六年級上冊數學知識點匯總(人教版)
第一單元
分數乘法
(一)分數乘法的意義
1、分數乘整數:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數和得簡便運算。
例如:×6,表示:6個相加是多少,還表示的6倍是多少。
2、一個數(小數、分數、整數)乘分數:一個數乘分數的意義與整數乘法的意義不相同,是表示這個數的幾分之幾是多少。
例如:6×,表示:6的是多少。
×,表示:的是多少。
(二)分數乘法的計算法則
1、整數和分數相乘:整數和分子相乘的積作分子,分母不變。
2、分數和分數相乘:分子相乘的積作分子,分母相乘的積作分母。
3、注意:能約分的先約分,然后再乘,得數必須是最簡分數。當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
(三)分數大小的比較:
1、一個數(0除外)乘以一個真分數,所得的積小于它本身。一個數(0除外)乘以一個假分數,所得的積等于或大于它本身。一個數(0除外)乘以一個帶分數,所得的積大于它本身。
2、如果幾個不為0的數與不同分數相乘的積相等,那么與大分數相乘的因數反而小,與小分數相乘的因數反而大。
(四)解決實際問題。
1、分數應用題一般解題步行驟。
(1)找出含有分率的關鍵句。
(2)找出單位“1”的量
(3)根據線段圖寫出等量關系式:單位“1”的量×對應分率=對應量。
(4)根據已知條件和問題列式解答。
2、乘法應用題有關注意概念。
(1)乘法應用題的解題思路:已知一個數,求這個數的幾分之幾是多少?
(2)找單位“1”的方法:從含有分數的關鍵句中找,注意“的”前“比”后的規則。當句子中的單位“1”不明顯時,把原來的量看做單位“1”。
(3)甲比乙多幾分之幾表示甲比乙多的數占乙的幾分之幾,甲比乙少幾分之幾表示甲比乙少數占乙的幾分之幾。
(4)在應用題中如:小湖村去年水稻的畝產量是750千克,今年水稻的畝產量是800千克,增產幾分之幾?題目中的“增產”是多的意思,那么誰比誰多,應該是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多幾分之幾,結合應用題的表達方式,可以補充為“今年水稻的畝產量比去年水稻的畝產量多幾分之幾?”
(5)“增加”、“提高”、“增產”等蘊含“多”的意思,“減少”、“下降”、“裁員”
等蘊含“少”的意思,“相當于”、“占”、“是”、“等于”意思相近。
(6)當關鍵句中的單位“1”不明顯時,要把關鍵句補充完整,補充成“誰是誰的幾分之幾”或“甲比乙多幾分之幾”、“甲比乙少幾分之幾”的形式。
(7)乘法應用題中,單位“1”是已知的。
(8)單位“1”不同的兩個分率不能相加減,加減屬相差比,始終遵循“凡是比較,單位一致”的規則。
(9)找到單位“1”后,分析問題,已知單位“1”用乘法,未知單位“1”用除法(注意:求單位“1”是最后一步用除法,其余計算應在前)。
單位“1”×分率=比較量;
比較量÷分率=單位“1”
(10)單位“1”不同的兩個分率不能相加減,解應用題時應把題中的不變量做為單位“1”,統一分率的單位“1”,然后再相加減。
(11)單位“1”的特點:
①單位“1”為分母;
②單位“1”為不變量。
(12)分率與量要對應。
①多的對應量對多的分率;
②少的對應量對少的分率;
③增加的對應量對增加的分率;
④減少的對應量對減少的分率;
⑤提高的對應量對提高的分率;
⑥降低的對應量對降低的分率;
⑦工作總量的對應量對工作總量的分率;
⑧工作效率的對應量對工作效率的分率;
⑨部分的對應量對部分的分率;
⑩總量的對應量對總量的分率;
例如:
1、求一個數的幾分之幾是多少?(求一個數的幾分之幾用乘法計算)
方法:單位“1”的數量×對應分率=對應數量。
2、分數的連乘。找到每一個分率的單位“1”。
(五)倒數
1、倒數:乘積是1的兩個數互為倒數。
2、求倒數的方法:把這個數寫成分數形式,然后將分子和分母交換位置。
3、0沒有倒數,1的倒數是它本身。
4、真分數的倒數都大于它本身,假分數的倒數等于或小于它本身。
注意:倒數必須是成對的兩個數,單獨的一個數不能稱做倒數。
第二單元
位置與方向
一、確定物體位置的方法:
1、先找觀測點;
2、再定方向(看方向夾角的度數);
3、最后確定距離(看比例尺)
二、描繪路線圖的關鍵是選好觀測點,建立方向標,確定方向和路程。
三、位置關系的相對性:
兩地的位置具有相對性在敘述兩地的位置關系時,觀測點不同,敘述的方向正好相反,而度數和距離正好相等。
四、相對位置:東--西;
南--北;南偏東--北偏西。第三單元
分數除法
(一)分數除法的意義:
分數除法的意義:分數除法的意義與整數除法的意義相同,都是已知兩個因數的積與其中一個因數,求另一個因數的運算。
例如:
表示:已知兩個數的積是,與其中一個因數,求另一個因數是多少。
÷4表示已知兩個數的積是,與其中一個因數4,求另一個因數是多少。還表示把平均分成4份,每份是多少。
(二)分數除法的計算:
分數除法的計算法則:甲數除以乙數(0除外),等于甲數乘乙數的倒數。
(三)比和比的應用:
1.比的意義:兩個數相除又叫做兩個數的比。比的后項不能為0。
2.比值的意義:比的前項除以后項所得的商,叫做比值。
3.比值的表示方式:通常用分數、小數和整數表示。
4.比同除法的關系:比的前項相當于被除數,后項相當于除數,比值相當于商.5.比同分數的關系:比的前項相當于分子,比的后項相當于分母,比值相當于分數的值。
6.比的基本性質:比的前項和后項同時乘上或者同時除以相同的數(0除外),比值不變。
7.化簡比的方法:根據比的基本性質,把兩個數的比化成最簡單的整數比,叫做化簡比,比的前項和后項必須是互質的整數。
例如:(1)
16﹕20=(16÷4)﹕(20÷4)=4﹕5
(2)﹕=(×12)﹕(×12)=10﹕9
(3)1.8﹕0.09
=(1.8×100)﹕(0.09×100)
=180﹕9=20﹕1
8.在工農業生產中和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。
9.按比例分配的解題方法:
(1)先求出總的份數,再求出各部分數量占總數的幾分之幾。
(2)用總數乘各部分的分率求出各部分的數量。
10.分數除法中,被除數與商的大小關系:
一個數(0除外)除以一個真分數,所得的商大于它本身。
一個數(0除外)除以一個假分數,所得的商小于或等于它本身。
一個數(0除外)除以一個帶分數,所得的商小于它本身。
(四)解分數應用題注意事項:
1.找單位“1”的方法:從含有分率的句子中找,“的”前或“比”后的規則。當句子中的單位“1”不明顯時,把原來的量看做單位“1”。
2.找到單位“1”后,分析問題,已知單位“1”用乘法,未知單位“1”用除法(注意:求單位“1”是最后一步用除法,其余計算應在前)。
數量關系:
單位“1”×對應分率=對應數量;
對應量÷對應分率=單位“1”的量
3.單位“1”不同的兩個分率不能相加減,解應用題時應把題中的不變量做為單位“1”,統一分率的單位“1”,然后再相加減。
4.單位“1”的特點:?①單位“1”為分母;?②單位“1”為不變量。
5.“已知一個數的幾分之幾是多少,求這個數”的解題方法:
(1)設單位“1”的量為x,列方程解答。
(2)對應數量÷對應分率=單位“1”的總數量。
6.工程問題:把工作總量看作單位“1”,工作效率
=
工作時間
=
1÷工作效率
合作時間?=?工作總量÷工作效率之和
第四單元
比
1、兩個數相除又叫做兩個數的比。在兩個數的比中,比號前面的數叫做比的前項,比號后面的數叫做比的后項。比的前項除以后項所得的商,叫做比值。比的后項不能為0。
例如
:10
=
15÷10=3/2(比值通常用分數表示,也可以用小數或整數表示)
2、比可以表示兩個相同量的關系,即倍數關系。也可以表示兩個不同量的比,得到一個新量。例:
路程÷速度=時間。
3、區分比和比值
比:表示兩個數的關系,可以寫成比的形式,也可以用分數表示。
比值:相當于商,是一個數,可以是整數,分數,也可以是小數。
4、比和除法、分數的聯系與區別:(區別)除法是一種運算,分數是一個數,比表示兩個數的關系。
比的前項相當與除法中的被除數,分數中的分子;比的后項相當與除法中的除數,分數中的分母;比號相當于除法中的除號,分數中的分數線;比值相當于除法的商,分數的分數值。
注意:體育比賽中出現兩隊的分是2:0等,這只是一種記分的形式,不表示兩個數相除的關系。
5、比的基本性質
(1)根據比、除法、分數的關系:
商不變的性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分數的分子和分母同時乘或除以相同的數時(0除外),分數值不變。
比的基本性質:比的前項和后項同時乘或除以相同的數(0除外),比值不變。
(2)比的前項和后項都是整數,并且是互質數,這樣的比就是最簡整數比。根據比的基本性質,把比化成最簡整數比。
(3)化簡比:
用求比值的方法。
注意:最后結果要寫成比的形式。
如:
15∶10
=
15÷10
=
3/2
=
3∶2
。按比例分配:把一個數量按照一定的比來進行分配。
這種方法通常叫做按比例分配。
第五單元
圓
1、圓心:圓中心一點叫做圓心。用字母“O”來表示。
半徑:連接圓心和圓上任意一點的線段叫做半徑,用字母“r”來表示。
直徑:通過圓心并且兩端都在圓上的線段叫做直徑,用字母“d”表示。
2、圓心確定圓的位置,半徑確定圓的大小。
3、在同一個圓內,所有的半徑都相等,所有的直徑都相等。在同一個圓內,有無數條半徑,有無數條直徑。在同一個圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的一半。用字母表示為:d=2r
r
=d4、圓的周長:圍成圓的曲線的長度叫做圓的周長。
5、圓的周長總是直徑的3倍多一些,這個比值是一個固定的數。我們把圓的周長和直徑的比值叫做圓周率,用字母表示。圓周率是一個無限不循環小數。在計算時,取3.14。世界上第一個把圓周率算出來的人是我國的數學家祖沖之。
6、圓的周長公式:C=d
或C=2r7、圓的面積:圓所占平面的大小叫圓的面積。
8、把一個圓割成一個近似的長方形,割拼成的長方形的長相當于圓周長的一半,寬相當于圓的半徑,因為長方形面積=長×寬,所以圓的面積=
r×r=r2
9、圓的面積公式:S=r2 或者S=(d2)2
或者S=(C
2)2
10、在一個正方形里畫一個最大的圓,圓的直徑等于正方形的邊長。圓的面積和正方形面積的比是:4。
在一個圓里畫一個最大正方形的,圓的直徑的長度等于正方形的對角線的長度,正方形的面積=對角線×對角線÷2=直徑×直徑÷2。
11、在一個長方形里畫一個最大的圓,圓的直徑等于長方形的短邊。
12、一個環形,外圓的半徑是R,內圓的半徑是r,它的面積是S=R2-r2 或 S=(R2-r2)。
(其中R=r+環的寬度.)
13、環形的周長=外圓周長+內圓周長
14、半圓的周長等于圓的周長的一半加直徑。
半圓周長公式:C=d2+d 或C=r+2r15、半圓面積=圓面積2 公式為:S=r2216、在同一個圓里,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。而面積擴大或縮小以上倍數的平方倍。
例如:在同一個圓里,半徑擴大4倍,那么直徑和周長就都擴大4倍,而面積擴大16倍。
17、兩個圓的半徑比等于直徑比等于周長比,而面積比等于以上比的平方。
例如:兩個圓的半徑比是2:3,那么這兩個圓的直徑比和周長比都是2:3,而面積比是4:9。
18、當一個圓的半徑增加a厘米時,它的周長就增加2a厘米;
當一個圓的直徑增加a厘米時,它的周長就增加a厘米。
19、在同一圓中,圓心角占圓周角的幾分之幾,它所在扇形面積就占圓面積的幾分之幾;所對的弧就占圓周長的幾分之幾.
20、當長方形,正方形,圓的周長相等時,圓的面積最大,長方形的面積最小;
當長方形,正方形,圓的面積相等時,長方形的周長最大,圓的周長最小。
21、扇形弧長公式:L=
扇形的面積公式: S=r2
(n為扇形的圓心角度數,r為扇形所在圓的半徑)
22、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
23、有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。
有2條對稱軸的圖形是:長方形
有3條對稱軸的圖形是:等邊三角形
有4條對稱軸的圖形是:正方形
有無數條對稱軸的圖形是:圓、圓環。
24、直徑所在的直線是圓的對稱軸。
25、倍表
1π
3.14
11π
34.54
21π
65.94
62π
113.04
162π
803.84
2π
6.28
12π
37.68
22π
69.08
72π
153.86
172π
907.46
3π
9.42
13π
40.82
23π
72.22
82π
200.96
182π
1017.36
4π
12.56
14π
43.96
24π
75.36
92π
254.34
192π
1133.54
5π
15.7
15π
47.1
25π
78.5
102π
314
202π
1256
6π
18.84
16π
50.24
26π
81.64
112π
379.94
212π
1384.74
7π
21.98
17π
53.38
27π
84.78
122π
452.16
222π
1519.76
8π
25.12
18π
56.52
28π
87.92
132π
530.66
232π
1661.06
9π
28.26
19π
59.66
29π
91.06
142π
615.44
242π
1808.64
10π
31.4
20π
62.8
30π
94.2
152π
706.5
252π
1962.5
第六單元
百分數
1、百分數的定義:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
百分數表示兩個數之間的比率關系,不表示具體的數量,無單位名稱。
例如:25%的意義:表示一個數是另一個數的25%。
2、百分數通常不寫成分數形式,而在原來分子后面加上“%”來表示。分子部分可為小數、整數,可以大于100,小于100或等于100。
3、小數與百分數互化的規則:
把小數化成百分數,只要把小數點向右移動兩位,同時在后面添上百分號;(加向右)
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。(去向左)
4、百分數與分數互化的規則:
把分數化成百分數,通常先把分數化成小數(除不盡的保留三位小數),再把小數化成百分數;
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
5、常用的分數、小數及百分數的互化
=0.5=50%
=0.25=25%
=0.75=75%
=0.2=20%
=0.4=40%
=0.6=60%
=0.8=80%
=0.125=12.5%
=0.375=37.5%
=0.625=62.5%
=0.875=87.5%
=0.1=10%
=0.0625=6.25%
=0.05=5%
=0.04=4%
=0.025=2.5%
=0.02=2%
=0.01=1%
6、百分率公式:求百分率就是求一個數是另一個數的百分之幾。(算式要加×100%,包括濃度、利潤率)
7、求一個數比另一個數多(或少)百分之幾(另一個數是單位“1”)
實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾
(甲-乙)÷乙
求乙比甲少百分之幾
(甲-乙)÷甲
8、求一個數的百分之幾是多少
一個數(單位“1”)
×百分率
9、已知一個數的百分之幾是多少,求這個數??
部分量÷百分率=一個數(單位“1”)
10、濃度問題
溶質(鹽)的重量+溶劑(水)的重量=溶液(鹽水)的重量
溶質(鹽)的重量÷溶液(鹽水)的重量×100%=濃度
溶液(鹽水)的重量×濃度=溶質(鹽)的重量
溶質(鹽)的重量÷濃度=溶液(鹽水)的重量
最常用的是用方程解濃度問題
比如兩種不同濃度的溶液混合,最常用的數量關系是
甲溶液質量×甲的濃度+乙溶液質量×乙的濃度
=總溶液質量×總的濃度
11、折扣:商品的現價是原價的百分之幾。幾折就是十分之幾也就是百分之幾十。
“八折”的含義是:現價是原價的80%;“八五折”的含義是:現價是原價的85%
公式:現價?=?原價?×?折數(通常寫成百分數形式)
利潤?=?售價-成本
利潤率
=
×100%
成數:表示一個數是另一個數十分之幾的數,叫做成數。例如,今年的糧食產量比去年增產“二成”。
“二成”即是十分之二,也就是今年的糧食產量比去年增加了20%。
12、納稅:納稅是根據國家各種稅法的有關規定,按照一定的比率把集體或個人收入的一部分繳納給國家。國家用收來的稅款發展經濟、科技、教育、文化和國防安全。納稅的種類:將納稅主要分為增值稅、消費稅、營業稅、個人所得稅等幾類。
13、應納稅額:繳納的稅款叫應納稅額。
14、稅率:應納稅額與各種收入的比率叫做稅率。
15、應納稅額的計算:應納稅額=各種收入×稅率
例如:一家飯店十月份的營業額約是30萬元,如果安營業額的5%繳納營業稅,這家飯店十月份應繳納營業稅多少萬元?
16、儲蓄的意義:人們常常把暫時不用的錢存入銀行或信用社,儲蓄起來,這樣不僅可以支援國家建設,也使得個人用錢更加安全和有計劃,還可以增加一些收入。
17、存款的類型:存款分為活期、整存整取、零存整取等方式。
18、本金:存入銀行的錢叫做本金。
19、利息:取款時銀行多支付的錢叫做利息。本息:本金與利息的總和叫做本息。
20、國家規定,存款的利息要按5%(根據題目要求數據計算)的稅率納稅。國債的利息不納稅。
21、利率:利息與本金的比值叫做利率。
22、銀行存款稅后利息的計算公式:利息=本金×利率×時間×(1-5%)
23、銀行存款利息的稅金=利息×5% 或 =本金×利率×時間×5%
第七單元
統計
扇形統計圖的特點:可以清楚直觀地反映各部份數量同總量之間的關系。
折線統計圖的特點:不但能夠看出數量的多少,還可以反映出數量增減變化的情況。
條形統計圖的特點:能夠清楚的看出數量的多少。
補充一:圖形計算公式
1、正方形:周長=邊長×4
面積=邊長×邊長
2、長方形:周長=(長+寬)×2
長=周長÷2-寬
面積=長×寬
長=面積÷寬
3、三角形:面積=底×高÷2
三角形高=面積
×2÷底
三角形底=面積
×2÷高
4、平行四邊形:面積=底×高
底=面積÷高
5、梯形:面積=(上底+下底)×高÷2
高=面積
×2÷(上底+下底)
上底=面積
×2÷高-下底
6、圓形
(1)周長=直徑×圓周率(π)=2×圓周率π×半徑
(2)面積=半徑×半徑×圓周率(π)
7、正方體
表面積=棱長×棱長×6
體積=棱長×棱長×棱長
8、長方體
表面積=(長×寬+長×高+寬×高)×2
體積=長×寬×高
補充二:其他應用題基本數量關系式
平均數問題:總數÷總份數=平均數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
年齡問題:年齡差永遠不變
一年級上冊數學知識點匯總(人教版)
第一單元
準備課
1、數一數
數數:數數時,按一定的順序數,從1開始,數到最后一個物體所對應的那個數,即最后數到幾,就是這種物體的總個數。
2、比多少
同樣多:當兩種物體一一對應后,都沒有剩余時,就說這兩種物體的數量同樣多。
比多少:當兩種物體一一對應后,其中一種物體有剩余,有剩余的那種物體多,沒有剩余的那種物體少。
比較兩種物體的多或少時,可以用一一對應的方法。
第二單
位
置
1、認識上、下
體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。
2、認識前、后
體會前、后的含義:一般指面對的方向就是前,背對的方向就是后。
同一物體,相對于不同的參照物,前后位置關系也會發生變化。
從而得出:確定兩個以上物體的前后位置關系時,要找準參照物,選擇的參照物不同,相對的前后位置關系也會發生變化。
3、認識左、右
以自己的左手、右手所在的位置為標準,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。
要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為準。
第三單元
1--5的認識和加減法
一、1--5的認識1、1—5各數的含義:每個數都可以表示不同物體的數量。有幾個物體就用幾來表示。
2、1—5各數的數序
從前往后數:1、2、3、4、5.從后往前數:5、4、3、2、1.3、1—5各數的寫法:根據每個數字的形狀,按數字在田字格中的位置,認真、工整地進行書寫。
二、比大小
1、前面的數等于后面的數,用“=”表示,即3=3,讀作3等于3。前面的數大于后面的數,用“>”表示,即3>2,讀作3大于2。前面的數小于后面的數,用“<”表示,即3<4,讀作3小于4。
2、填“>”或“<”時,開口對大數,尖角對小數。
三、第幾
1、確定物體的排列順序時,先確定數數的方向,然后從1開始點數,數到幾,它的順序就是“第幾”。第幾指的是其中的某一個。
2、區分“幾個”和“第幾”
“幾個”表示物體的多少,而“第幾”只表示其中的一個物體。
四、分與合數的組成:一個數(1除外)分成幾和幾,先把這個數分成1和幾,依次分到幾和1為止。例如:5的組成有1和4,2和3,3和2,4和1.把一個數分成幾和幾時,要有序地進行分解,防止重復或遺漏。
五、加法
1、加法的含義:把兩部分合在一起,求一共有多少,用加法計算。
2、加法的計算方法:計算5以內數的加法,可以采用點數、接著數、數的組成等方法。其中用數的組成計算是最常用的方法。
六、減法
1、減法的含義:從總數里去掉(減掉)一部分,求還剩多少用減法計算。
2、減法的計算方法:計算減法時,可以用倒著數、數的分成、想加算減的方法來計算。
七、01、0的意義:0表示一個物體也沒有,也表示起點。
2、0的讀法:0讀作:零3、0的寫法:寫0時,要從上到下,從左到右,起筆處和收筆處要相連,并且要寫圓滑,不能有棱角。
4、0的加、減法:任何數與0相加都得這個數,任何數與0相減都得這個數,相同的兩個數相減等于0.如:0+8=8
9-0=9
4-4=0
第四單元
認識圖形
1、長方體的特征:長長方方的,有6個平平的面,面有大有小。如圖:
2、長方體的特征:四四方方的,有6個平平的面,面的大小一樣。如圖:
3、圓柱的特征:直直的,上下一樣粗,上下兩個圓面大小一樣。放在桌子上能滾動。立在桌子上不能滾動。如圖:
4、球的特征:圓圓的,很光滑,它的表面是曲面。放在桌子上能向任意方向滾動。
5、立體圖形的拼擺:用長方體或正方體能拼組出不同形狀的立體圖形,在拼好的立體圖形中,有一些部位從一個角度是看不到的,要從多個角度去觀察。用小圓柱可以拼成更大的圓柱。
第五單元
6—10的認識和加減法
一、6—10的認識:
1、數數:根據物體的個數,可以用6—10各數來表示。數數時,從前往后數也就是從小往大數。
2、10以內數的順序:
(1)從前往后數:0、1、2、3、4、5、6、7、8、9、10。
(2)從后往前數:10、9、8、7、6、5、4、3、2、1、0。
3、比較大小:按照數的順序,后面的數總是比前面的數大。
4、序數含義:用來表示物體的次序,即第幾個。
5、數的組成:一個數(0、1除外)可以由兩個比它小的數組成。如:10由9和1組成。
記憶數的組成時,可由一組數想到調換位置的另一組。
二、6—10的加減法1、10以內加減法的計算方法:根據數的組成來計算。
2、一圖四式:根據一副圖的思考角度不同,可寫出兩道加法算式和兩道減法算式。
3、“大括號”下面有問號是求把兩部分合在一起,用加法計算。“大括號
”上面的一側有問號是求從總數中去掉一部分,還剩多少,用減法計算。
三、連加連減
1、連加的計算方法:計算連加時,按從左到右的順序進行,先算前兩個數的和,再與第三個數相加。
2、連減的計算方法:計算連減時,按從左到右的順序進行,先算前兩個數的差,再用所得的數減去第三個數。
四、加減混合加減混合的計算方法:計算時,按從左到右的順序進行,先把前兩個數相加(或相減),再用得數與第三個數相減(或相加)。
第六單元
11—20各數的認識
1、數數:根據物體的個數,可以用11—20各數來表示。
2、數的順序:11—20各數的順序是:11、12、13、14、15、16、17、18、19、20、3、比較大小:可以根據數的順序比較,后面的數總比前面的數大,或者利用數的組成進行比較。
4、11—20各數的組成:都是由1個十和幾個一組成的,20由2個十組成的。如:1個十和5個一組成15。
5、數位:從右邊起第一位是個位,第二位是十位。
6、11—20各數的讀法:從高位讀起,十位上是幾就讀幾十,個位上是幾就讀幾。20的讀法,20讀作:二十。
7、寫數:寫數時,對照數位寫,有1個十就在十位上寫1,有2個十就在十位上寫2.有幾個一,就在個位上寫幾,個位上一個單位也沒有,就寫0占位。
8、十加幾、十幾加幾與相應的減法:
(1)10加幾和相應的減法的計算方法:10加幾得十幾,十幾減幾得十,十幾減十得幾。
如:10+5=15
17-7=10
18-10=8
(2)十幾加幾和相應的減法的計算方法:計算十幾加幾和相應的減法時,可以利用數的組成來計算,也可以把個位上的數相加或相減,再加整十數。
(3)加減法的各部分名稱:
在加法算式中,加號前面和后面的數叫加數,等號后面的數叫和。
在減法算式中,減號前面的數叫被減數,減號后面的數叫減數,等號后面的數叫差。
9、解決問題:
求兩個數之間有幾個數,可以用數數法,也可以用畫圖法。還可以用計算法(用大數減小數再減1的方法來計算)。
第七單元
認識鐘表
1、認識鐘面:
鐘面:鐘面上有12個數,有時針和分針。
分針:鐘面上又細又長的指針叫分針。
時針:鐘面上又粗又短的指針叫時針。
2、鐘表的種類:日常生活中的鐘表一般分兩種,一種:掛鐘,鐘面上有12個數,分針和時針。另一種:電子表,表面上有兩個點“:”,“:”的左邊和右邊都有數。
3、認識整時:
分針指向12,時針指向幾就是幾時;電子表上,“:”的右邊是“00”時表示整時,“:”的左邊是幾就是幾時。
3、整時的寫法:
整時的寫法有兩種:寫成幾時或電子表數字的形式。如:8時或8:00
第八單元
20以內的進位加法
一、9加幾計算方法:計算9加幾的進位加法,可以采用“點數”“接著數”“湊十法”等方法進行計算,其中“湊十法”比較簡便。
利用“湊十法”計算9加幾時,把9湊成10需要1,就把較小數拆成1和幾,10加幾就得十幾。
二、8、7、6加幾的計算方法:(1)點數;
(2)接著數;(3)湊十法。可以“拆大數、湊小數”,也可以“拆小數、湊大數”。三、5、4、3、2加幾的計算方法:
(1)“拆大數、湊小數”。(2)“拆小數、湊大數”。
四、解決問題:
(1)解決問題時,可以從不同的角度觀察、分析、從而找到不同的解題方法。
(2)求總數的實際問題,用加法計算。