和比例的區別
(1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和后項。如:a:b 這是比 比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4 這是比例。
(2)比的基本性質和比例的基本性質意義不同、應用不同。比的性質: 比的前項和后項都乘或除以一個不為零的數。比值不變。比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積相等。比例的性質用于解比例。聯系: 比例是由兩個相等的比組成。18.比和比例的意義
比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的含義 而另一種形式,分數有括號的含義!19.比和比例的聯系:
比和比例有著密切聯系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯的兩種量中兩組相對應數的關系,所以比例是由四項組成。比例是由比組成的,如果沒有兩種量的比,比例就不會存在。比例是比的發展,如果把比例式中右邊的比看成一個數,比和比例此時又可以統一起來。如果兩個比相等,那么這兩個比就可以組成比例。成比例的兩個比的比值一定相等。
20.圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
21.圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示
22.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
23.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
24.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。25.圓周率:圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
26.圓的面積公式:圓所占平面的大小叫做圓的面積。πr^2;,用字母S表示。一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。27.周長計算公式(1)已知直徑:C=πd(2)已知半徑:C=2πr(3)已知周長:D=c/π
(4)圓周長的一半:1/2周長(曲線)(5)半圓的周長:1/2周長+直徑(π÷2+1)28.面積計算公式:(1)已知半徑:S=πr(2)已知直徑:S=π(d/2)(3)已知周長:S=π[c÷(2π)]
29.百分數與分數的區別
22(1)意義不同。百分數是“表示一個數是另一個數的百分之幾的數。”它只能表示兩數之間的倍數關系,不能表示某一具體數量。因此,百分數后面不能帶單位名稱。分數是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數”。分數還可以表示兩數之間的倍數關系.(2)應用范圍不同。百分數在生產、工作和生活中,常用于調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。
(3)書寫形式不同。百分數通常不寫成分數形式,而采用百分號“%”來表示。因此,不論百分數的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。
而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。任何一個百分數都可以寫成分母是100的分數,而分母是100的分數并不都具有百分數的意義.(4)百分數不能帶單位名稱;當分數表示具體數時可帶單位名稱。
30.百分數應用
百分數一般有三種情況: ①100%以上,如:增長率、增產率等。②100%以下,如:發芽率、成長率等。③剛好100%,如:正確率,合格率等。
31.百分數的意義
百分數只可以表示分率,而不能表示具體量,所以不能帶單位。百分數概念的形成應以學生實際生活中的事例或工農業生產中的事例引入。
32.日常應用
每天在電視里的天氣預報節目中,都會報出當天晚上和明天白天的天氣狀況、降水概率等,提示大家提前做好準備,就像今天的夜晚的降水概率是20%,明天白天有五~六級大風,降水概率是10%,早晚應增加衣服。20%、10%讓人一目了然,既清楚又簡練。
知識點擴展
1.圓的定義
幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等于定長的點的集合叫做圓。
2.圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優弧,小于半圓的弧稱為劣弧,半圓既不是優弧,也不是劣弧。連接圓上任意兩點的線段叫做弦。圓中最長的弦為直徑。
3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.內心和外心:和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。
6.圓的種類:(1)整體圓形,(2)弧形圓,(3)扁圓,(4)橢形圓,(5)纏絲圓,(6)螺旋圓,(7)圓中圓、圓外圓,(8)重圓,(9)橫圓,(10)豎圓,(11)斜圓。
7.圓和其他圖形的位置關系:圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,0≤PO 200多年前,瑞士數學家歐拉,在《通用算術》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因為找不到一個合適的數來表示它。如果我們把它分成三等份,每份是7/3米,就是一種新的數,我們把它叫做分數。而后,人們在分數的基礎上又以100做基數,發明了百分數。 六年級下冊 知識點歸納總結 1.負數:負數是數學術語,指小于0的實數,如?3。 任何正數前加上負號都等于負數。在數軸線上,負數都在0的左側,所有的負數都比自然數小。負數用負號“-”標記,如?2,?5.33,?45,?0.6等。2.正數:大于0的數叫正數(不包括0) 若一個數大于零(>0),則稱它是一個正數。正數的前面可以加上正號“+”來表示。正數有無數個,其中分正整數,正分數和正無理數。3.正數的幾何意義:數軸上0右邊的數叫做正數 4.數軸:規定了原點,正方向和單位長度的直線叫數軸。 所有的實數都可以用數軸上的點來表示。也可以用數軸來比較兩個實數的大小。 5.數軸的三要素:原點、單位長度、正方向。 6.圓柱:以矩形的一邊所在直線為旋轉軸,其余三邊旋轉形成的面所圍成的旋轉體 即AG矩形的一條邊為軸,旋轉360°所得的幾何體就是圓柱。 其中AG叫做圓柱的軸,AG的長度叫做圓柱的高,所有平行于AG的線段叫做圓柱的母線,DA和D'G旋轉形成的兩個圓叫做圓柱的底面,DD'旋轉形成的曲面叫做圓柱的側面。 7.圓柱的體積:圓柱所占空間的大小,叫做這個圓柱體的體積。設一個圓柱底面半徑為r,高為h,則體積V:V=πrh ;如S為底面積,高為h,體積為V:V=Sh 8.圓柱的側面積:圓柱的側面積=底面的周長*高,S側=Ch(注:c為πd)圓柱的兩個圓面叫做底面(又分上底和下底);圓柱有一個曲面,叫做側面;兩個底面之間的距離叫做高(高有無數條)。6 特征:圓柱的底面都是圓,并且大小一樣。 9.圓錐解析幾何定義:圓錐面和一個截它的平面(滿足交線為圓)組成的空間幾何圖形叫圓錐。 10.圓錐立體幾何定義:以直角三角形的一條直角邊所在直線為旋轉軸,其余兩邊旋轉形成的面所圍成的旋轉體叫做圓錐。該直角邊叫圓錐的軸。 11.圓錐的體積:一個圓錐所占空間的大小,叫做這個圓錐的體積。一個圓錐的體積等于與它等底等高的圓柱的體積的1/3。 根據圓柱體積公式V=Sh(V=rrπh),得出圓錐體積公式:V=1/3Sh S是圓錐的底面積,h是圓錐的高,r是圓錐的底面半徑 12.圓錐體展開圖的繪制:圓錐體展開圖由一個扇形(圓錐的側面)和一個圓(圓錐的底面)組成。(如右圖)在繪制指定圓錐的展開圖時,一般知道a(母線長)和d(底面直徑) 13.圓錐的表面積:一個圓錐表面的面積叫做這個圓錐的表面積。 圓錐的表面積由側面積和底面積兩部分組成。 S=πR(n/360)+πr或(1/2)αR+πr(此n為角度制,α為弧度制,α=π(n/180)14.圓柱與圓錐的關系:與圓柱等底等高的圓錐體積是圓柱體積的三分之一。體積和高相等的圓錐與圓柱(等低等高)之間,圓錐的底面積是圓柱的三倍。體積和底面積相等的圓錐與圓柱(等低等高)之間,圓錐的高是圓柱的三倍。底面積和高不相等的圓柱圓錐不相等。 15.生活中的圓錐:生活中經常出現的圓錐有:沙堆、漏斗、帽子。圓錐在日常生活中也是不可或缺的。16.比的意義 (1)兩個數相除又叫做兩個數的比 (2)“:”是比號,讀作“比”。比號前面的數叫做比的前項,比號后面的數叫做比的后項。比的前項除以后項所得的商,叫做比值。 (3)同除法比較,比的前項相當于被除數,后項相當于除數,比值相當于商。(4)比值通常用分數表示,也可以用小數表示,有時也可能是整數。(5)比的后項不能是零。 (6)根據分數與除法的關系,可知比的前項相當于分子,后項相當于分母,比值相當于分數值。 17.比的性質:比的前項和后項同時乘上或者除以相同的數(0除外),比值不變,這叫做比的基本性質。 18.求比值和化簡比:求比值的方法:用比的前項除以后項,它的結果是一個數值可以是整數,也可以是小數或分數。 根據比的基本性質可以把比化成最簡單的整數比。它的結果必須是一個最簡比,即前、后項是互質的數。 19.比例尺:圖上距離:實際距離=比例尺 要求會求比例尺;已知圖上距離和比例尺求實際距離;已知實際距離和比例尺求圖上距離。 線段比例尺:在圖上附有一條注有數目的線段,用來表示和地面上相對應的實際距離。2 22220.按比例分配: 在農業生產和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。 方法:首先求出各部分占總量的幾分之幾,然后求出總數的幾分之幾是多少。21.比例的意義:比例的意義 表示兩個比相等的式子叫做比例。組成比例的四個數,叫做比例的項。 兩端的兩項叫做外項,中間的兩項叫做內項。 22.比例的性質 :在比例里,兩個外項的積等于兩個兩個內向的積。這叫做比例的基本性質。 23.解比例:根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。求比例中的未知項,叫做解比例。 24.成正比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。用字母表示y/x=k(一定) 25.成反比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。用字母表示x×y=k(一定)26.統計表:把統計數據填寫在一定格式的表格內,用來反映情況、說明問題,這樣的表格就叫做統計表。 27.統計組成部分:一般分為表格外和表格內兩部分。表格外部分包括標的名稱,單位說明和制表日期;表格內部包括表頭、橫標目、縱標目和數據四個方面。28.統計種類: 單式統計表:只含有一個項目的統計表。 復式統計表:含有兩個或兩個以上統計項目的統計表。 百分數統計表:不僅表明各統計項目的具體數量,而且表明比較量相當于標準量的百分比的統計表。29.統計表制作步驟:(1)搜集數據 (2)整理數據:要根據制表的目的和統計的內容,對數據進行分類。 (3)設計草表:要根據統計的目的和內容設計分欄格內容、分欄格畫法,規定橫欄、豎欄各需幾格,每格長度。 (4)正式制表:把核對過的數據填入表中,并根據制表要求,用簡單、明確的語言寫上統計表的名稱和制表日期。30.統計圖:用點線面積等來表示相關的量之間的數量關系的圖形叫做統計圖。 31.條形統計圖 (1)用一個單位長度表示一定的數量,根據數量的多少畫成長短不同的直條,然后把這些直線按一定的順序排列起來。 (2)優點:很容易看出各種數量的多少。注意:畫條形統計圖時,直條的寬窄必須相同。 (3)取一個單位長度表示數量的多少要根據具體情況而確定 (4)復式條形統計圖中表示不同項目的直條,要用不同的線條或顏色區別開,并在制圖日期下面注明圖例。 (5)制作條形統計圖的一般步驟: a)根據圖紙的大小,畫出兩條互相垂直的射線。 b)在水平射線上,適當分配條形的位置,確定直線的寬度和間隔。c)在與水平射線垂直的深線上根據數據大小的具體情況,確定單位長度表示多少。 d)按照數據的大小畫出長短不同的直條,并注明數量。 32.折線統計圖 (1)用一個單位長度表示一定的數量,根據數量的多少描出各點,然后把各點用線段順次連接起來。 (2)優點:不但可以表示數量的多少,而且能夠清楚地表示出數量增減變化的情況。注意:折線統計圖的橫軸表示不同的年份、月份等時間時,不同時間之間的距離要根據年份或月份的間隔來確定。 (3)制作折線統計圖的一般步驟: a)根據圖紙的大小,畫出兩條互相垂直的射線。 b)在水平射線上,適當分配折線的位置,確定直線的寬度和間隔。c)在與水平射線垂直的深線上根據數據大小的具體情況,確定單位長度表示多少。 d)按照數據的大小描出各點,再用線段順次連接起來,并注明數量。 33.扇形統計圖 (1)用整個圓的面積表示總數,用扇形面積表示各部分所占總數的百分數。(2)優點:很清楚地表示出各部分同總數之間的關系。 10(3)制扇形統計圖的一般步驟: a)先算出各部分數量占總量的百分之幾。b)再算出表示各部分數量的扇形的圓心角度數。 c)取適當的半徑畫一個圓,并按照上面算出的圓心角的度數,在圓里畫出各個扇形。 d)在每個扇形中標明所表示的各部分數量名稱和所占的百分數,并用不同顏色或條紋把各個扇形區別開。 六年級上冊數學知識要點 一、目標與要求 1.使學生能在方格紙上用數對確定位置。 2.使學生理解分數乘法的意義,掌握分數乘法的計算法則,并能熟練地進行計算。3.使學生理解倒數的意義,掌握求倒數的方法。 4.理解并掌握分數除法的計算方法,會進行分數除法計算。 5.理解比的意義,知道比與分數、除法的關系,并能類推出比的基本性質。能夠正確地化簡比和求比值。 6.使學生認識圓,掌握圓的特征;理解直徑與半徑的相互關系;理解圓周率的意義,掌握 圓周率的近似值。 7.使學生理解和掌握求圓的周長與面積的計算公式,并能正確地計算圓的周長與面積。 二、重、難點 1.能用數對表示物體的位置,正確區分列和行的順序; 2.使學生理解分數乘整數的意義,掌握分數乘整數的計算方法; 3.掌握求倒數的方法; 4.圓的周長和圓周率的意義,圓周長公式的推導過程; 5.百分數的意義,求一個數是另一個數的百分之幾的應用題; 6.理解圓周率“π”;圓面積計算公式的推導以及畫具有定半徑或直徑的圓; 7.理解比的意義。 三、知識點概念總結 1.分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。2.分數乘法的計算法則 分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。3.分數乘法意義 分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。4.分數乘整數:數形結合、轉化化歸 5.倒數:乘積是1的兩個數叫做互為倒數。6.分數的倒數 找一個分數的倒數,例如3/4 把3/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數,也可以說4/3是3/4的倒數。7.整數的倒數 找一個整數的倒數,例如12,把12化成分數,即12/1,再把12/1這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數。8.小數的倒數 普通算法:找一個小數的倒數,例如0.25,把0.25化成分數,即1/4,再把1/4這個分數的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/1 9.用1計算法:也可以用1去除以這個數,例如0.25,1/0.25等于4,所以0.25的倒數4,因為乘積是1的兩個數互為倒數。分數、整數也都使用這種規律。10.分數除法:分數除法是分數乘法的逆運算。11.分數除法計算法則: 甲數除以乙數(0除外),等于甲數乘乙數的倒數。 12.分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。 13.分數除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。14.比和比例: 比和比例一直是學數學容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括: 比,等同于算式中等號左邊的式子,是式子的一種(如:a:b);比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同(如:a:b=c:d)。所以,比和比例的聯系就可以說成是:比是比例的一部分;而比例是由至少兩個比值相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項后項各2個.15.比的基本性質:比的前項和后項都乘以或除以一個不為零的數。比值不變。比的性質用于化簡比。 比表示兩個數相除;只有兩個項:比的前項和后項。 比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。 16.比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積。比例的性質用于解比例。 17.比和比例的區別 (1)意義、項數、各部分名稱不同。比表示兩個數相除;只有兩個項:比的前項和后項。如:a:b 這是比 比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內項。a:b=3:4 這是比例。 (2)比的基本性質和比例的基本性質意義不同、應用不同。比的性質: 比的前項和后項都乘或除以一個不為零的數。比值不變。比例的性質:在比例里,兩個外項的乘積等于兩個內項的乘積相等。比例的性質用于解比例。聯系: 比例是由兩個相等的比組成。 18.比和比例的意義 比的意義是兩個數的除又叫做兩個數的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的含義 而另一種形式,分數有括號的含義!19.比和比例的聯系: 比和比例有著密切聯系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯的兩種量中兩組相對應數的關系,所以比例是由四項組成。比例是由比組成的,如果沒有兩種量的比,比例就不會存在。比例是比的發展,如果把比例式中右邊的比看成一個數,比和比例此時又可以統一起來。如果兩個比相等,那么這兩個比就可以組成比例。成比例的兩個比的比值一定相等。20.圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。 21.圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示 22.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。 23.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。圓的半徑或直徑決定圓的大小,圓心決定圓的位置。 24.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。25.圓周率:圓的周長與直徑的比值叫做圓周率。 圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。 26.圓的面積公式:圓所占平面的大小叫做圓的面積。πr^2;,用字母S表示。一條弧所對的圓周角是圓心角的二分之一。 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。27.周長計算公式(1)已知直徑:C=πd(2)已知半徑:C=2πr(3)已知周長:D=c/π (4)圓周長的一半:1/2周長(曲線)(5)半圓的周長:1/2周長+直徑(π÷2+1)28.面積計算公式:(1)已知半徑:S=πr(2)已知直徑:S=π(d/2)(3)已知周長:S=π[c÷(2π)] 29.百分數與分數的區別 (1)意義不同。百分數是“表示一個數是另一個數的百分之幾的數。”它只能表示兩數之間的倍數關系,不能表示某一具體數量。因此,百分數后面不能帶單位名稱。分數是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數”。分數還可以表示兩數之間的倍數關系.(2)應用范圍不同。百分數在生產、工作和生活中,常用于調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。 (3)書寫形式不同。百分數通常不寫成分數形式,而采用百分號“%”來表示。因此,不論百分數的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。 而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。任何一個百分數都可以寫成分母是100的分數,而分母是100的分數并不都具有百分數的意義.(4)百分數不能帶單位名稱;當分數表示具體數時可帶單位名稱。30.百分數應用 百分數一般有三種情況: ①100%以上,如:增長率、增產率等。②100%以下,如:發芽率、成長率等。③剛好100%,如:正確率,合格率等。31.百分數的意義 百分數只可以表示分率,而不能表示具體量,所以不能帶單位。百分數概念的形成應以學生實際生活中的事例或工農業生產中的事例引入。32.日常應用 每天在電視里的天氣預報節目中,都會報出當天晚上和明天白天的天氣狀況、降水概率等,提示大家提前做好準備,就像今天的夜晚的降水概率是20%,明天白天有五~ 22六級大風,降水概率是10%,早晚應增加衣服。20%、10%讓人一目了然,既清楚又簡練。知識點擴展 1.圓的定義 幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。 軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。 集合說:到定點的距離等于定長的點的集合叫做圓。 2.圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優弧,小于半圓的弧稱為劣弧,半圓既不是優弧,也不是劣弧。連接圓上任意兩點的線段叫做弦。圓中最長的弦為直徑。 3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。 4.內心和外心:和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。 6.圓的種類:(1)整體圓形,(2)弧形圓,(3)扁圓,(4)橢形圓,(5)纏絲圓,(6)螺旋圓,(7)圓中圓、圓外圓,(8)重圓,(9)橫圓,(10)豎圓,(11)斜圓。7.圓和其他圖形的位置關系:圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,0≤PO 200多年前,瑞士數學家歐拉,在《通用算術》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因為找不到一個合適的數來表示它。如果我們把它分成三等份,每份是7/3米,就是一種新的數,我們把它叫做分數。而后,人們在分數的基礎上又以100做基數,發明了百分數。 【人教版】小學數學六年級下冊知識點總結 【編者按】小學六年級的數學是小學階段上的最后的數學課!它是同學們進入中學學好數學的關鍵。學完了這一冊的知識后,同學們會建立起“第幾列第幾行”的概念,會從習慣上先說“列”后說“行”的習慣,會用網格圖來表示位置等等知識技能。 一、目標與要求 1.引導學生在熟悉的生活情境中初步認識負數,能正確地讀、寫正數和負數; 2.使學生初步學會用負數表示一些日常生活中的實際問題,體驗數學與生活的聯系; 3.使學生認識圓柱和圓錐,掌握它們的特征;認識圓柱的底面、側面和高;認識圓錐的底面和高; 4.使學生理解求圓柱的側面積和表面積的計算方法,并會正確計算; 5.使學生理解求圓柱、圓錐體積的計算公式,會運用公式計算體積、容積,解決有關的簡單實際問題; 6.使學生理解比例的意義和基本性質,能正確判斷兩個比是否能組成比例; 7.通過引導探究、概括歸納、討論、合作學習,培養學生抽象概括能力。 二、重點、難點 1.負數的意義; 2.圓柱的表面積的計算方法和圓柱、圓錐體積的計算公式; 3.圓柱、圓錐體積的計算公式的推導; 4.比例的意義和基本性質; 5.應用比的基本性質判段兩個數能否成比例,并正確的組成比例。 三、知識點歸納總結 1.負數:負數是數學術語,指小于0的實數,如?3。 任何正數前加上負號都等于負數。在數軸線上,負數都在0的左側,所有的負數都比自然數小。負數用負號“-”標記,如?2,?5.33,?45,?0.6等。2.正數:大于0的數叫正數(不包括0) 若一個數大于零(>0),則稱它是一個正數。正數的前面可以加上正號“+”來表示。正數有無數個,其中分正整數,正分數和正無理數。3.正數的幾何意義:數軸上0右邊的數叫做正數 4.數軸:規定了原點,正方向和單位長度的直線叫數軸。 所有的實數都可以用數軸上的點來表示。也可以用數軸來比較兩個實數的大小。 5.數軸的三要素:原點、單位長度、正方向。 6.圓柱:以矩形的一邊所在直線為旋轉軸,其余三邊旋轉形成的面所圍成的旋轉體 即AG矩形的一條邊為軸,旋轉360°所得的幾何體就是圓柱。 其中AG叫做圓柱的軸,AG的長度叫做圓柱的高,所有平行于AG的線段叫做圓柱的母線,DA和D'G旋轉形成的兩個圓叫做圓柱的底面,DD'旋轉形成的曲面叫做圓柱的側面。 7.圓柱的體積:圓柱所占空間的大小,叫做這個圓柱體的體積。設一個圓柱底面半徑為r,高為h,則體積V:V=πrh ;如S為底面積,高為h,體積為V:V=Sh 8.圓柱的側面積:圓柱的側面積=底面的周長*高,S側=Ch(注:c為πd)圓柱的兩個圓面叫做底面(又分上底和下底);圓柱有一個曲面,叫做側面;兩個底面之間的距離叫做高(高有無數條)。特征:圓柱的底面都是圓,并且大小一樣。 9.圓錐解析幾何定義:圓錐面和一個截它的平面(滿足交線為圓)組成的空間幾何圖形叫圓錐。 10.圓錐立體幾何定義:以直角三角形的一條直角邊所在直線為旋轉軸,其余兩邊旋轉形成的面所圍成的旋轉體叫做圓錐。該直角邊叫圓錐的軸。 211.圓錐的體積:一個圓錐所占空間的大小,叫做這個圓錐的體積。一個圓錐的體積等于與它等底等高的圓柱的體積的1/3。 根據圓柱體積公式V=Sh(V=rrπh),得出圓錐體積公式:V=1/3Sh S是圓錐的底面積,h是圓錐的高,r是圓錐的底面半徑 12.圓錐體展開圖的繪制:圓錐體展開圖由一個扇形(圓錐的側面)和一個圓(圓錐的底面)組成。(如右圖)在繪制指定圓錐的展開圖時,一般知道a(母線長)和d(底面直徑) 13.圓錐的表面積:一個圓錐表面的面積叫做這個圓錐的表面積。 圓錐的表面積由側面積和底面積兩部分組成。 S=πR(n/360)+πr或(1/2)αR+πr(此n為角度制,α為弧度制,α=π(n/180)14.圓柱與圓錐的關系:與圓柱等底等高的圓錐體積是圓柱體積的三分之一。體積和高相等的圓錐與圓柱(等低等高)之間,圓錐的底面積是圓柱的三倍。體積和底面積相等的圓錐與圓柱(等低等高)之間,圓錐的高是圓柱的三倍。底面積和高不相等的圓柱圓錐不相等。 15.生活中的圓錐:生活中經常出現的圓錐有:沙堆、漏斗、帽子。圓錐在日常生活中也是不可或缺的。16.比的意義 (1)兩個數相除又叫做兩個數的比 (2)“:”是比號,讀作“比”。比號前面的數叫做比的前項,比號后面的數叫做比的后項。比的前項除以后項所得的商,叫做比值。 (3)同除法比較,比的前項相當于被除數,后項相當于除數,比值相當于商。(4)比值通常用分數表示,也可以用小數表示,有時也可能是整數。(5)比的后項不能是零。 (6)根據分數與除法的關系,可知比的前項相當于分子,后項相當于分母,比值相當于分數值。 17.比的性質:比的前項和后項同時乘上或者除以相同的數(0除外),比值不變,這叫做比的基本性質。 18.求比值和化簡比:求比值的方法:用比的前項除以后項,它的結果是一個數值可以是整數,也可以是小數或分數。 根據比的基本性質可以把比化成最簡單的整數比。它的結果必須是一個最簡比,即前、后項是互質的數。2 222 19.比例尺:圖上距離:實際距離=比例尺 要求會求比例尺;已知圖上距離和比例尺求實際距離;已知實際距離和比例尺求圖上距離。線段比例尺:在圖上附有一條注有數目的線段,用來表示和地面上相對應的實際距離。20.按比例分配: 在農業生產和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。 方法:首先求出各部分占總量的幾分之幾,然后求出總數的幾分之幾是多少。21.比例的意義:比例的意義 表示兩個比相等的式子叫做比例。組成比例的四個數,叫做比例的項。 兩端的兩項叫做外項,中間的兩項叫做內項。 22.比例的性質 :在比例里,兩個外項的積等于兩個兩個內向的積。這叫做比例的基本性質。23.解比例:根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。求比例中的未知項,叫做解比例。 24.成正比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。用字母表示y/x=k(一定) 25.成反比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。用字母表示x×y=k(一定)26.統計表:把統計數據填寫在一定格式的表格內,用來反映情況、說明問題,這樣的表格就叫做統計表。 27.統計組成部分:一般分為表格外和表格內兩部分。表格外部分包括標的名稱,單位說明和制表日期;表格內部包括表頭、橫標目、縱標目和數據四個方面。28.統計種類: 單式統計表:只含有一個項目的統計表。 復式統計表:含有兩個或兩個以上統計項目的統計表。 百分數統計表:不僅表明各統計項目的具體數量,而且表明比較量相當于標準量的百分比的統計表。 29.統計表制作步驟:(1)搜集數據 (2)整理數據:要根據制表的目的和統計的內容,對數據進行分類。 (3)設計草表:要根據統計的目的和內容設計分欄格內容、分欄格畫法,規定橫欄、豎欄各需幾格,每格長度。 (4)正式制表:把核對過的數據填入表中,并根據制表要求,用簡單、明確的語言寫上統計表的名稱和制表日期。 30.統計圖:用點線面積等來表示相關的量之間的數量關系的圖形叫做統計圖。31.條形統計圖 (1)用一個單位長度表示一定的數量,根據數量的多少畫成長短不同的直條,然后把這些直線按一定的順序排列起來。 (2)優點:很容易看出各種數量的多少。注意:畫條形統計圖時,直條的寬窄必須相同。(3)取一個單位長度表示數量的多少要根據具體情況而確定 (4)復式條形統計圖中表示不同項目的直條,要用不同的線條或顏色區別開,并在制圖日期下面注明圖例。 (5)制作條形統計圖的一般步驟: a)根據圖紙的大小,畫出兩條互相垂直的射線。 b)在水平射線上,適當分配條形的位置,確定直線的寬度和間隔。 c)在與水平射線垂直的深線上根據數據大小的具體情況,確定單位長度表示多少。d)按照數據的大小畫出長短不同的直條,并注明數量。32.折線統計圖 (1)用一個單位長度表示一定的數量,根據數量的多少描出各點,然后把各點用線段順次連接起來。 (2)優點:不但可以表示數量的多少,而且能夠清楚地表示出數量增減變化的情況。注意:折線統計圖的橫軸表示不同的年份、月份等時間時,不同時間之間的距離要根據年份或月份的間隔來確定。 (3)制作折線統計圖的一般步驟: a)根據圖紙的大小,畫出兩條互相垂直的射線。 b)在水平射線上,適當分配折線的位置,確定直線的寬度和間隔。 c)在與水平射線垂直的深線上根據數據大小的具體情況,確定單位長度表示多少。d)按照數據的大小描出各點,再用線段順次連接起來,并注明數量。33.扇形統計圖 (1)用整個圓的面積表示總數,用扇形面積表示各部分所占總數的百分數。(2)優點:很清楚地表示出各部分同總數之間的關系。(3)制扇形統計圖的一般步驟: a)先算出各部分數量占總量的百分之幾。b)再算出表示各部分數量的扇形的圓心角度數。 c)取適當的半徑畫一個圓,并按照上面算出的圓心角的度數,在圓里畫出各個扇形。d)在每個扇形中標明所表示的各部分數量名稱和所占的百分數,并用不同顏色或條紋把各個扇形區別開。 擴展資料 1.負數的由來:人們在生活中經常會遇到各種相反意義的量。比如,在記賬時有余有虧;在計算糧倉存米時,有時要記進糧食,有時要記出糧食。為了方便,人們就考慮了相反意義的數來表示。于是人們引入了正負數這個概念,把余錢進糧食記為正,把虧錢、出糧食記為負。可見正負數是生產實踐中產生的。 2.負數的應用:負數可以廣泛應用于溫度、樓層、海拔、水位、盈利、增產/減產、支出/收入、得分/扣分等等的這些方面中 3.負數加減乘除的計算法則: +:負數1+負數2=-|負數1+負數2|=負數 負數+正數=符號取絕對值較大的加數的符號,數值取“用較大的絕對值減去較小的絕對值 ”的所得值 -:負數1-負數2=負數1+|負數2| =負數1加上負數2的相反數,再按負數加正數的方法算 負數-正數=-|正數+負數|=負數 異號兩數相減,等于其絕對值相加 ×:負數1×負數2=|負數1×負數2| =正數 負數×正數=-|正數×負數| =負數 ÷:負數1÷負數2=|負數1÷負數2| =正數 負數÷正數=-|負數÷正數| =負數 總得來說,就是同數相除等于正數,異數相除等于負數。4.正數和正整數的區別 正數包括:正整數、正分數(包括正小數)。(且正數不包括0) 辨析: 零(0)既不是正數,也不是負數,它是正、負數的界限,表示“基準”的數,零不是表示“沒有”,它表示一個實際存在的數量.正整數、負整數、正分數、負分數和零(0)統稱有理數。意義 (1)從原點出發朝正方向的射線(正半軸)上的點對應正數,相反方向的射線(負半軸)上的點對應負數,原點對應零。 (2)在數軸上表示的兩個數,正方向的數大于負方向的數。(3)正數都大于0,負數都小于0,正數大于一切負數。 注:單位長度則是指取適當的長度作為單位長度,比如可以取2m作為單位長度“1”,那么4m就表示2個單位長度。 5.直圓柱:直圓柱也叫正圓柱、圓柱,可以看成是以矩形的一邊所在直線為軸、其余各邊繞軸旋轉而成的曲面所圍成的幾何體。6.圓錐的其它概念 (1)圓錐的高:圓錐的頂點到圓錐的底面圓心之間的距離叫做圓錐的高;(2)圓錐的側面積:將圓錐的側面沿母線展開,是一個扇形,這個扇形的弧長等于圓錐底面的周長,而扇形的半徑等于圓錐的母線的長.圓錐的側面積就是弧長為圓錐底面的周長*母線/2;沒展開時是一個曲面。 (3)圓錐的母線:圓錐的側面展開形成的扇形的半徑、底面圓周上點到頂點的距離。圓錐有一個底面、一個側面、一個頂點、一條高、無數條母線,且側面展開圖是扇形。7.圓錐的三視圖: 圓錐三視圖是觀測者從三個不同位置觀察而畫出的圖形。其主視圖和側視圖均為等腰三角形,俯視圖是一個圓和圓心。第四篇:小學數學六年級上冊知識點總結范文
第五篇:【人教版】小學數學六年級下冊知識點總結