第一篇:5.2.2平行線的判定練習(xí)題
5.2.2平行線的判定
(檢測(cè)時(shí)間50分鐘滿分100分)
班級(jí)_________________姓名____________得分________
一、選擇題:(每小題3分,共15分)
1.如圖1所示,下列條件中,能判斷AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD
A
D
ADA
E
EC
(1)(2)(3)2.如圖2所示,如果∠D=∠EFC,那么()
A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3.如圖3所示,能判斷AB∥CE的條件是()
A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE4.下列說(shuō)法錯(cuò)誤的是()
A.同位角不一定相等B.內(nèi)錯(cuò)角都相等
C.同旁內(nèi)角可能相等D.同旁內(nèi)角互補(bǔ),兩直線平行
5.不相鄰的兩個(gè)直角,如果它們有一邊在同一直線上,那么另一邊相互()A.平行B.垂直C.平行或垂直D.平行或垂直或相交
二、填空題:(每小題3分,共9分)
1.在同一平面內(nèi),直線a,b相交于P,若a∥c,則b與c的位置關(guān)系是______.2.在同一平面內(nèi),若直線a,b,c滿足a⊥b,a⊥c,則b與c的位置關(guān)系是______.3.如圖所示,BE是AB的延長(zhǎng)線,量得∠CBE=∠A=∠C.DC
(1)由∠CBE=∠A可以判斷______∥______,根據(jù)是_________.(2)由∠CBE=∠C可以判斷______∥______,根據(jù)是_________.三、訓(xùn)練平臺(tái):(每小題15分,共30分)
1.如圖所示,已知∠1=∠2,AB平分∠DAB,試說(shuō)明DC∥AB.A
2.如圖所示,已知直線EF和AB,CD分別相交于K,H,且EG⊥AB,∠CHF=600,∠E=?30°,試說(shuō)明AB∥
CD.E
AK
BCH
D
四、提高訓(xùn)練:(共20分)
如圖所示,已知直線a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,則a與c平行嗎??為什么?
de
a
bc
五、探索發(fā)現(xiàn):(共22分)
如圖所示,請(qǐng)寫(xiě)出能夠得到直線AB∥CD的所有直接條件.A24B
C
5D
六、中考題與競(jìng)賽題:(共4分)
(2000.江蘇)如圖所示,直線a,b被直線c所截,現(xiàn)給出下c
列四個(gè)條件:?①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.說(shuō)明a∥b的條件序號(hào)為()
1其中能
a
A.①②B.①③C.①④D.③④
5b
第二篇:平行線及其判定與性質(zhì)練習(xí)題
?平行線及其判定
1、基礎(chǔ)知識(shí)
(1)在同一平面內(nèi),______的兩條直線叫做平行線.若直線a與直線b平行,則記作______.(2)在同一平面內(nèi),兩條直線的位置關(guān)系只有______、______.(3)平行公理是:。
(4)平行公理的推論是如果兩條直線都與______,那么這兩條直線也______.即三條直線a、b、c,若a∥b,b∥c,則______.
(5)兩條直線平行的條件(除平行線定義和平行公理推論外):
①兩條直線被第三條直線所截,如果______,那么這兩條直線平行,這個(gè)判定方法1可簡(jiǎn)述為:______,兩直線平行.
②兩條直線被第三條直線所截,如果__ _,那么,這個(gè)判定方法2可簡(jiǎn)述為: ______,______. ③兩條直線被第三條直線所截,如果_ _____那么______,這個(gè)判定方法3可簡(jiǎn)述為:
2、已知:如圖,請(qǐng)分別依據(jù)所給出的條件,判定相應(yīng)的哪兩條直線平行?并寫(xiě)出推理的根據(jù).(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)
3、已知:如圖,請(qǐng)分別根據(jù)已知條件進(jìn)行推理,得出結(jié)論,并在括號(hào)內(nèi)注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)
4、作圖:已知:三角形ABC及BC邊的中點(diǎn)D,過(guò)D點(diǎn)作DF∥CA交AB于M,再過(guò)D點(diǎn)作DE∥AB交AC于N點(diǎn).
5、已知:如圖,∠1=∠2,求證:AB∥CD.(嘗試用三種方法)
6、已知:如圖,CD⊥DA,DA⊥AB,∠1=∠2,試確定射線DF與AE的位置關(guān)系,并說(shuō)明你的理由.(1)問(wèn)題的結(jié)論:DF______AE.
(2)證明思路分析:欲證DF______AE,只要證∠3=______.(3)證明過(guò)程:
證明:∵CD⊥DA,DA⊥AB,()∴∠CDA=∠DAB=______°.(垂直定義)又∠1=∠2,()從而∠CDA-∠1=______-______,(等式的性質(zhì))即∠3=______.∴DF______AE.(___________,___________)
7、已知:如圖,∠ABC=∠ADC,BF、DE分別平分∠ABC與∠ADC,且∠1=∠3.求證:AB∥DC. 證明∵∠ABC=∠ADC,11?ABC??ADC.2∴2()又∵BF、DE分別平分∠ABC與∠ADC,∴?1?11?ABC,?2??ADC.22()∵∠______=∠______.()∵∠1=∠3,()∴∠2=______.()∴______∥______.()
8、已知:如圖,∠1=∠2,∠3+∠4=180°,試確定直線a與直線c的位置關(guān)系,并說(shuō)明你的理由.(1)問(wèn)題的結(jié)論:a______c.
(2)證明思路分析:欲證a______c,只要證______∥______.(3)證明過(guò)程:
證明:∵∠1=∠2,()∴a∥______,(_________,_________)① ∵∠3+∠4=180°
∴c∥______,(_________,_________)② 由①、②,因?yàn)閍∥______,c∥______,∴a______c.(_________,_________)
9、將一直角三角板與兩邊平行的紙條如圖所示放置,下列結(jié)論:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正確的個(gè)數(shù)是()(A)1(B)2(C)3(D)4
10、下列說(shuō)法中,正確的是().(A)不相交的兩條直線是平行線.
(B)過(guò)一點(diǎn)有且只有一條直線與已知直線平行.
(C)從直線外一點(diǎn)作這條直線的垂線段叫做點(diǎn)到這條直線的距離.
(D)在同一平面內(nèi),一條直線與兩條平行線中的一條垂直,則與另一條也垂直.
11、如圖5,將一張長(zhǎng)方形紙片的一角斜折過(guò)去,頂點(diǎn)A落在A′處,BC為折痕,再將BE翻折過(guò)去與BA′重合,BD為折痕,那么兩條折痕的夾角∠CBD= 度.
圖6
12、圖(6)是由五個(gè)同樣的三角形組成的圖案,三角形的三個(gè)角分別為36°、72°、72°,則圖中共有___ 對(duì)平行線。
13、下列說(shuō)法正確的是()(A)有且只有一條直線與已知直線垂直
(B)經(jīng)過(guò)一點(diǎn)有且只有一條直線與已經(jīng)直線垂直(C)連結(jié)兩點(diǎn)的線段叫做這兩點(diǎn)間的距離
(D)過(guò)點(diǎn)A作直線l的垂線段,則這條垂線段叫做點(diǎn)A到直線l的距離
14、同一平面內(nèi)的四條直線滿足a⊥b,b⊥c,c⊥d,則下列式子成立的是()A.a(chǎn)∥b B.b⊥d C.a(chǎn)⊥d D.b∥c
?平行線的性質(zhì) 1.基礎(chǔ)知識(shí)
(1)平行線具有如下性質(zhì)
①性質(zhì)1:______被第三條直線所截,同位角______.這個(gè)性質(zhì)可簡(jiǎn)述為兩直線______,同位角______. ②性質(zhì)2:兩條平行線______,______相等.這個(gè)性質(zhì)可簡(jiǎn)述為_(kāi)___________,______. ③性質(zhì)3:____________,同旁內(nèi)角______.這個(gè)性質(zhì)可簡(jiǎn)述為_(kāi)___________,______.
(2)同時(shí)______兩條平行線,并且?jiàn)A在這兩條平行線間的____________叫做這兩條平行線的距離. 2.已知:如圖,請(qǐng)分別根據(jù)已知條件進(jìn)行推理,得出結(jié)論,并在括號(hào)內(nèi)注明理由.(1)如果AB∥EF,那么∠2=______,理由是_____________________________________.(2)如果AB∥DC,那么∠3=______,理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______,理由是_______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______,理由是________________________.3.已知:如圖,DE∥AB.請(qǐng)根據(jù)已知條件進(jìn)行推理,分別得出結(jié)論,并在括號(hào)內(nèi)注明理由.(1)∵DE∥AB,()∴∠2=______.(___________________)(2)∵DE∥AB,()∴∠3=______.(___________________)(3)∵DE∥AB(),∴∠1+______=180°.(____________________)4.已知:如圖,∠1=∠2,∠3=110°,求∠4. 解題思路分析:欲求∠4,需先證明______//______.解:∵∠1=∠2,()∴______//______.(__________________)∴∠4=_____=_____°.(__________________)5.已知:如圖,∠1+∠2=180°,求證:∠3=∠4. 證明思路分析:欲證∠3=∠4,只要證______//______.證明:∵∠1+∠2=180°,()∴______//______.(_________________)∴∠3=∠4.(_________,_________)6.已知:如圖,∠A=∠C,求證:∠B=∠D.
證明思路分析:欲證∠B=∠D,只要證______//______.證明:∵∠A=∠C,()∴______//______.(_________,_________)∴∠B=∠D.(_________,_________)7.已知:如圖,AB∥CD,∠1=∠B,求證:CD是∠BCE的平分線.
證明思路分析:欲證CD是∠BCE的平分線,只要證______//______.證明:∵AB∥CD,()∴∠2=______.(_________,_________)但∠1=∠B,()∴______=______.(等量代換)即CD是____ ________.8.已知:如圖,AB∥CD,∠B=35°,∠1=75°,求∠A的度數(shù). 解題思路分析:欲求∠A,只要求∠ACD的大小. 解:∵CD∥AB,∠B=35°,()∴∠2=∠______=______°(_________,_________)而∠1=75°,∴∠ACD=∠1+∠2=______。∵CD∥AB,()∴∠A+______=180°.(_________,_________)∴∠A=______=______.9.已知:如圖,四邊形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度數(shù). 分析:可利用∠DCE作為中間量過(guò)渡. 解:∵AB∥CD,∠B=50°,()∴∠DCE=∠______=______°(_________,_________)又∵AD∥BC,()∴∠D=∠______=______°(_________,_________)想一想:如果以∠A作為中間量,如何求解? 解法2:∵AD∥BC,∠B=50°,()∴∠A+∠B=______.(_________,_________)即∠A=______-______=______°-______°=______.∵DC∥AB,()∴∠D+∠A=______.(_________,_________)即∠D=______-______=______°-______°=______.10.已知:如圖,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度數(shù). 解:過(guò)P點(diǎn)作PM∥AB交AC于點(diǎn)M. ∵AB∥CD,()∴∠BAC+∠______=180°()∵PM∥AB,∴∠1=∠______,()且PM∥______。(平行于同一直線的兩直線也互相平行)∴∠3=∠______。(兩直線平行,內(nèi)錯(cuò)角相等)∵AP平分∠BAC,CP平分∠ACD,()??1?11?______,?4??______?22()11?BAC??ACD?90?22()??1??4?∴∠APC=∠2+∠3=∠1+∠4=90°()總結(jié):兩直線平行時(shí),同旁內(nèi)角的角平分線______。
11.已知:如圖,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度數(shù).
12.問(wèn)題探究:(1)如果一個(gè)角的兩條邊與另一個(gè)角的兩條邊分別平行,那么這兩個(gè)角的大小有何關(guān)系?舉例說(shuō)明.
(2)如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別垂直,那么這兩個(gè)角的大小有何關(guān)系?舉例說(shuō)明.
13.已知:如圖,AB∥CD,試猜想∠A+∠AEC+∠C=?為什么?說(shuō)明理由.
14.如下圖,AB∥DE,那么∠BCD=().(A)∠2-∠1(B)∠1+∠2(C)180°+∠1-∠2(D)180°+∠2-2∠1 15.如圖直線l1∥l2,AB⊥CD,∠1=34°,那么∠2的度數(shù)是______.
(15題)(16題)
16.如圖,若AB∥CD,EF與AB、CD分別相交于點(diǎn)E、F,EP與∠EFD的平分線相交于點(diǎn)P,且∠EFD=60°,EP⊥FP,則∠BEP=______度.
17.王強(qiáng)從A處沿北偏東60°的方向到達(dá)B處,又從B處沿南偏西25°的方向到達(dá)C處,則王強(qiáng)兩次行進(jìn)路線的夾角為_(kāi)_____度.
18.已知:如圖,AE⊥BC于E,∠1=∠2.求證:DC⊥BC.
19.如圖,AB∥CD,F(xiàn)G⊥CD于N,∠EMB=,則∠EFG等于().(A)180°-(B)90°+(C)180°+(D)270°-
20.已知:如圖,CD⊥AB于D,DE∥BC,EF⊥AB于F,求證:∠FED=∠BCD.
21.以下五個(gè)條件中,能得到互相垂直關(guān)系的有(). ①對(duì)頂角的平分線 ②鄰補(bǔ)角的平分線 ③平行線截得的一組同位角的平分線 ④平行線截得的一組內(nèi)錯(cuò)角的平分線 ⑤平行線截得的一組同旁內(nèi)角的平分線(A)1個(gè)(B)2個(gè)(C)3個(gè)(4)4個(gè)
22.如圖,AB∥CD,若EM平分∠BEF,F(xiàn)M平分∠EFD,EN平分∠AEF,則與∠BEM互余的角有().(A)6個(gè)(B)5個(gè)
(C)4個(gè)(D)3個(gè)
23.把一張對(duì)邊互相平行的紙條折成如圖所示,EF是折痕,若∠EFB=32°,則下列結(jié)論正確的有().
(1)∠C′EF=32°(2)∠AEC=148°
(3)∠BGE=64°(4)∠BFD=116°(A)1個(gè)(B)2個(gè)(C)3個(gè)(D)4個(gè)
24.如圖,AB∥CD,BC∥ED,則∠B+∠D=______.
25.如圖,DC∥EF∥AB,EH∥DB,則圖中與∠AHE相等的角有__________________.26.如圖,BA⊥FC于A點(diǎn),過(guò)A點(diǎn)作DE∥BC,若∠EAF=125°,則∠B=______.(24題)
(25題)
(26題)27.已知:如圖,AC∥BD,折線AMB夾在兩條平行線間.
圖1 圖2(1)判斷∠M,∠A,∠B的關(guān)系;
(2)請(qǐng)你嘗試改變問(wèn)題中的某些條件,探索相應(yīng)的結(jié)論。建議:①折線中折線段數(shù)量增加到n條(n=3,4……)②可如圖1,圖2,或M點(diǎn)在平行線外側(cè).
28.已知:如圖,∠B=∠C,AE∥BC,求證:AE平分∠CAD. 證明:
26.已知:如圖,AB∥DE,CM平分∠BCE,CN⊥CM.求證:∠B=2∠DCN.
27.已知:如圖,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求證:BD∥GE∥AH.
28.已知:如圖,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求證:AF∥EC.
29.已知:如圖,CD⊥AB于D,DE∥BC,∠1=∠2.求證:FG⊥AB.
30.已知:如圖,AB∥CD,∠1=∠B,∠2=∠D.判斷BE與DE的位置關(guān)系并說(shuō)明理由.
31.已知:如圖,△ABC.求證:∠A+∠B+∠C=180°.
第三篇:平行線的判定和性質(zhì)練習(xí)題
平行線的判定定理和性質(zhì)定理
[一]、平行線的判定
一、填空
1.如圖1,若?A=?3,則∥;若?2=?E,則∥; 若?+?= 180°,則∥.c d A a E a 52 23 b B b C A B圖4 圖3 圖1 圖2
2.若a⊥c,b⊥c,則ab.
3.如圖2,寫(xiě)出一個(gè)能判定直線l1∥l2的條件:.
4.在四邊形ABCD中,∠A +∠B = 180°,則∥().
5.如圖3,若∠1 +∠2 = 180°,則∥。
6.如圖4,∠
1、∠
2、∠
3、∠
4、∠5中,同位角有;內(nèi)錯(cuò)角有;同旁內(nèi)角有.
7.如圖5,填空并在括號(hào)中填理由:
(1)由∠ABD =∠CDB得∥();
(2)由∠CAD =∠ACB得∥();
(3)由∠CBA +∠BAD = 180°得∥()
A D Dl1 14 5 3l2 C B C
圖7 圖5 圖6
8.如圖6,盡可能多地寫(xiě)出直線l1∥l2的條件:.
9.如圖7,盡可能地寫(xiě)出能判定AB∥CD的條件來(lái):.
10.如圖8,推理填空:
(1)∵∠A =∠(已知),A
∴AC∥ED();
(2)∵∠2 =∠(已知),2∴AC∥ED();(3)∵∠A +∠= 180°(已知),B D C
∴AB∥FD(); 圖8(4)∵∠2 +∠= 180°(已知),∴AC∥ED();
二、解答下列各題
11.如圖9,∠D =∠A,∠B =∠FCB,求證:ED∥CF. DF
B圖9(第1頁(yè),共3頁(yè))
第四篇:平行線的性質(zhì)和判定練習(xí)題
1.如圖:已知:AD⊥BC于D,EF⊥BC于F,∠1=∠3,求證 :AD平分∠BAC。
2.已知:如圖5, DE∥BC,CD是∠ACB的平分線,∠B=700,∠ACB=500.求∠BDC的度數(shù).A
E D
B C圖
53.如圖,臺(tái)球運(yùn)動(dòng)中,如果母球P擊中邊點(diǎn)A,經(jīng)桌邊反彈后擊中相鄰的另一桌邊的點(diǎn)B,再次反彈.那么母球P經(jīng)過(guò)的路線BC與PA一定平行.請(qǐng)說(shuō)明理由.
4.如圖,AB∥CD,分別探討下面四個(gè)圖形中∠APC與∠PAB、∠PCD的關(guān)系,請(qǐng)你從所得到的關(guān)系中任選一個(gè)加以說(shuō)明.(適當(dāng)添加輔助線,其實(shí)并不難)
5.已知:如圖⑿,CE平分∠ACD,∠1=∠B,求證:AB∥CE
6.如圖:∠1=53?,∠2=127?,∠3=53?,試說(shuō)明直線AB與CD,BC與DE的位置關(guān)系。
7.如圖:已知∠A=∠D,∠B=∠FCB,能否確定ED與CF的位置關(guān)系,請(qǐng)說(shuō)明理由。
8.已知:如圖,,且.求證:EC∥DF.9.如圖10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,寫(xiě)出圖中平行的直線,并說(shuō)明理由. AE F2
3B D C
圖10
10.如圖11,直線AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求證:AB∥CD,MP∥NQ.
E
MB A 1PN C D 2Q F圖11
11.已知:如圖:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。
求證:GH∥MN。
12.如圖,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求證:CD∥BE。
13.如圖,已知:∠A=∠1,∠C=∠2。求證:求證:AB∥CD。
第五篇:初一數(shù)學(xué)平行線的判定練習(xí)題
選擇題
1、如圖,能判定DE∥BC的條件是()A、∠E=∠DCA B、∠DCE=∠E C、∠E=∠CDE D、∠BCE=∠E
2、如圖,下列說(shuō)法正確的是()A、如果∠1=∠2,那么AD∥BC B、如果∠3=∠4,那么AB∥DC C、如果∠3=∠5,那么AD∥BC D、如果∠3=∠5,那么AB∥DC
3、如圖,下列條件中,不能判斷AD∥BC的是()A、∠1=∠3 B、∠2=∠4 C、∠EAD=∠B D、∠D=∠DCF
4、下列說(shuō)法中,正確的是()A、經(jīng)過(guò)一點(diǎn),有且只有一條直線與已知直線平行 B、兩條直線被第三條直線所截,同位角相等 C、垂直于同一條直線的兩條直線互相平行 D、兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,則兩直線平行