第一篇:第八節(jié) 函數(shù)的單調(diào)性教案
函數(shù)的單調(diào)性
北京師范大學(xué)附屬實(shí)驗(yàn)中學(xué) 曹付生 張蓓
教學(xué)目標(biāo):
1.知識(shí)與技能:理解函數(shù)的單調(diào)性。學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的單調(diào)性及其幾何意義。學(xué)會(huì)運(yùn)用單調(diào)性的定義來(lái)判斷函數(shù)的單調(diào)性。
2.過(guò)程與方法:以基本函數(shù)的圖象為素材,由形到數(shù),引導(dǎo)學(xué)生自主發(fā)現(xiàn)函數(shù)圖象變化規(guī)律,再推廣到一般得出單調(diào)性的概念,使學(xué)生體會(huì)由特殊到一般、具體到抽象的研究方法。培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,及分析問(wèn)題、解決問(wèn)題的能力。
3.情感、態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生善于觀察、勇于探索的良好思維習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
教學(xué)重點(diǎn):函數(shù)的單調(diào)性概念
教學(xué)難點(diǎn):函數(shù)單調(diào)性的判斷及證明 教法:引導(dǎo)、講授
學(xué)法:觀察、歸納、抽象、概括 媒體:幾何畫(huà)板、投影 教學(xué)過(guò)程:
一、問(wèn)題情境
情境1:典型冬季日溫度變化曲線圖
問(wèn):隨時(shí)間的推移,氣溫如何變化?
1情境2:觀察y?x,y?x2,y?,回答,隨x的增大,y值如何變化?
x654321-4-3-2-101-1-2-3234y65432y4321yx2345x51-4-3-2-101-1-2-3234x5-4-3-2-101-1-2-3-4 二 形成概念
一般地,設(shè)函數(shù)y?f(x)的定義域?yàn)锳,區(qū)間M?A。如果取區(qū)間M中的任意兩個(gè)值x1、x2,當(dāng)改變量?x?x2?x1?0時(shí),有?y?f(x2)?f(x1)?0,那么就稱函數(shù)y?f(x)在區(qū)間M上是增函數(shù)。
如果取區(qū)間M中的任意兩個(gè)值x1、x2,當(dāng)改變量?x?x2?x1?0時(shí),有?y?f(x2)?f(x1)?0,那么就稱函數(shù)y?f(x)在區(qū)間M上是減函數(shù)。
如果一個(gè)函數(shù)在某個(gè)區(qū)間M上是增函數(shù)或是減函數(shù),就說(shuō)這個(gè)函數(shù)在這個(gè)區(qū)間M上具有單調(diào)性(區(qū)間M稱為單調(diào)區(qū)間)三 例題分析
例1.如圖是定義在閉區(qū)間[-5,+5]上的函數(shù)y?f(x)的圖象,根據(jù)圖象說(shuō)出y?f(x)的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,函數(shù)y?f(x)是增函數(shù)還是減函數(shù)。
例2.證明函數(shù)f(x)?1?x2在(??,0]上是增函數(shù)。
鞏固練習(xí): 證明:函數(shù)y?x?探索:函數(shù)f(x)?x?1在(0,1]上是減函數(shù)。x1的定義域是{x|x?0},我們對(duì)圖象也不太熟悉,如何尋x找這一函數(shù)的其他單調(diào)區(qū)間?(用幾何畫(huà)板畫(huà)出其圖象)
四 小結(jié)
1.一組概念:增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間
2.判斷單調(diào)性的兩個(gè)方法:
通過(guò)圖象觀察(從“形”的角度),用定義證明(從“數(shù)”的角度)3.證明函數(shù)單調(diào)性的步驟 五 作業(yè)
六 探索與研究(見(jiàn)課本)
第二篇:函數(shù)單調(diào)性教案(簡(jiǎn)單)
函數(shù)單調(diào)性
一、教學(xué)目標(biāo)
1、建立增(減)函數(shù)及單調(diào)性、單調(diào)區(qū)間的概念
2、掌握如何從函數(shù)圖象上看出單調(diào)區(qū)間及單調(diào)性
3、掌握如何利用定義證明一段區(qū)間上的函數(shù)單調(diào)性
二、教學(xué)重難點(diǎn)
1、了解增(減)函數(shù)定義
2、用定義法證明一段區(qū)間上的函數(shù)單調(diào)性
三、教材、學(xué)情分析
單調(diào)性是處于教材《數(shù)學(xué)?必修一》B版第二章第一節(jié),初中對(duì)單調(diào)性有著初步感性認(rèn)識(shí),到這節(jié)課我們給單調(diào)性嚴(yán)格的定義。單調(diào)性是對(duì)函數(shù)概念的延續(xù)和擴(kuò)展,也是我們后續(xù)研究函數(shù)的基礎(chǔ),可以說(shuō),起到了承上啟下的作用。
四、教學(xué)方法
數(shù)形結(jié)合法、講解法
五、教具、參考書(shū)
三角尺、PPT、數(shù)學(xué)必修
一、教師教學(xué)用書(shū)
六、教學(xué)過(guò)程
(一)知識(shí)導(dǎo)入
引入廣寧縣一天氣溫變化折線圖
詢問(wèn)學(xué)生今天的溫度是如何變化的?
學(xué)生答:氣溫先上升,到了14時(shí)開(kāi)始不斷下降。
由此導(dǎo)入函數(shù)圖像的上升下降變化,給出f(x)=x和f(x)=x2的圖像,詢問(wèn)學(xué)生,這兩個(gè)函數(shù)圖象是如何變化的?
學(xué)生答:前一個(gè)不斷上升,后一個(gè)在y軸左邊下降,在y軸右邊上升。再詢問(wèn)學(xué)生并提醒學(xué)生回答:從上面的觀察分析,能得出什么結(jié)論?
不同的函數(shù),其圖像的變化趨勢(shì)不同,同一函數(shù)在不同區(qū)間上的變化趨勢(shì)也不同,函數(shù)圖像的變化規(guī)律就是函數(shù)性質(zhì)的反映。
教師:那么這就是我們要研究的單調(diào)性。
(二)給出定義。
教師:首先我們來(lái)看一下一元二次函數(shù)y=x2的圖象的對(duì)應(yīng)值表,當(dāng)x從0到5上變化時(shí),y是如何變化的。生:隨著x的增大而增大
教師:那么我們?cè)谶@段上升區(qū)間中任取兩個(gè)x1,x2,x1 教師順勢(shì)引導(dǎo)出增函數(shù)的概念,再由增函數(shù)類比畫(huà)圖演示,引導(dǎo)出減函數(shù)的概念。強(qiáng)調(diào)增(減)函數(shù)概念,尤其是在區(qū)間內(nèi)任取x1,x2這句話的理解。由增(減)函數(shù)可以引出單調(diào)區(qū)間的定義,不作很詳細(xì)講解。給出例題讓學(xué)生思考作答,進(jìn)一步鞏固知識(shí)點(diǎn)。 (三)證明方法 讓學(xué)生們思考例二(思想為用定義法證明一段區(qū)間的單調(diào)性)并嘗試解答,一段時(shí)間后教師給學(xué)生講解。 講解完例題后,引導(dǎo)學(xué)生歸納用定義法正明一段區(qū)間的單調(diào)性的方法: 1、設(shè)元。 2、做差。 3、變形。 4、斷號(hào)。 5、定論。 (四)鞏固深化 思考:函數(shù)y=1/x 的定義域I是什么?在定義域I上的單調(diào)性是怎樣的? 通過(guò)這道問(wèn)題的講解說(shuō)明,讓學(xué)生們意識(shí)到單調(diào)性是離不開(kāi)區(qū)間的且單調(diào)區(qū)間不能求并。 (五)課堂小結(jié) 再次對(duì) 1、增(減)函數(shù)定義。 2、增(減)函數(shù)的圖象有什么特點(diǎn)?如何根據(jù)圖象指出單調(diào)區(qū)間。 3、怎樣用定義證明函數(shù)的單調(diào)性?三個(gè)問(wèn)題進(jìn)行闡述,牢固學(xué)生記憶和理解。 (六)布置作業(yè)。 函數(shù)單調(diào)性概念教學(xué)的三個(gè)關(guān)鍵點(diǎn) ──兼談《函數(shù)單調(diào)性》的教學(xué)設(shè)計(jì) 北京教育學(xué)院宣武分院 彭 林 函數(shù)單調(diào)性是學(xué)生進(jìn)入高中后較早接觸到的一個(gè)完全形式化的抽象定義,對(duì)于仍然處于經(jīng)驗(yàn)型邏輯思維發(fā)展階段的高一學(xué)生來(lái)講,有較大的學(xué)習(xí)難度。一直以來(lái),這節(jié)課也都是老師教學(xué)的難點(diǎn)。最近,在我區(qū)“青年教師評(píng)優(yōu)課”上,聽(tīng)了多名教師對(duì)這節(jié)課不同風(fēng)格的課堂教學(xué),通過(guò)對(duì)他們教學(xué)案例的研究和思考,筆者認(rèn)為,在函數(shù)單調(diào)性概念的教學(xué)中,關(guān)鍵是把握住如下三個(gè)關(guān)鍵點(diǎn)。 關(guān)鍵點(diǎn)1。學(xué)生 學(xué)習(xí)函數(shù)單調(diào)性的認(rèn)知基礎(chǔ)是什么? 在這個(gè)內(nèi)容之前,已經(jīng)教學(xué)過(guò)一次函數(shù)、二次函數(shù)、反比例函數(shù)等簡(jiǎn)單函數(shù),函數(shù)的變量定義和映射定義,以及函數(shù)的表示。對(duì)函數(shù)是一個(gè)刻畫(huà)某些運(yùn)動(dòng)變化數(shù)量關(guān)系的數(shù)學(xué)概念,也已經(jīng)形成初步認(rèn)識(shí)。接踵而來(lái)的任務(wù)是對(duì)函數(shù)應(yīng)該繼續(xù)研究什么。在數(shù)學(xué)研究中,建立一個(gè)數(shù)學(xué)概念的意義就是揭示它的本質(zhì)特征,即共同屬性或不變屬性。對(duì)各種函數(shù)模型而言,就是研究它們所描述的運(yùn)動(dòng)關(guān)系的變化規(guī)律,也就是這些運(yùn)動(dòng)關(guān)系在變化之中的共同屬性或不變屬性,即“變中不變”的性質(zhì)。按照這種科學(xué)研究的思維方式,使得當(dāng)前來(lái)討論函數(shù)的一些性質(zhì),就成為順理成章的、必要的和有意義的數(shù)學(xué)活動(dòng)。至于在多種函數(shù)性質(zhì)中,選擇這個(gè)時(shí)機(jī)來(lái)討論函數(shù)的單調(diào)性而不是其他性質(zhì),是因?yàn)楹瘮?shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個(gè)性質(zhì)。 就中小學(xué)生與單調(diào)性相關(guān)的經(jīng)歷而言,學(xué)生認(rèn)識(shí)函數(shù)單調(diào)性可以分為四個(gè)階段: 第一階段,經(jīng)驗(yàn)感知階段(小學(xué)階段),知道一個(gè)量隨另一個(gè)量的變化而變化的具體情境,如“隨著年齡的增長(zhǎng),我的個(gè)子越來(lái)越高”,“我認(rèn)識(shí)的字越多,我的知識(shí)就越多”等。 第二階段,形象描述階段(初中階段),能用抽象的語(yǔ)言描述一個(gè)量隨另一個(gè)量變化的趨勢(shì),如“y隨著x的增大而減少”。 第三階段,抽象概括階段(高中必修1),能進(jìn)行脫離具體和直觀對(duì)象的抽象化、符號(hào)化的概括,并通過(guò)具體函數(shù),初步體會(huì)單調(diào)性在研究函數(shù)變化中的作用。 第四階段,認(rèn)識(shí)提升階段(高中選修系列1、2),要求學(xué)生能初步認(rèn)識(shí)導(dǎo)數(shù)與單調(diào)性的聯(lián)系。 基于上述認(rèn)識(shí),函數(shù)單調(diào)性教學(xué)的引入應(yīng)該從學(xué)生的已有認(rèn)知出發(fā),建立在學(xué)生初中已學(xué)的一次函數(shù)、二次函數(shù)以及反比例函數(shù)的基礎(chǔ)上,即從學(xué)生熟悉的常見(jiàn)函數(shù)的圖象出發(fā),直觀感知函數(shù)的單調(diào)性,完成對(duì)函數(shù)單調(diào)性定義的第一次認(rèn)識(shí).。 讓學(xué)生分別作出函數(shù)數(shù)值有什么變化規(guī)律? 的圖象,并且觀察自變量變化時(shí),函在學(xué)生畫(huà)圖的基礎(chǔ)上,引導(dǎo)學(xué)生觀察圖象,獲得信息:第一個(gè)圖象從左向右逐漸上升,y隨x的增大而增大;第二個(gè)圖象從左向右逐漸下降,y隨x的增大而減小.然后讓學(xué)生明確,對(duì)于自變量變化時(shí),函數(shù)值具有這兩種變化規(guī)律的函數(shù),我們分別稱為增函數(shù)和減函數(shù).第三個(gè)函數(shù)圖象的上升與下降要分段說(shuō)明,通過(guò)討論使學(xué)生明確函數(shù)的單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的. 在此基礎(chǔ)上,教師引導(dǎo)學(xué)生用自己的語(yǔ)言描述增函數(shù)的定義: 如果函數(shù)在某個(gè)區(qū)間上的圖象從左向右逐漸上升,或者如果函數(shù) 在某個(gè)區(qū)間上隨自變量x的增大,y也越來(lái)越大,我們說(shuō)函數(shù)在該區(qū)間上為增函數(shù). 關(guān)鍵點(diǎn)2。為什么要用數(shù)學(xué)的符號(hào)語(yǔ)言定義函數(shù)的單調(diào)性概念? 對(duì)于函數(shù)單調(diào)性概念的教學(xué)而言,有一個(gè)很重要的問(wèn)題,即為什么要進(jìn)一步形式化。學(xué)生在初中已經(jīng)接觸過(guò)一次函數(shù)、反比例函數(shù)、二次函數(shù),對(duì)函數(shù)的增減性已有初步的認(rèn)識(shí):隨x增大y增大是增函數(shù),隨x增大y 減小是減函數(shù)。這個(gè)觀念對(duì)他們而言是易于接受的,很形象,他們會(huì)覺(jué)得這樣的定義很好,為什么還要費(fèi)神去進(jìn)行符號(hào)化呢?如果教師能通過(guò)教學(xué)設(shè)計(jì),讓學(xué)生感受到進(jìn)一步符號(hào)化、形式化的必要性,造成認(rèn)知沖突,則學(xué)生研究的興趣就會(huì)大大提高,主動(dòng)性也會(huì)更強(qiáng)。其實(shí),數(shù)學(xué)概念就是一系列常識(shí)不斷精微化的結(jié)果,之所以要進(jìn)一步形式化,完全是數(shù)學(xué)精確性、嚴(yán)密性的要求,因?yàn)橹挥羞_(dá)到這種符號(hào)化、形式化的程度,才可以進(jìn)行準(zhǔn)確的計(jì)算,進(jìn)行推理論證。 所以,在教學(xué)中提出類似如下的問(wèn)題是非常必要的: 右圖是函數(shù)函數(shù)嗎? 的圖象,能說(shuō)出這個(gè)函數(shù)分別在哪個(gè)區(qū)間為增函數(shù)和減 對(duì)于這個(gè)問(wèn)題,學(xué)生的困難是難以確定分界點(diǎn)的確切位置.通過(guò)討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時(shí)不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究,使學(xué)生體會(huì)到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性,從而將函數(shù)的單調(diào)性研究從研究函數(shù)圖象過(guò)渡到研究函數(shù)的解析式.關(guān)鍵點(diǎn)3:如何用形式化的語(yǔ)言定義函數(shù)的單調(diào)性? 從數(shù)學(xué)學(xué)科這個(gè)整體來(lái)看,數(shù)學(xué)的高度抽象性造成了數(shù)學(xué)的難懂、難教、難學(xué),解決這一問(wèn)題的基本途徑是順應(yīng)學(xué)習(xí)者的認(rèn)知規(guī)律:在需要和可能的情況下,盡量做到從直觀入手,從具體開(kāi)始,逐步抽象,即數(shù)學(xué)的思考方式。恰當(dāng)運(yùn)用圖形語(yǔ)言、自然語(yǔ)言和符號(hào)化的形式語(yǔ)言,并進(jìn)行三者之間必要的轉(zhuǎn)化,可以說(shuō),這是學(xué)習(xí)數(shù)學(xué)的基本思考方式。而函數(shù)單調(diào)性這一內(nèi)容正是體現(xiàn)數(shù)學(xué)基本思考方式的一個(gè)良好載體,教學(xué)中應(yīng)該充分關(guān)注到這一點(diǎn)。長(zhǎng)此以往,便可使學(xué)生在學(xué)習(xí)知識(shí)的同時(shí),學(xué)到比知識(shí)更重要的東西—學(xué)會(huì)如何思考?如何進(jìn)行數(shù)學(xué)的思考? 一般說(shuō),對(duì)函數(shù)單調(diào)性的建構(gòu)有兩個(gè)重要過(guò)程,一是建構(gòu)函數(shù)單調(diào)性的意義,二是通過(guò)思維構(gòu)造把這個(gè)意義用數(shù)學(xué)的形式化語(yǔ)言加以描述。對(duì)函數(shù)單調(diào)性的意義,學(xué)生通過(guò)對(duì)若干函數(shù)圖象的觀察并不難認(rèn)識(shí),因此,前一過(guò)程的建構(gòu)學(xué)習(xí)相對(duì)比較容易進(jìn)行。后一過(guò)程的進(jìn)行則有相當(dāng)?shù)碾y度,其難就難在用數(shù)學(xué)的符合語(yǔ)言來(lái)描述函數(shù)單調(diào)性的定義時(shí),如何才能最大限度地通過(guò)學(xué)生自己的思維活動(dòng)來(lái)完成。這其中有兩個(gè)難點(diǎn): (1)“x增大”如何用符號(hào)表示;同樣,“f(x)增大”如何用符號(hào)表示。(2)“‘隨著’x增大,函數(shù)f(x)‘也’增大”,如何用符號(hào)表示。 用數(shù)學(xué)符號(hào)描述這兩種數(shù)學(xué)意義的最大要害之處,在于要用數(shù)學(xué)的符號(hào)來(lái)描述動(dòng)態(tài)的數(shù)學(xué)對(duì)象。 在初中數(shù)學(xué)中,除了學(xué)習(xí)函數(shù)的初級(jí)概念,用y=f(x)表示函數(shù)y隨著自變量x的變化而變化時(shí),接觸到一點(diǎn)動(dòng)態(tài)數(shù)學(xué)對(duì)象的數(shù)學(xué)符號(hào)表示以外,絕大多數(shù)都是用數(shù)學(xué)符號(hào)表示靜態(tài)的數(shù)學(xué)對(duì)象。因此,從用靜態(tài)的數(shù)學(xué)符號(hào)描述靜態(tài)的數(shù)學(xué)對(duì)象,到用靜態(tài)的符號(hào)語(yǔ)言刻畫(huà)動(dòng)態(tài)數(shù)學(xué)對(duì)象,在思維能力層次上存在重大差異,對(duì)剛剛由初中進(jìn)入高中學(xué)習(xí)的學(xué)生而言,無(wú)疑是一個(gè)很大的挑戰(zhàn)! 因此,在教學(xué)中可以提出如下問(wèn)題2: 如何從解析式的角度說(shuō)明 在上為增函數(shù)? 這個(gè)問(wèn)題是形成函數(shù)單調(diào)性概念的關(guān)鍵。在教學(xué)中,教師可以組織學(xué)生先分組探究,然后全班交流,相互補(bǔ)充,并及時(shí)對(duì)學(xué)生的發(fā)言進(jìn)行反饋、評(píng)價(jià),對(duì)普遍出現(xiàn)的問(wèn)題組織學(xué)生討論,在辨析中達(dá)成共識(shí).對(duì)于問(wèn)題2,學(xué)生錯(cuò)誤的回答主要有兩種: ①在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如1和2,因?yàn)楹瘮?shù). ,所以 在上為增②可以用0,1,2,3,4,5驗(yàn)證: 在所以函數(shù)上是增函數(shù)。 對(duì)于這兩種錯(cuò)誤,教師要引導(dǎo)學(xué)生進(jìn)一步展開(kāi)思考。例如,指出回答②試圖用自然數(shù)列來(lái)驗(yàn)證結(jié)論,而且引入了不等式表示不等關(guān)系,但是,只是對(duì)有限幾個(gè)自然數(shù)驗(yàn)證不行,只有當(dāng)所有的比較結(jié)果都是一樣的:自變量大時(shí),函數(shù)值也大,才可以證明它是增函數(shù),那么怎么辦?如果有的學(xué)生提出:引入非負(fù)實(shí)數(shù)a,只要證明 就可以了,這就把驗(yàn)證的范圍由有限擴(kuò)大到了無(wú)限。教師應(yīng)適時(shí)指出這種驗(yàn)證也有局限性,然后再讓學(xué)生思考怎樣做才能實(shí)現(xiàn)“任意性”就有堅(jiān)實(shí)的基礎(chǔ)了。也就是,從給定的區(qū)間內(nèi)任意取兩個(gè)自變量,然后求差比較函數(shù)值的大小,從而得到正確的回答: 任意取在,有為增函數(shù). ,即,所以這種回答既揭示了單調(diào)性的本質(zhì),也讓學(xué)生領(lǐng)悟到兩點(diǎn):(1)兩自變量的取值具有任意性;(2)求差比較它們函數(shù)值的大小。至此,學(xué)生對(duì)函數(shù)單調(diào)性有了理性的認(rèn)識(shí).在前面研究的基礎(chǔ)上,引導(dǎo)學(xué)生歸納、抽象出函數(shù)單調(diào)性的定義,使學(xué)生經(jīng)歷從特殊到一般,從具體到抽象的認(rèn)知過(guò)程。 教學(xué)中,教師引導(dǎo)學(xué)生用嚴(yán)格的數(shù)學(xué)符號(hào)語(yǔ)言歸納、抽象增函數(shù)的定義,并讓學(xué)生類比得到減函數(shù)的定義.然后指導(dǎo)學(xué)生認(rèn)真閱讀教材中有關(guān)單調(diào)性的概念,對(duì)定義中關(guān)鍵的地方進(jìn)行強(qiáng)調(diào).同時(shí)設(shè)計(jì)了一組判斷題: 判斷題: ①②若函數(shù)③若函數(shù)滿足f(2) 和(2,3)上均為增函數(shù),則函數(shù)在(1,3)上為增函數(shù).④因?yàn)楹瘮?shù)減函數(shù).在上都是減函數(shù),所以在上是通過(guò)對(duì)判斷題的討論,強(qiáng)調(diào)三點(diǎn): ①單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的,離開(kāi)了定義域和相應(yīng)區(qū)間就談不上單調(diào)性. ②有的函數(shù)在整個(gè)定義域內(nèi)單調(diào)(如一次函數(shù)),有的函數(shù)只在定義域內(nèi)的某些區(qū)間單調(diào)(如二次函數(shù)),有的函數(shù)根本沒(méi)有單調(diào)區(qū)間(如常函數(shù)). ③函數(shù)在定義域內(nèi)的兩個(gè)區(qū)間A,B上都是增(或減)函數(shù),一般不能認(rèn)為函數(shù)在上是增(或減)函數(shù). 從而加深學(xué)生對(duì)定義的理解 北京4中常規(guī)備課 【教學(xué)目標(biāo)】 1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法. 2.通過(guò)對(duì)函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語(yǔ)言表達(dá)能力;通過(guò)對(duì)函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力. 3.通過(guò)知識(shí)的探究過(guò)程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣,讓學(xué)生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理性的認(rèn)知過(guò)程. 【教學(xué)重點(diǎn)】 函數(shù)單調(diào)性的概念、判斷及證明. 【教學(xué)難點(diǎn)】 歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性. 【教學(xué)方法】 教師啟發(fā)講授,學(xué)生探究學(xué)習(xí). 【教學(xué)手段】 計(jì)算機(jī)、投影儀. 【教學(xué)過(guò)程】 一、創(chuàng)設(shè)情境,引入課題 課前布置任務(wù): (1)由于某種原因,2008年北京奧運(yùn)會(huì)開(kāi)幕式時(shí)間由原定的7月25日推遲到8月8日,請(qǐng)查閱資料說(shuō)明做出這個(gè)決定的主要原因.(2)通過(guò)查閱歷史資料研究北京奧運(yùn)會(huì)開(kāi)幕式當(dāng)天氣溫變化情況.課上通過(guò)交流,可以了解到開(kāi)幕式推遲主要是天氣的原因,北京的天氣到8月中旬,平均氣溫、平均降雨量和平均降雨天數(shù)等均開(kāi)始下降,比較適宜大型國(guó)際體育賽事.下圖是北京市今年8月8日一天24小時(shí)內(nèi)氣溫隨時(shí)間變化的曲線圖.引導(dǎo)學(xué)生識(shí)圖,捕捉信息,啟發(fā)學(xué)生思考. 問(wèn)題:觀察圖形,能得到什么信息? 預(yù)案:(1)當(dāng)天的最高溫度、最低溫度以及何時(shí)達(dá)到;(2)在某時(shí)刻的溫度; (3)某些時(shí)段溫度升高,某些時(shí)段溫度降低.在生活中,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,對(duì)我們的生活是很有幫助的. 問(wèn)題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎? 預(yù)案:水位高低、燃油價(jià)格、股票價(jià)格等. 歸納:用函數(shù)觀點(diǎn)看,其實(shí)就是隨著自變量的變化,函數(shù)值是變大還是變小. 〖設(shè)計(jì)意圖〗由生活情境引入新課,激發(fā)興趣. 二、歸納探索,形成概念 對(duì)于自變量變化時(shí),函數(shù)值是變大還是變小,初中同學(xué)們就有了一定的認(rèn)識(shí),但是沒(méi)有嚴(yán)格的定義,今天我們的任務(wù)首先就是建立函數(shù)單調(diào)性的嚴(yán)格定義.1.借助圖象,直觀感知 問(wèn)題1: 分別作出函數(shù)數(shù)值有什么變化規(guī)律? 的圖象,并且觀察自變量變化時(shí),函 預(yù)案:(1)函數(shù) 在整個(gè)定義域內(nèi) y隨x的增大而增大;函數(shù) 在整個(gè)定義域內(nèi) y隨x的增大而減小. (2)函數(shù)在上 y隨x的增大而增大,在上y隨x的增大而減小. (3)函數(shù) 在上 y隨x的增大而減小,在上y隨x的增大而減小. 引導(dǎo)學(xué)生進(jìn)行分類描述(增函數(shù)、減函數(shù)).同時(shí)明確函數(shù)的單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的,是函數(shù)的局部性質(zhì). 問(wèn)題2:能不能根據(jù)自己的理解說(shuō)說(shuō)什么是增函數(shù)、減函數(shù)? 預(yù)案:如果函數(shù) 在某個(gè)區(qū)間上隨自變量x的增大,y也越來(lái)越大,我們說(shuō)函數(shù) 在某個(gè)區(qū)間上隨自變量x的增大,y越來(lái)越小,我們?cè)谠搮^(qū)間上為增函數(shù);如果函數(shù)說(shuō)函數(shù)在該區(qū)間上為減函數(shù). 教師指出:這種認(rèn)識(shí)是從圖象的角度得到的,是對(duì)函數(shù)單調(diào)性的直觀,描述性的認(rèn)識(shí). 【設(shè)計(jì)意圖】從圖象直觀感知函數(shù)單調(diào)性,完成對(duì)函數(shù)單調(diào)性的第一次認(rèn)識(shí). 2.探究規(guī)律,理性認(rèn)識(shí) 問(wèn)題1:下圖是函數(shù)和減函數(shù)嗎? 的圖象,能說(shuō)出這個(gè)函數(shù)分別在哪個(gè)區(qū)間為增函數(shù) 學(xué)生的困難是難以確定分界點(diǎn)的確切位置. 通過(guò)討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時(shí)不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究. 〖設(shè)計(jì)意圖〗使學(xué)生體會(huì)到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性. 問(wèn)題2:如何從解析式的角度說(shuō)明 在為增函數(shù)? 22預(yù)案:(1)在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如1和2,因?yàn)?<2,所以為增函數(shù). (2)仿(1),取很多組驗(yàn)證均滿足,所以(3)任取,所以 在,因?yàn)?/p> 為增函數(shù). 在為增函數(shù). 在,即對(duì)于學(xué)生錯(cuò)誤的回答,引導(dǎo)學(xué)生分別用圖形語(yǔ)言和文字語(yǔ)言進(jìn)行辨析,使學(xué)生認(rèn)識(shí)到問(wèn)題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個(gè)自變量. 【設(shè)計(jì)意圖】把對(duì)單調(diào)性的認(rèn)識(shí)由感性上升到理性認(rèn)識(shí)的高度,完成對(duì)概念的第二次認(rèn)識(shí).事實(shí)上也給出了證明單調(diào)性的方法,為證明單調(diào)性做好鋪墊.3.抽象思維,形成概念 問(wèn)題:你能用準(zhǔn)確的數(shù)學(xué)符號(hào)語(yǔ)言表述出增函數(shù)的定義嗎? 師生共同探究,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類比得出減函數(shù)的定義.(1)板書(shū)定義(2)鞏固概念 判斷題: ①. ②若函數(shù) ③若函數(shù) 在區(qū)間 和(2,3)上均為增函數(shù),則函數(shù) 在區(qū)間(1,3)上為增函 . ④因?yàn)楹瘮?shù)在區(qū)間上是減函數(shù).上都是減函數(shù),所以在 通過(guò)判斷題,強(qiáng)調(diào)三點(diǎn): ①單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的,離開(kāi)了定義域和相應(yīng)區(qū)間就談不上單調(diào)性. ②對(duì)于某個(gè)具體函數(shù)的單調(diào)區(qū)間,可以是整個(gè)定義域(如一次函數(shù)),可以是定義域內(nèi)某個(gè)區(qū)間(如二次函數(shù)),也可以根本不單調(diào)(如常函數(shù)). ③函數(shù)在定義域內(nèi)的兩個(gè)區(qū)間A,B上都是增(或減)函數(shù),一般不能認(rèn)為函數(shù)在上是增(或減)函數(shù). 思考:如何說(shuō)明一個(gè)函數(shù)在某個(gè)區(qū)間上不是單調(diào)函數(shù)? 【設(shè)計(jì)意圖】讓學(xué)生由特殊到一般,從具體到抽象歸納出單調(diào)性的定義,通過(guò)對(duì)判斷題的辨析,加深學(xué)生對(duì)定義的理解,完成對(duì)概念的第三次認(rèn)識(shí).三、掌握證法,適當(dāng)延展 例 證明函數(shù) 在上是增函數(shù). 1.分析解決問(wèn)題 針對(duì)學(xué)生可能出現(xiàn)的問(wèn)題,組織學(xué)生討論、交流. 證明:任取 ,設(shè)元 求差 變形,斷號(hào) ∴ ∴ 即 ∴函數(shù) 2.歸納解題步驟 在上是增函數(shù). 定論 引導(dǎo)學(xué)生歸納證明函數(shù)單調(diào)性的步驟:設(shè)元、作差、變形、斷號(hào)、定論. 練習(xí):證明函數(shù) 問(wèn)題:要證明函數(shù) 在區(qū)間 上是增函數(shù),除了用定義來(lái)證,如果可以證得對(duì) 在上是增函數(shù). 任意的,且有可以嗎? 引導(dǎo)學(xué)生分析這種敘述與定義的等價(jià)性.讓學(xué)生嘗試用這種等價(jià)形式證明函數(shù)在 〖設(shè)計(jì)意圖〗初步掌握根據(jù)定義證明函數(shù)單調(diào)性的方法和步驟.等價(jià)形式進(jìn)一步發(fā)展可以得到導(dǎo)數(shù)法,為用導(dǎo)數(shù)方法研究函數(shù)單調(diào)性埋下伏筆. 四、歸納小結(jié),提高認(rèn)識(shí) 學(xué)生交流在本節(jié)課學(xué)習(xí)中的體會(huì)、收獲,交流學(xué)習(xí)過(guò)程中的體驗(yàn)和感受,師生合作共同完成小結(jié). 1.小結(jié) (1)概念探究過(guò)程:直觀到抽象、特殊到一般、感性到理性.(2)證明方法和步驟:設(shè)元、作差、變形、斷號(hào)、定論.(3)數(shù)學(xué)思想方法和思維方法:數(shù)形結(jié)合,等價(jià)轉(zhuǎn)化,類比等. 2.作業(yè) 書(shū)面作業(yè):課本第60頁(yè)習(xí)題2.3 第4,5,6題. 課后探究:(1)證明:函數(shù) 在區(qū)間 上是增函數(shù)的充要條件是對(duì)任意的上是增函數(shù).,且 有. (2)研究函數(shù)的單調(diào)性,并結(jié)合描點(diǎn)法畫(huà)出函數(shù)的草圖. 《函數(shù)的單調(diào)性》教學(xué)設(shè)計(jì)說(shuō)明 一、教學(xué)內(nèi)容的分析 函數(shù)的單調(diào)性是學(xué)生在了解函數(shù)概念后學(xué)習(xí)的函數(shù)的第一個(gè)性質(zhì),是函數(shù)學(xué)習(xí)中第一個(gè)用數(shù)學(xué)符號(hào)語(yǔ)言刻畫(huà)的概念,為進(jìn)一步學(xué)習(xí)函數(shù)其它性質(zhì)提供了方法依據(jù). 對(duì)于函數(shù)單調(diào)性,學(xué)生的認(rèn)知困難主要在兩個(gè)方面:(1)要求用準(zhǔn)確的數(shù)學(xué)符號(hào)語(yǔ)言去刻畫(huà)圖象的上升與下降,這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生是比較困難的;(2)單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,而學(xué)生在代數(shù)方面的推理論證能力是比較薄弱的.根據(jù)以上的分析和教學(xué)大綱的要求,確定了本節(jié)課的重點(diǎn)和難點(diǎn). 二、教學(xué)目標(biāo)的確定 根據(jù)本課教材的特點(diǎn)、教學(xué)大綱對(duì)本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,從三個(gè)不同的方面確定了教學(xué)目標(biāo),重視單調(diào)性概念的形成過(guò)程和對(duì)概念本質(zhì)的認(rèn)識(shí);強(qiáng)調(diào)判斷、證明函數(shù)單調(diào)性的方法的落實(shí)以及數(shù)形結(jié)合思想的滲透;突出語(yǔ)言表達(dá)能力、推理論證能力的培養(yǎng)和良好思維習(xí)慣的養(yǎng)成. 三、教學(xué)過(guò)程的設(shè)計(jì) 為達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),教學(xué)上采取了以下的措施:(1)在探索概念階段, 讓學(xué)生經(jīng)歷從直觀到抽象、從特殊到一般、從感性到理性的認(rèn)知過(guò)程,完成對(duì)單調(diào)性定義的三次認(rèn)識(shí),使得學(xué)生對(duì)概念的認(rèn)識(shí)不斷深入. (2)在應(yīng)用概念階段,通過(guò)對(duì)證明過(guò)程的分析,幫助學(xué)生掌握用定義證明函數(shù)單調(diào)性的方法和步驟. (3)考慮到我校學(xué)生數(shù)學(xué)基礎(chǔ)較好、思維較為活躍的特點(diǎn),對(duì)判斷方法進(jìn)行適當(dāng)?shù)难诱梗由顚?duì)定義的理解,同時(shí)也為用導(dǎo)數(shù)研究單調(diào)性埋下伏筆. 函數(shù)的單調(diào)性 教學(xué)目標(biāo) 知識(shí)目標(biāo):初步理解增函數(shù)、減函數(shù)、函數(shù)的單調(diào)性、單調(diào)區(qū)間的概念,并掌握判斷一些簡(jiǎn)單函數(shù)單調(diào)性的方法。 能力目標(biāo):?jiǎn)l(fā)學(xué)生能夠發(fā)現(xiàn)問(wèn)題和提出問(wèn)題,學(xué)會(huì)分析問(wèn)題和創(chuàng)造地解決問(wèn)題;通過(guò)觀察——猜想——推理——證明這一重要的思想方法,進(jìn)一步培養(yǎng)學(xué)生的邏輯推理能力和創(chuàng)新意識(shí)。 德育目標(biāo):在揭示函數(shù)單調(diào)性實(shí)質(zhì)的同時(shí)進(jìn)行辯證唯物主義思想教育。: 教學(xué)重點(diǎn):函數(shù)單調(diào)性的有關(guān)概念的理解 教學(xué)難點(diǎn):利用函數(shù)單調(diào)性的概念判斷或證明函數(shù)單調(diào)性 教 具: 多媒體課件、實(shí)物投影儀 教學(xué)過(guò)程: 一、創(chuàng)設(shè)情境,導(dǎo)入課題 [引例1]如圖為2006年黃石市元旦24小時(shí)內(nèi)的氣溫變化圖.觀察這張氣溫變化圖: 問(wèn)題1:氣溫隨時(shí)間的增大如何變化? 問(wèn)題2:怎樣用數(shù)學(xué)語(yǔ)言來(lái)描述“隨著時(shí)間的增大氣溫逐漸升高”這一特征? [引例2]觀察二次函數(shù)的圖象,從左向右函數(shù)圖象如何變化?并總結(jié)歸納出函數(shù)圖象中自變量x和 y值之間的變化規(guī)律。 結(jié)論:(1)y軸左側(cè):逐漸下降; y軸右側(cè):逐漸上升; (2)左側(cè) y隨x的增大而減小;右側(cè)y隨x的增大而增大。 上面的結(jié)論是直觀地由圖象得到的。還有很多函數(shù)具有這種性質(zhì),因此,我們有必要對(duì)函數(shù)這種性質(zhì)作更進(jìn)一步的一般性的討論和研究。 二、給出定義,剖析概念 ①定義:對(duì)于函數(shù)f(x)的定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值 ⑴若當(dāng)圖3); ⑵若當(dāng)圖4)。<時(shí),都有f()>f(),則f(x)在這個(gè)區(qū)間上是減函數(shù)(如<時(shí),都有f() ②單調(diào)性與單調(diào)區(qū)間 若函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),則就說(shuō)函數(shù)y=f(x)在這一區(qū)間具有單調(diào)性,這一區(qū)間叫做函數(shù)y=f(x)的單調(diào)區(qū)間.此時(shí)也說(shuō)函數(shù)是這一區(qū)間上的單調(diào)函數(shù).由此可知單調(diào)區(qū)間分為單調(diào)增區(qū)間和單調(diào)減區(qū)間。 注意: (1)函數(shù)單調(diào)性的幾何特征:在單調(diào)區(qū)間上,增函數(shù)的圖象是上升的,減函數(shù)的圖象是下降的。 當(dāng)x1 幾何解釋:遞增 函數(shù)圖象從左到右逐漸上升;遞減 函數(shù)圖象從左到右逐漸下降。 (2)函數(shù)單調(diào)性是針對(duì)某一個(gè)區(qū)間而言的,是一個(gè)局部性質(zhì)。 有些函數(shù)在整個(gè)定義域內(nèi)是單調(diào)的;有些函數(shù)在定義域內(nèi)的部分區(qū)間上是增函數(shù),在部分區(qū)間上是減函數(shù);有些函數(shù)是非單調(diào)函數(shù),如常數(shù)函數(shù)。 判斷2:定義在R上的函數(shù) f(x)滿足 f(2)> f(1),則函數(shù) f(x)在R上是增函數(shù)。(×) 函數(shù)的單調(diào)性是函數(shù)在一個(gè)單調(diào)區(qū)間上的“整體”性質(zhì),不能用特殊值代替。 訓(xùn)練:畫(huà)出下列函數(shù)圖像,并寫(xiě)出單調(diào)區(qū)間: 三、范例講解,運(yùn)用概念 具有任意性,例1、如圖,是定義在閉區(qū)間[-5,5]上的函數(shù)出函數(shù)。的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,函數(shù)的圖象,根據(jù)圖象說(shuō) 是增函數(shù)還減 注意: (1)函數(shù)的單調(diào)性是對(duì)某一個(gè)區(qū)間而言的,對(duì)于單獨(dú)的一點(diǎn),由于它的函數(shù)值是唯一確定的常數(shù),因而沒(méi)有增減變化,所以不存在單調(diào)性問(wèn)題。 (2)在區(qū)間的端點(diǎn)處若有定義,可開(kāi)可閉,但在整個(gè)定義域內(nèi)要完整。 例2 判斷函數(shù) f(x)=3x+2 在R上是增函數(shù)還是減函數(shù)?并證明你的結(jié)論。 引導(dǎo)學(xué)生進(jìn)行分析證明思路,同時(shí)展示證明過(guò)程: 證明:設(shè)任意的 由 于是 即 所以。 在R上是增函數(shù)。,得,且,則 分析證明中體現(xiàn)函數(shù)單調(diào)性的定義。 利用定義證明函數(shù)單調(diào)性的步驟: ①任意取值:即設(shè)x1、x2是該區(qū)間內(nèi)的任意兩個(gè)值,且x1 ②作差變形:作差f(x1)-f(x2),并因式分解、配方、有理化等方法將差式向有利于判斷差的符號(hào)的方向變形 ③判斷定號(hào):確定f(x1)-f(x2)的符號(hào) ④得出結(jié)論:根據(jù)定義作出結(jié)論(若差0,則為增函數(shù);若差 0,則為減函數(shù)) 即“任意取值——作差變形——判斷定號(hào)——得出結(jié)論” 例 3、證明函數(shù) 證明:設(shè),且 在(0,+)上是減函數(shù).,則 由 又由 于是 即。,得,得即 (*)。 所以,函數(shù) 問(wèn)題1 : 在區(qū)間 在上是單調(diào)減函數(shù)。 上是什么函數(shù)?(減函數(shù))在定義域 上是減函數(shù)?(學(xué)生討論 問(wèn)題2 :能否說(shuō)函數(shù)得出) 四、課堂練習(xí),知識(shí)鞏固 課本59頁(yè) 練習(xí):第1、3、4題。 五、課堂小結(jié),知識(shí)梳理 1、增、減函數(shù)的定義。 函數(shù)單調(diào)性是對(duì)定義域的某個(gè)區(qū)間而言的,反映的是在這一區(qū)間上函數(shù)值隨自變量變化的性質(zhì)。 2、函數(shù)單調(diào)性的判斷方法:(1)利用圖象觀察;(2)利用定義證明: 證明的步驟:任意取值——作差變形——判斷符號(hào)——得出結(jié)論。 六、布置作業(yè),教學(xué)延伸 課本60頁(yè)習(xí)題2.3 :第4、5、6題。 函數(shù)的單調(diào)性(教案) 一、教學(xué)目標(biāo) 1、使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法。 2、通過(guò)對(duì)函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語(yǔ)言表達(dá)能力;通過(guò)對(duì)函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力。 3、通過(guò)知識(shí)的探究過(guò)程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣,讓學(xué)生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理性的認(rèn)知過(guò)程。 二、重點(diǎn)、難點(diǎn)分析 1、重點(diǎn):函數(shù)單調(diào)性的概念、判斷及證明。 2、難點(diǎn):歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性。 三、教學(xué)過(guò)程 1、學(xué)生動(dòng)手作圖,引入課題:結(jié)合函數(shù)圖像畫(huà)法的相關(guān)知識(shí),讓學(xué)生實(shí)際動(dòng)手操作,分別畫(huà)出函數(shù)f(x)?x,f(x)??x,f(x)?x2,f(x)??x2的圖像。如下: 圖1 圖2 圖3 圖4 2、借助圖像,直觀感知:引導(dǎo)學(xué)生識(shí)圖,捕捉信息,啟發(fā)學(xué)生思考。并讓學(xué)生回答以下兩個(gè)問(wèn)題: (1)以上4個(gè)函數(shù)圖像中,隨自變量x的變化,函數(shù)值f(x)發(fā)生了怎樣的變化? ① 圖1中,函數(shù)值f(x)隨自變量x的增大而增大,減小而減小; ② 圖2中,函數(shù)值f(x)隨自變量x的增大而減小,減小而增大; ③ 圖3中,對(duì)于y軸的左半部分而言,函數(shù)值f(x)隨自變量x的增大而減小,減小而增大。對(duì)于y軸的右半部分而言,函數(shù)值f(x)隨自變量x的增大而增大,減小而減小。 ④ 圖4中,對(duì)于y軸的左半部分而言,函數(shù)值f(x)隨自變量x的增大而增大,減小而減小。對(duì)于y軸的右半部分而言,函數(shù)值f(x)隨自變量x的增大而減小,減小而增大。 (2)如何用數(shù)學(xué)語(yǔ)言描述上述函數(shù)中,函數(shù)值f(x)隨自變量x的變化情況? ① 對(duì)于函數(shù)f(x)?x而言,?x1,x2?(??,??),當(dāng)x1?x2時(shí),都有f(x1)?f(x2)。 ② 對(duì)于函數(shù)f(x)??x而言,?x1,x2?(??,??),當(dāng)x1?x2時(shí),都有f(x1)?f(x2)。 ③ 對(duì)于函數(shù)f(x)?x2而言,?x1,x2?(??,0),當(dāng)x1?x2時(shí),都有f(x1)?f(x2)。而?x1,x2?(0,??),當(dāng)x1?x2時(shí),都有f(x1)?f(x2)。 ④ 對(duì)于函數(shù)f(x)??x2而言,?x1,x2?(??,0),當(dāng)x1?x2時(shí),都有f(x1)?f(x2)。而?x1,x2?(0,??),當(dāng)x1?x2時(shí),都有f(x1)?f(x2)。 3、歸納探索,形成概念:引導(dǎo)學(xué)生歸納總結(jié)出增函數(shù)和減函數(shù)的定義: (1)增函數(shù):I為函數(shù)f(x)的定義域,D?I,若?x1,x2?D,當(dāng)x1?x2時(shí),都有f(x1)?f(x2),則函數(shù)f(x)在D上是增函數(shù)。 (2)減函數(shù):I為函數(shù)f(x)的定義域,D?I,若?x1,x2?D,當(dāng)x1?x2時(shí),都有f(x1)?f(x2),則函數(shù)f(x)在D上是增函數(shù)。 4、例題講解,鞏固定義;歸納總結(jié),尋求一般證明步驟:講解例題,引導(dǎo)學(xué)生歸納證明函數(shù)單調(diào)性的步驟(設(shè)元、求差、變形、斷號(hào),定論)。 k例題1:證明波意耳定律P?,(k為正常數(shù))為減函數(shù)。 Vk 證明:按題意,只要證明函數(shù)P?在區(qū)間(0,??)上是減函數(shù)即可。 V ??V1,V2?(0,??),當(dāng)V1?V2時(shí),有: 設(shè)元 P(V1)?P(V2)?kk? 求差 V1V2V2?V 1變形 VV1 ?k 又?V1,V2?(0,??),V1?V2 ?VV12?0,V1?V2?0,同時(shí),k?0,斷號(hào) ?P(V1)?P(V2)?0 即,P(V1)?P(V2).所以,函數(shù)P?k在區(qū)間(0,??)上是減函數(shù)。定論 V3 5、通過(guò)例題,強(qiáng)調(diào)關(guān)鍵點(diǎn):提出課文中容易誤解和忽略指出,予以提醒。 1(1)例題2:“已知f(x)?,因?yàn)閒(?1)?f(2),所以函數(shù)f(x)是增函數(shù)。” x這種說(shuō)法對(duì)嗎? 解析:?jiǎn)握{(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的,離開(kāi)了定義域和相應(yīng)區(qū)間就談不上單調(diào)性。 2(2)例題3:能否直接觀察函數(shù)f(x)?x?,(x?0)的圖像(如下),說(shuō)出這 x個(gè)函數(shù)分別在哪個(gè)區(qū)間為增函數(shù)和減函數(shù)? 圖5 解析:學(xué)生難以確定分界點(diǎn)的確切位置。從而,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時(shí)不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究。 (3)例題4:如何從解析式的角度說(shuō)明f(x)?x2在[0,??)為增函數(shù)? 222法一: 在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如1和2,因?yàn)??2,所以f(x)?x[0,??)為增函數(shù)。 法二:仿法一,取很多組驗(yàn)證均滿足,所以f(x)?x2在[0,??)為增函數(shù)。法三:任取x1,x2?[0,??)且x1?x2,因?yàn)閤12?x22?(x1?x2)(x1?x2)?0,即x12?x22,所以f(x)?x2在[0,??)為增函數(shù)。 解析:自變量不可能被窮舉,證明函數(shù)的單調(diào)性時(shí),要在給定的區(qū)間內(nèi)任意取兩個(gè)自變量。 (4)例題5:“若函數(shù)f(x)滿足f(2)?f(3),則函數(shù)在區(qū)間[2,3]上為增函數(shù)。”這種說(shuō)法對(duì)嗎? 解析:對(duì)于某個(gè)具體函數(shù)的單調(diào)區(qū)間,可以是整個(gè)定義域(如一次函數(shù)),可以是定義域內(nèi)某個(gè)區(qū)間(如二次函數(shù)),也可以根本不單調(diào)(如常函數(shù))。 (5)例題6:“若函數(shù)f(x)在區(qū)間(1,2]和(2,3)上均為增函數(shù),則函數(shù)f(x)在區(qū)間(1,3)上為增函數(shù)。”與“因?yàn)楹瘮?shù)f(x)?減函數(shù),所以f(x)?1在區(qū)間(??,0]和(0,??)上都是x1在(??,0]和(0,??)上是減函數(shù)”這兩種種說(shuō)法對(duì)嗎? x解析:函數(shù)在定義域內(nèi)的兩個(gè)區(qū)間A,B上都是增(或減)函數(shù),一般不能認(rèn)為函數(shù)在A?b上是增(或減)函數(shù)。 四、作業(yè)布置 教材p39 A組:第2題、第5題、第6題; B組:第1題、第3題。第三篇:函數(shù)單調(diào)性
第四篇:函數(shù)的單調(diào)性教案
第五篇:函數(shù)的單調(diào)性(教案)