專題:證明的方法
-
證明方法
2.2直接證明與間接證明BCA案主備人:史玉亮 審核人:吳秉政使用時間:2012年2-11學習目標:1.了解直接證明的兩種基本方法,即綜合法和分析法。了解間接證明的一種基本方法——反證法
-
證明不等式方法
不等式的證明是高中數學的一個難點,題型廣泛,涉及面廣,證法靈活,錯法多種多樣,本節通這一些實例,歸納整理證明不等式時常用的方法和技巧。 1比較法比較法是證明不等式的最基本方法
-
韓信點兵方法證明
關于韓信點兵問題公式的證明設:第一次每排A人,最后剩余a人,第二次每排B人,最后剩余b人, 第三次每排C人,最后剩余c人。 按照求解方法的步驟是:第一步1找到滿足下列條件的k1 、k2: ○(B
-
立體幾何證明方法
立體幾何證明方法 一、線線平行的證明方法:
1、利用平行四邊形。2、利用三角形或梯形的中位線
3、如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線 -
不等式證明若干方法
安康學院 數統系數學與應用數學 專業 11 級本科生論文(設計)選題實習報告11級數學與應用數學專業《科研訓練2》評分表注:綜合評分?60的為“及格”;
-
數學證明方法
數學證明方法摘要:數學證明是數學學習中非常重要的一部分,數學證明有核實作用,理解作用,發現作用和思維訓練作用,數學證明常用的方法有綜合法、分析法、反證法、數學歸納法等等。
-
數學證明方法
數學證明方法 1 直接證明法 從正面證明命題真實性的證明方法叫做直接證法.凡是用演繹法證明命題真實性的都是直接證法.它是中學數學中常用的證明方法.綜合法、分析法、分析綜
-
勾股定理證明方法
勾股定理證明方法勾股定理的種證明方法(部分)【證法1】(梅文鼎證明)做四個全等的直角三角形,設它們的兩條直角邊長分別為a、b,斜邊長為c.把它們拼成如圖那樣的一個多邊形,使D、
-
勾股定理證明方法(精選)
勾股定理證明方法勾股定理是初等幾何中的一個基本定理。所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。這個定理有十分悠久的歷史,幾乎所有文明古國(希
-
函數的證明方法
一般地,對于函數f(x) ⑴如果對于函數f(x)定義域內的任意一個x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函數f(x)就叫做偶函數。關于y軸對稱,f(-x)=f(x)。 ⑵如果對于函數f(x)定義域內的任意
-
不等式的一些證明方法
數學系數學與應用數學專業2009級年論文(設計) 不等式的一些證明方法 [摘要]:不等式是數學中非常重要的內容,不等式的證明是學習中的重點和難點,本文除總結不等式的常規證明
-
不等式的證明方法
幾個簡單的證明方法一、比較法:a?b等價于a?b?0;而a?b?0等價于ab?1.即a與b的比較轉化為與0或1的比較.使用比較發時,關鍵是要作適當的變形,如因式分解、拆項、加減項、通分等,這是第一章
-
證明不等式方法探析
§1 不等式的定義用不等號將兩個解析式連結起來所成的式子。在一個式子中的數的關系,不全是等號,含sinx?1,ex>0 ,2x<3,5x?5不等符號的式子,那它就是一個不等式.例如2x+2y?2xy,等。根據
-
哥德巴赫猜想證明方法
哥德巴赫猜想的證明方法
探索者:王志成
人們不是說:證明哥德巴赫猜想,必須證明“充分大”的偶數有“1+1”的素數對,才能說明哥德巴赫猜想成立嗎?今天,我們就來談如何尋找“充分大 -
證明平行的方法
證明平行的方法高中立體幾何的證明主要是平行關系與垂直關系的證明。方法如下(難以建立坐標系時再考慮):Ⅰ.平行關系:線線平行:1.在同一平面內無公共點的兩條直線平行。2.公理4
-
勾股定理五種證明方法
勾股定理五種證明方法【證法1】做8個全等的直角三角形,設它們的兩條直角邊長分別為a、b,斜邊長為c,再做三個邊長分別為a、b、c的正方形,把它們像上圖那樣拼成兩個正方形.從圖上
-
勾股定理的證明方法
這個直角梯形是由2個直角邊分別為、,斜邊為 的直角
三角形和1個直角邊為的等腰直角三角形拼成的。因為3個直角三角形的面積之和等于梯形的面積,所以可以列出等式
化簡得
,。 -
四點共圓證明方法
:四點共圓的證明方法有以下五種,本例用的是第二種 方法1從被證共圓的四點中先選出三點作一圓,然后證另一點也在這個圓上,若能證明這一點,即可肯定這四點共圓. 方法2把被證共圓的四