第一篇:冀教版初一數(shù)學(xué)知識點上冊
初一數(shù)學(xué)(上)應(yīng)知應(yīng)會的知識點
第一章 幾何圖形的初步認識
幾何圖形包括立體圖形(幾何體)和平面圖形。像正方體、長方體、棱柱、圓柱、圓錐、球等,它們都是立體圖形;像線段、直線、三角形、長方形、梯形、正六邊形、圓等,它們都是平面圖形。
幾何體都是由面圍成的,如:長方體有六個面,這些面都是平的;圓柱有兩個底面,也都是平的,一個側(cè)面是曲的;球有一個面,是曲的。
包圍著幾何體的是面,面與面相交形成線,線與線相交形成點。點、線、面是幾何圖形的基本要素。點動成線,線動成面,面動成體。
我們常由以下三種途徑得到與幾何體相關(guān)的平面圖形,以更好地認識幾何體:(1)展開與折疊;(2)從不同方向看;(3)用平面截。
第二章 有理數(shù)
1.有理數(shù):(1)凡能寫成qp
(p,q為整數(shù)且p?0)形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);
整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);?不是有理數(shù);
?
?正有理數(shù)?
(2)有理數(shù)的分類:① 有理數(shù)?零
?
?負有理數(shù)?
?正整數(shù)?
?正分數(shù)?負整數(shù)?
?負分數(shù)
?
?整數(shù)?
② 有理數(shù)?
?
?分數(shù)?
?正整數(shù)??零?負整數(shù)??正分數(shù)?
?負分數(shù)
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)? 0和正整數(shù);a>0 ? a是正數(shù);a<0 ? a是負數(shù);
a≥0 ? a是正數(shù)或0 ? a是非負數(shù);a≤ 0 ? a是負數(shù)或0 ? a是非正數(shù).2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;(2)注意: a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;(3)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù).4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(a?0)?a
(a?0)??a
(2)絕對值可表示為:a??0(a?0)或a?? ;絕對值的問題經(jīng)常分類討論;
?a(a?0)????a(a?0)
(3)
aa
?1?a?0;
aa
??1?a?0;
ab
ab
(4)|a|是重要的非負數(shù),即|a|≥0;注意:|a|2|b|=|a2b|,?.5.有理數(shù)比大?。海?)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切
負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若 a≠0,那么a的倒數(shù)是若ab=1? a、b互為倒數(shù);若ab=-1? a、b互為負倒數(shù).7.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;(3)一個數(shù)與0相加,仍得這個數(shù).8.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).10 有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.11 有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即13.有理數(shù)乘方的法則:(1)正數(shù)的任何次冪都是正數(shù);
(2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(-a)=-a或(a-b)=-(b-a), 當n為
正偶數(shù)時:(-a)=a14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;(3)a2是重要的非負數(shù),即a2≥0;若a2+|b|=0 ? a=0,b=0;
0.1?0.01?
?2
?1?1
(4)據(jù)規(guī)律2??底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.10?100??????????????
1a
;倒數(shù)是本身的數(shù)是±1;
a0
無意義.nnnn
n
n
或(a-b)=(b-a).nn
18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學(xué)計算的最重要的原則.第三章 估算與近似數(shù)
1.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a310的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)
法.2.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.3.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.n
第四章 線段 角
線段的直觀形象就是伸直的一段線。位于線段頂端的點叫做線段的端點。一條線段有兩個端點。
由線段向一方無線延伸形成的圖形,叫做射線。原線段另一方的端點叫做射線的端點。一條射線只有一個端點。由線段向兩方無限延伸形成的圖形叫做直線。直線沒有端點。
經(jīng)過兩點有一條直線,并且只有一條直線。
線段AB上的一點M,把線段AB分成兩條線段AM與MB。如果線段AM與線段BM相等,那么點M就叫做線段AB的中點。
兩點之間的所有連線中,線段最短。
兩點之間線段的長度,叫做這兩點之間的距離。
有公共 端點的兩條射線所組成的圖形,叫做角,這個公共端點叫做角的頂點,這兩條射線叫做角的邊。角度的轉(zhuǎn)化:1°=60'1'=60''
從一個角的頂點引出的一條射線,可以把這個角分成兩個角,如果這兩個角相等,那么這條射線叫做這個角的平分線。如果兩個角的和等于90°,我們就稱這連個角互為余角,簡稱互余。其中一個角叫做另外一個角的余角。如果兩個角的和等于180°,我們就稱這連個角互為補角,簡稱互補。其中一個角叫做另外一個角的補角。同角(或等角)的余角相等,同角(或等角)的補角相等。
第五章 數(shù)量和數(shù)量之間的關(guān)系
1.代數(shù)式:用運算符號“+ - 3÷??”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式.2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“2 ” 乘,或省略不寫;(2)數(shù)與數(shù)相乘,仍應(yīng)使用“3”乘,不用“2 ”乘,也不能省略乘號;(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a35應(yīng)寫成5a;(4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a31
應(yīng)寫成32
a;
3a
(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.3.幾個重要的代數(shù)式:(m、n表示整數(shù))(1)a與b的平方差是:a-b
;a與b差的平方是:(a-b);
(2)若a、b、c是正整數(shù),則兩位整數(shù)是: 10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是: 5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-
1、n、n+1;
(4)若b>0,則正數(shù)是:a+b,負數(shù)是:-a-b,非負數(shù)是: a,非正數(shù)是:-a.4.解應(yīng)用題的常用公式:
(1)行程問題:距離=速度2時間速度?
距離時間
時間?
距離速度;
工作量工效
(2)工程問題:工作量=工效2工時工效?(3)比率問題:部分=全體2比率比率?
工作量工時
工時?
部分比率;
部分全體
全體?;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價格問題:售價=定價2折2
110,利潤=售價-成本,利潤率?
售價?成本
成本
?100%;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a,S環(huán)形=π(R-r),V長方體=abc,V正方體=a,V圓柱=πRh,V圓錐=πRh.第六章 整式的加減
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式.5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.整式分類為:整式?
?單項式?多項式
.6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列.
第二篇:初一上冊數(shù)學(xué)知識點最新
初一上冊數(shù)學(xué)知識點最新有哪些你知道嗎?教學(xué)中教師要鼓勵、引導(dǎo)學(xué)生在感性材料的基礎(chǔ)上,理解數(shù)學(xué)概念或通過數(shù)量關(guān)系,進行簡單的判斷、推理,從而掌握最基礎(chǔ)的知識,一起來看看初一上冊數(shù)學(xué)知識點最新,歡迎查閱!
初一上冊數(shù)學(xué)知識點整理
一、:代數(shù)初步知識。
1.代數(shù)式:用運算符號“+-×÷……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“?”乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“?”乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
(4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×應(yīng)寫成a;
(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.二、:幾個重要的代數(shù)式(m、n表示整數(shù))。
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負數(shù)是:-a2-b,非負數(shù)是:a2,非正數(shù)是:-a2.三、:有理數(shù)。
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
(3)
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)絕對值可表示為:初一上冊知識點絕對值的問題經(jīng)常分類討論;
(3)
(4)|a|是重要的非負數(shù),即|a|≥0;注意:|a|?|b|=|a?b|,5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.四、:有理數(shù)法則及運算規(guī)律。
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù).2.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).3.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).4.有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.5.有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.6.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.7.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
五、:乘方的定義。
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
(3)
(4)據(jù)規(guī)律底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.2.3.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.4.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.5.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學(xué)計算的最重要的原則.6.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進行猜想的一種方法,但不能用于證明.六、:整式的加減。
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算。
或雖含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))是常見的兩個二次三項式.5.整式:單項式和多項式統(tǒng)稱為整式.七、:整式分類為。
1.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.2.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.3.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.4.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.5.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列.八、:一元一次方程
1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!
2.等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;
等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3.方程:含未知數(shù)的等式,叫方程.4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!
5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.7.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).8.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1……(檢驗方程的解).九、:列一元一次方程解應(yīng)用題。
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法:…………多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).十、:.列方程解應(yīng)用題的常用公式。
初一上期數(shù)學(xué)知識點總結(jié)
第一章有理數(shù)
(一)正負數(shù)1.正數(shù):大于0的數(shù)。2.負數(shù):小于0的數(shù)。
3.0即不是正數(shù)也不是負數(shù)。
4.正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。
(二)有理數(shù)1.有理數(shù):由整數(shù)和分數(shù)組成的數(shù)。包括:正整數(shù)、0、負整數(shù),正分數(shù)、負分數(shù)??梢詫懗蓛蓚€整之比的形式。(無理數(shù)是不能寫成兩個整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點后的數(shù)字是無限不循環(huán)的。如:π)2.整數(shù):正整數(shù)、0、負整數(shù),統(tǒng)稱整數(shù)。3.分數(shù):正分數(shù)、負分數(shù)。
(三)數(shù)軸1.數(shù)軸:用直線上的點表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點表示數(shù)0,這個零點叫做原點,規(guī)定直線上從原點向右或向上為正方向;選取適當?shù)拈L度為單位長度,以便在數(shù)軸上取點。)2.數(shù)軸的三要素:原點、正方向、單位長度。3.相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。4.絕對值:正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù);0的絕對值是0,兩個負數(shù),絕對值大的反而小。
(四)有理數(shù)的加減法
1.先定符號,再算絕對值。2.加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。一個數(shù)同0相加減,仍得這個數(shù)。3.加法交換律:a+b=b+a兩個數(shù)相加,交換加數(shù)的位置,和不變。4.加法結(jié)合律:(a+b)+c=a+(b+c)三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
5.a-b=a+(-b)減去一個數(shù),等于加這個數(shù)的相反數(shù)。
(五)有理數(shù)乘法(先定積的符號,再定積的大小)
1.同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。
2.乘積是1的兩個數(shù)互為倒數(shù)。3.乘法交換律:ab=ba
4.乘法結(jié)合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac
(六)有理數(shù)除法
1.先將除法化成乘法,然后定符號,最后求結(jié)果。
2.除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
3.兩數(shù)相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數(shù),都得0。
(七)乘方
1.求n個相同因數(shù)的積的運算,叫做乘方。寫作an。(乘方的結(jié)果叫冪,a叫底數(shù),n叫指數(shù))
2.負數(shù)的奇數(shù)次冪是負數(shù),負數(shù)的偶次冪是正數(shù);0的任何正整數(shù)次冪都是0。
3.同底數(shù)冪相乘,底不變,指數(shù)相加。
4.同底數(shù)冪相除,底不變,指數(shù)相減。
(八)有理數(shù)的加減乘除混合運算法則
1.先乘方,再乘除,最后加減。
2.同級運算,從左到右進行。
3.如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。
(九)科學(xué)記數(shù)法、近似數(shù)、有效數(shù)字。
第二章整式
(一)整式1.整式:單項式和多項式的統(tǒng)稱叫整式。2.單項式:數(shù)與字母的乘積組成的式子叫單項式。單獨的一個數(shù)或一個字母也是單項式。3.系數(shù):一個單項式中,數(shù)字因數(shù)叫做這個單項式的系數(shù)。4.次數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。5.多項式:幾個單項式的和叫做多項式。6.項:組成多項式的每個單項式叫做多項式的項。7.常數(shù)項:不含字母的項叫做常數(shù)項。8.多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。9.同類項:多項式中,所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。10.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。
(二)整式加減整式加減運算時,如果遇到括號先去括號,再合并同類項。1.去括號:一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同。如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。2.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變。
初一上冊數(shù)學(xué)知識點總結(jié)
有理數(shù)及其運算板塊:
1、整數(shù)包含正整數(shù)和負整數(shù),分數(shù)包含正分數(shù)和負分數(shù)。
正整數(shù)和正分數(shù)通稱為正數(shù),負整數(shù)和負分數(shù)通稱為負數(shù)。
2、正整數(shù)、0、負整數(shù)、正分數(shù)、負分數(shù)這樣的數(shù)稱為有理數(shù)。
3、絕對值:數(shù)軸上一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值,用“||”表示。
整式板塊:
1、單項式:由數(shù)與字母的乘積組成的式子叫做單項式。
2、單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
3、整式:單項式與多項式統(tǒng)稱整式。
4、同類項:字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
一元一次方程。
1、含有未知數(shù)的等式叫做方程,使方程左右兩邊的.值都相等的未知數(shù)的值叫做方程的解。
2、移項:把等式一邊的某項變號后移到另一邊,叫做移項等。
其實,七年級上冊數(shù)學(xué)知識點總結(jié)還包括很多,但是我想,萬變不離其宗。
大家平時要注意整理與積累。配合多加練習(xí)。一些知識要點及時記錄在筆記本上,一些錯題也要及時整理、復(fù)習(xí)。一個個知識點去通過。我相信只要做個有心人,就可以在數(shù)學(xué)考試中取得高分。
第三篇:初一數(shù)學(xué)上冊知識點
初一數(shù)學(xué)上冊知識點:整式的加減
本文為大家介紹的是初一數(shù)學(xué)上冊知識點,是有關(guān)整式的加減法的,希望同學(xué)們熟記這些公式并能靈活的運用。
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式.5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.整式分類為:.6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列.
第四篇:初一數(shù)學(xué)上冊知識點
榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心
初一數(shù)學(xué)(上)應(yīng)知應(yīng)會的知識點
代數(shù)初步知識
1.代數(shù)式:用運算符號“+ - ×÷??”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“· ” 乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“· ”乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
(4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×11
2應(yīng)寫成a; 2
33(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式; a
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做
a-b和b-a.3.幾個重要的代數(shù)式:(m、n表示整數(shù))
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是: 10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是: 5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)
是:n-
1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負數(shù)是:-a2-b,非負數(shù)是: a2,非正數(shù)是:-a2.有理數(shù)
1.有理數(shù):
(1)凡能寫成q
p(p,q為整數(shù)且p?0)形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)
統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正
榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心
數(shù);?不是有理數(shù);
?
?正有理數(shù)?
(2)有理數(shù)的分類:① 有理數(shù)?零
?
?負有理數(shù)?
?正整數(shù)?
?正分數(shù)?負整數(shù)?
?負分數(shù)
?
?整數(shù)?
② 有理數(shù)?
?
?分數(shù)?
?正整數(shù)??零?負整數(shù)??正分數(shù)?
?負分數(shù)
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)? 0和正整數(shù);a>0 ? a是正數(shù);a<0 ? a是負數(shù);
a≥0 ? a是正數(shù)或0 ? a是非負數(shù);a≤ 0 ? a是負數(shù)或0 ? a是非正數(shù).2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;(2)注意: a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;(3)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù).4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(a?0)?a
(a?0)??a
(2)絕對值可表示為:a??0(a?0)或a?? ;絕對值的問題經(jīng)常分類討論;
?a(a?0)????a(a?0)
aa
aa
(3)
?1?a?0;
??1?a?0;
ab
ab
(4)|a|是重要的非負數(shù),即|a|≥0;注意:|a|·|b|=|a·b|,?
.5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0??;(3)正數(shù)
大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而??;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.-2-
榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心
6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若 a≠0,那么a的倒數(shù)是;倒數(shù)是本身的a1
數(shù)是±1;若ab=1? a、b互為倒數(shù);若ab=-1? a、b互為負倒數(shù).7.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;(3)一個數(shù)與0相加,仍得這個數(shù).8.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).10 有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.11 有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即13.有理數(shù)乘方的法則:(1)正數(shù)的任何次冪都是正數(shù);
(2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n , 當
n為正偶數(shù)時:(-a)n =an或(a-b)n=(b-a)n.14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
a0
無意義.榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心
(3)a2是重要的非負數(shù),即a2≥0;若a2+|b|=0 ? a=0,b=0;
0.1?0.01?
?2
?1?1
(4)據(jù)規(guī)律2??底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.10?100??????????????
15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫
科學(xué)記數(shù)法.16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學(xué)計算的最重要的原則.19.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進行猜想的一種方法,但不能用于證明.整式的加減
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式.5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.?單項式整式整式分類為:.?
多項式?
榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心
6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到?。┡帕衅饋?,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列.一元一次方程
1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2.等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式; 等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3.方程:含未知數(shù)的等式,叫方程.4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.7.一元一次方程的標準形式: ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).8.一元一次方程的最簡形式: ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).9.一元一次方程解法的一般步驟: 整理方程 ?? 去分母 ?? 去括號 ?? 移項 ?? 合并同類項 ?? 系數(shù)化為1 ??(檢驗方程的解).10.列一元一次方程解應(yīng)用題:
(1)讀題分析法:???? 多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量
榮升教育----------初中數(shù)學(xué)一對一輔導(dǎo)中心的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法: ???? 多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).11.列方程解應(yīng)用題的常用公式:
(1)行程問題:距離=速度·時間速度?
距離時間
時間?
距離速度;
工作量工效
(2)工程問題:工作量=工效·工時工效?
工作量工時
工時?
部分比率;
(3)比率問題:部分=全體·比率比率?
部分全體
全體?;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價格問題:售價=定價·折·(6)周長、面積、體積問題:C
110,利潤=售價-成本,利潤率?
售價?成本
成本
?100%;
S圓=πR,C長方形=2(a+b),S長方形=ab,C圓=2πR,正方形
=4a,S正方形=a,S環(huán)形=π(R-r),V長方體=abc,V正方體=a,V圓柱=πRh,V
圓錐=πRh.
第五篇:冀教版五年級上冊數(shù)學(xué)知識點總結(jié)
冀教版五年級數(shù)學(xué)上冊期末重點
第一部分
方向與路線
一、判斷物體方向口訣:
1.找準觀測點。例子:A在B是什么方向,以B為觀測點。
2.判斷方向,一般從南或北說起。3.找角度,角的一條邊在南或北。
二、描述路線要注意:方向和距離。
第二部分 小數(shù)乘除法
一、小數(shù)點位置的移動引起小數(shù)大小的變化
小數(shù)點向右移動一位,兩位,三位,原來的數(shù)就擴大10倍;100倍;1000倍。
小數(shù)點向左移動一位,兩位,三位原來的數(shù)就縮小到原來的1/10;1/100;1/1000。小數(shù)點向左或者向右移動,位數(shù)不夠時,要用“0”補足位。
二、小數(shù)乘法
1小數(shù)乘法的計算方法:先按照整數(shù)乘法的法則算出積,再看因數(shù)中一共有幾位小數(shù),就從積的右邊起數(shù)出幾位點上小數(shù)點。
2積與因數(shù)的關(guān)系:
一個數(shù)(0除外)乘大于1的數(shù),積比原來的數(shù)大。
一個數(shù)(0除外)乘小于1的數(shù),積比原來的數(shù)小。
三、小數(shù)除法
1.除數(shù)是整數(shù)的小數(shù)除法,按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添0再繼續(xù)除。
2.一個數(shù)除以小數(shù):除數(shù)是小數(shù)的除法,先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點向右移動幾位,被除數(shù)的小數(shù)點也向右移動幾位,(位數(shù)不夠的,在被除數(shù)末尾用0補足)然后按照除數(shù)是整數(shù)的小數(shù)除法進行計算。3.求商的近似值:
① 用四舍五入法,保留整數(shù),除到第一位小數(shù);保留一位小數(shù),除到第二位小數(shù);保留兩位小數(shù),除到第三位小數(shù)……
② 根據(jù)具體情況用去尾法或進一法取近似值。
4、循環(huán)小數(shù)的表示方法有兩種:例4.3232……或4.32 6.商的變化規(guī)律:
如果除數(shù)是小于1的小數(shù),那么商大于被除數(shù);
如果除數(shù)是大于1的小數(shù),那么商小于被除數(shù)。
如果被除數(shù)比除數(shù)小,商就小于1。
四、解決問題
1.商不變的規(guī)律:被除數(shù)和除數(shù)同時擴大或者同時縮小相同的倍,商不變。2.小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。3.運算定律
(1)加法交換律: a+b=b+a 加法結(jié)合律:(a+b)+c=a+(b+c)(2)乘法交換律: a×b=b×a 乘法結(jié)合律:(a×b)×c=a×(b×c)(3)乘法分配律:(a+b)×c=a×c+b×c
(4)減法的性質(zhì): a-b-c=a-(b+c)除法的性質(zhì): a÷b÷c=a÷(b×c)
第四部分 可能性
判斷事情發(fā)生的三種情況:可能、一定、不可能。某件事發(fā)生的可能性大,并不代表該事件一定發(fā)生。
第五部分 混合運算
1.一個算式里,如果只含有同一級運算,要從左到右依次計算。
2.一個算式里,如果含有兩級運算,要先做第二級運算,后做第一級運算。(即先乘、除,后加減)
3.有括號的,要先算括號里面的,再算括號外面的;既有小括號又有中括號的,要先算小括號里面的,再算中括號里面的。
4.會將3-4個分步算式列成綜合算式。(從后往前)
第六部分 多邊形面積
平行四邊形:S=ah
a=S÷h h= S÷a 三角形:S=ah÷2
a=2S÷h h= 2S÷a 梯形:S=(a+b)h÷2
a+b=2S÷h h= 2S÷(a+b)等底等高的三角形的面積是平行四邊形面積的一半。
用四根木條訂成一個長方形,拉伸變成平行四邊,周長不變,高變小,面積變小。
第七部分 土地面積
1、常用的土地面積單位:平方米、公頃。較大的土地面積單位:平方千米。
1平方米 =100平方分米
1平方分米=100平方厘米
邊長100米的正方形,面積是1公頃。邊長1000米的正方形,面積是1平方千米。1公頃=10000平方米
1平方千米=100公頃 1平方千米=1000000平方米 高級單位化低級單位乘進率,低級單位化高級單位除以進率。
2、種植問題。一棵果樹的占地面積=株距×行距
種植棵數(shù)=種植面積÷每棵樹的占地面積 種植面積=種植棵數(shù)×每棵樹的占地面積
3、常見填空題 我國的國土面積是960萬平方千米。一間教室的面積大概是50平方米。一個足球場(操場)面積大約是1公頃。一個村莊的面積大概是100公頃。一個縣城的面積大概是100平方千米。
第八部分 方程
1.表示相等關(guān)系的式子叫做等式。
含有未知數(shù)的等式是方程。
2.方程一定是等式;等式不一定是方程。等式>方程
3.等式兩邊同時加上或減去同一個數(shù),等式仍然成立。
等式兩邊同時乘或除以同一個數(shù)(除數(shù)不能為0),等式仍然成立。
4.解方程要寫解字,會檢驗過程。列方程解應(yīng)用題要注意寫解設(shè)。