久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

全等三角形 教案

時(shí)間:2019-05-12 23:26:24下載本文作者:會(huì)員上傳
簡(jiǎn)介:寫寫幫文庫小編為你整理了多篇相關(guān)的《全等三角形 教案》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《全等三角形 教案》。

第一篇:全等三角形 教案

全等三角形 教案

教學(xué)目標(biāo)

一、知識(shí)與技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性質(zhì)。

2、能正確表示兩個(gè)全等三角形,能找出全等三角形的對(duì)應(yīng)元素。

二、過程與方法

通過觀察、拼圖以及三角形的平移、旋轉(zhuǎn)和翻折等活動(dòng),來感知兩個(gè)三角形全等,以及全等三角形的性質(zhì)。

三、情感態(tài)度與價(jià)值觀

通過全等形和全等三角形的學(xué)習(xí),認(rèn)識(shí)和熟悉生活中的全等圖形,認(rèn)識(shí)生活和數(shù)學(xué)的關(guān)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。教學(xué)重點(diǎn)

1、全等三角形的性質(zhì)。

2、在通過觀察、實(shí)際操作來感知全等形和全等三角形的基礎(chǔ)上,形成理性認(rèn)識(shí),理解并掌握全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。

教學(xué)難點(diǎn) 正確尋找全等三角形的對(duì)應(yīng)元素

教學(xué)關(guān)鍵 通過拼圖、對(duì)三角形進(jìn)行平移、旋轉(zhuǎn)、翻折等活動(dòng),讓學(xué)生在動(dòng)手操作的過程中,感知全等三角形圖形變換中的對(duì)應(yīng)元素的變化規(guī)律,以尋找全等三角形的對(duì)應(yīng)點(diǎn)、對(duì)應(yīng)邊、對(duì)應(yīng)角。

課前準(zhǔn)備: 教師------課件、三角板、一對(duì)全等三角形硬紙版

學(xué)生------白紙一張 硬紙三角形一個(gè)

教學(xué)過程設(shè)計(jì)

一、全等形和全等三角形的概念

(一)導(dǎo)課:教師----(演示課件)廬山風(fēng)景,以詩橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同,不識(shí)廬山真面目,只緣身在此山中指出大自然中廬山的唯一性,但是我們可以通過攝影把廬山的美景拍下來,可以洗出千萬張一模一樣的廬山相片。

第二篇:全等三角形教案

教學(xué)目標(biāo) :

1、知識(shí)目標(biāo):

(1)熟記邊角邊公理的內(nèi)容;

(2)能應(yīng)用邊角邊公理證明兩個(gè)三角形全等.2、能力目標(biāo):

(1)通過“邊角邊”公理的運(yùn)用,提高學(xué)生的邏輯思維能力;

(2)通過觀察幾何圖形,培養(yǎng)學(xué)生的識(shí)圖能力.3、情感目標(biāo):

(1)通過幾何證明的教學(xué),使學(xué)生養(yǎng)成尊重客觀事實(shí)和形成質(zhì)疑的習(xí)慣;

(2)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受,培養(yǎng)學(xué)生勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧.教學(xué)重點(diǎn):學(xué)會(huì)運(yùn)用公理證明兩個(gè)三角形全等.教學(xué)難點(diǎn) :在較復(fù)雜的圖形中,找出證明兩個(gè)三角形全等的條件.教學(xué)用具:直尺、微機(jī)

教學(xué)方法:自學(xué)輔導(dǎo)式

教學(xué)過程 :

1、公理的發(fā)現(xiàn)

(1)畫圖:(投影顯示)

教師點(diǎn)撥,學(xué)生邊學(xué)邊畫圖.(2)實(shí)驗(yàn)

讓學(xué)生把所畫的 剪下,放在原三角形上,發(fā)現(xiàn)什么情況?(兩個(gè)三角形重合)

這里一定要讓學(xué)生動(dòng)手操作.(3)公理

啟發(fā)學(xué)生發(fā)現(xiàn)、總結(jié)邊角邊公理:有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)寫成“邊角邊”或“SAS”)

作用:是證明兩個(gè)三角形全等的依據(jù)之一.應(yīng)用格式:

強(qiáng)調(diào):

1、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號(hào)把它們括在一起;寫出結(jié)論.2、在應(yīng)用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊,公共角、對(duì)頂角、鄰補(bǔ)角、外角、平角等)所以找條件歸結(jié)成兩句話:已知中找,圖形中看.3、平面幾何中常要證明角相等和線段相等,其證明常用方法:

證角相等――對(duì)頂角相等;同角(或等角)的余角(或補(bǔ)角)相等;兩直線平行,同位角相等,內(nèi)錯(cuò)角相等;角平分線定義;等式性質(zhì);全等三角形的對(duì)應(yīng)角相等地.證線段相等的方法――中點(diǎn)定義;全等三角形的對(duì)應(yīng)邊相等;等式性質(zhì).2、公理的應(yīng)用

(1)講解例1.學(xué)生分析完成,教師注重完成后的總結(jié).分析:(設(shè)問程序)

“SAS”的三個(gè)條件是什么?

已知條件給出了幾個(gè)?

由圖形可以得到幾個(gè)條件?

解:(略)

(2)講解例2

投影例2:

例2如圖2,AE=CF,AD∥BC,AD=CB,求證:

學(xué)生思考、分析,適當(dāng)點(diǎn)撥,找學(xué)生代表口述證明思路

讓學(xué)生在練習(xí)本上定出證明,一名學(xué)生板書.教師強(qiáng)調(diào)

證明格式:用大括號(hào)寫出公理的三個(gè)條件,最后寫出

結(jié)論.(3)講解例3(投影)

證明:(略)

學(xué)生分析思路,寫出證明過程.(投影展示學(xué)生的作業(yè),教師點(diǎn)評(píng))

(4)講解例4(投影)

證明:(略)

學(xué)生口述過程.投影展示證明過程.教師強(qiáng)調(diào)證明線段相等的幾種常見方法.(5)講解例5(投影)

證明:(略)

學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論.師生共同討論后,讓學(xué)生口述證明思路.教師強(qiáng)調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明.3、課堂小結(jié):

(1)判定三角形全等的方法:SAS

(2)公理應(yīng)用的書寫格式

(3)證明線段、角相等常見的方法有哪些?

讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu).6、布置作業(yè)

a書面作業(yè) P56#

6、7

b上交作業(yè) P57B組1

思考題:

板書設(shè)計(jì) :

第三篇:全等三角形教案

11.1全等三角形

教學(xué)目標(biāo):1了解全等形及全等三角形的的概念; 2 理解全等三角形的性質(zhì)

在圖形變換以及實(shí)際操作的過程中發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的幾何直覺,學(xué)生通過觀察、發(fā)現(xiàn)生活中的全等形和實(shí)際操作中獲得全等三角形的體驗(yàn)在探索和運(yùn)用全等三角形性質(zhì)的過程中感受到數(shù)學(xué)的樂趣

重點(diǎn):探究全等三角形的性質(zhì)

難點(diǎn):掌握兩個(gè)全等三角形的對(duì)應(yīng)邊,對(duì)應(yīng)角 教學(xué)過程:

觀察下列圖案,指出這些圖案中中形狀與大小相同的圖形

問題:你還能舉出生活中一些實(shí)際例子嗎?

這些形狀、大小相同的圖形放在一起能夠完全重合。能夠完全重合的兩個(gè)圖形叫做全等形 能夠完全重合的兩個(gè)三角形叫做全等三角形 思考:

一個(gè)圖形經(jīng)過平移、翻折、旋轉(zhuǎn)后,位置變化了,但形狀、大小都沒有改變,即平移、翻折、旋轉(zhuǎn)前后的圖形全等。

“全等”用?表示,讀作“全等于”

兩個(gè)三角形全等時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上,如?ABC和?DEF全等時(shí),點(diǎn)A和點(diǎn)D,點(diǎn)B和點(diǎn)E,點(diǎn)C和點(diǎn)F是對(duì)應(yīng)頂點(diǎn),記作?ABC??DEF

把兩個(gè)全等的三角形重合到一起,重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),重合的邊叫做對(duì)應(yīng)邊,重合 的角叫做對(duì)應(yīng)角

思考:如上圖,11-1?ABC??DEF,對(duì)應(yīng)邊有什么關(guān)系?對(duì)應(yīng)角呢? 全等三角形性質(zhì):

全等三角形的對(duì)應(yīng)邊相等; 全等三角形的對(duì)應(yīng)角相等。

思考:(1)下面是兩個(gè)全等的三角形,按下列圖形的位置擺放,指出它們的對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)邊、對(duì)應(yīng)角

BCAoOADBDCACDBCDAB

(2)將?ABC沿直線BC平移,得到?DEF,說出你得到的結(jié)論,說明理由?

AADDEBECFBC

DC(3)如圖,?ABE??ACD,AB與AC,AD與AE是對(duì)應(yīng)邊,已知:?A?43,?B?30,求?A的大小。

小結(jié):

作業(yè):P4—1,2,3

課題:11.2 三角形全等的條件(1)

教學(xué)目標(biāo)

①經(jīng)歷探索三角形全等條件的過程,體會(huì)利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程. ②掌握三角形全等的“邊邊邊”條件,了解三角形的穩(wěn)定性. ③通過對(duì)問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神. 教學(xué)難點(diǎn)

??3

三角形全等條件的探索過程.

一、復(fù)習(xí)過程,引入新知

多媒體顯示,帶領(lǐng)學(xué)生復(fù)習(xí)全等三角形的定義及其性質(zhì),從而得出結(jié)論:全等三角形三條邊對(duì)應(yīng)相等,三個(gè)角分別對(duì)應(yīng)相等.反之,這六個(gè)元素分別相等,這樣的兩個(gè)三角形一定全等.

二、創(chuàng)設(shè)情境,提出問題

根據(jù)上面的結(jié)論,提出問題:兩個(gè)三角形全等,是否一定需要六個(gè)條件呢?如果只滿足上述六個(gè)條件中的一部分,是否也能保證兩個(gè)三角形全等呢? 組織學(xué)生進(jìn)行討論交流,經(jīng)過學(xué)生逐步分析,各種情況逐漸明朗,進(jìn)行交流予以匯總歸納.

三、建立模型,探索發(fā)現(xiàn)

出示探究1,先任意畫一個(gè)△ABC,再畫一個(gè)△A'B'C',使△ABC與△A'B'C',滿足上述條件中的一個(gè)或兩個(gè).你畫出的△A'B'C'與△ABC一定全等嗎? 讓學(xué)生按照下面給出的條件作出三角形.(1)三角形的兩個(gè)角分別是30°、50°.(2)三角形的兩條邊分別是4cm,6cm.(3)三角形的一個(gè)角為30°,—條邊為3cm.

再通過畫一畫,剪一剪,比一比的方式,得出結(jié)論:只給出一個(gè)或兩個(gè)條件時(shí),都不能保證所畫出的三角形一定全等.

出示探究2,先任意畫出一個(gè)△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把畫好的△A'B'C'剪下,放到△ABC上,它們?nèi)葐? 讓學(xué)生充分交流后,在教師的引導(dǎo)下作出△A'B'C',并通過比較得出結(jié)論:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

四、應(yīng)用新知,體驗(yàn)成功

實(shí)物演示:由三根木條釘成的一個(gè)三角形的框架,它的大小和形狀是固定不變的. 鼓勵(lì)學(xué)生舉出生活中的實(shí)例.

給出例l,如下圖△ABC是一個(gè)鋼架,AB=AC,AD是連接點(diǎn)A與BC中點(diǎn)D的支架,求證△ABD≌△ACD.

AB

讓學(xué)生獨(dú)立思考后口頭表達(dá)理由,由教師板演推理過程. 例2 如圖是用圓規(guī)和直尺畫已知角的平分線的示意圖,作法如下: DC

①以A為圓心畫弧,分別交角的兩邊于點(diǎn)B和點(diǎn)C;

②分別以點(diǎn)B、C為圓心,相同長(zhǎng)度為半徑畫兩條弧,兩弧交于點(diǎn)D; ③畫射線AD.

AD就是∠BAC的平分線.你能說明該畫法正確的理由嗎? 例3 如圖四邊形ABCD中,AB=CD,AD=BC,你能把四邊形ABCD分成兩個(gè)相互全等的三角形嗎?你有幾種方法?你能證明你的方法嗎?試一試.

ABDC

五、鞏固練習(xí)

教科書第6頁的思考及練習(xí).

六、反思小結(jié)

回顧反思本節(jié)課對(duì)知識(shí)的研究探索過程、小結(jié)方法及結(jié)論,提煉數(shù)學(xué)思想,掌握數(shù)學(xué)規(guī)律.

七、布置作業(yè)

1.必做題:教科書第15頁習(xí)題11.2中的第1、2題. 2.選做題:教科書第16頁第9題.

課題:11.2 三角形全等的條件(2)教學(xué)目標(biāo)

①經(jīng)歷探索三角形全等條件的過程,培養(yǎng)學(xué)生觀察分析圖形能力、動(dòng)手能力.

②在探索三角形全等條件及其運(yùn)用的過程中,能夠進(jìn)行有條理的思考并進(jìn)行簡(jiǎn)單的推理. ③通過對(duì)問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神. 教學(xué)難點(diǎn)

指導(dǎo)學(xué)生分析問題,尋找判定三角形全等的條件. 知識(shí)重點(diǎn)

應(yīng)用“邊角邊”證明兩個(gè)三角形全等,進(jìn)而得出線段或角相等. 教學(xué)過程(師生活動(dòng))

一、創(chuàng)設(shè)情境,引入課題

多媒體出示探究3:已知任意△ABC,畫△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.

教帥點(diǎn)撥,學(xué)生邊學(xué)邊畫圖,再讓學(xué)生把畫好的△A'B'C',剪下放在△ABC上,觀察這兩個(gè)三角形是否全等.

二、交流對(duì)話,探求新知

根據(jù)前面的操作,鼓勵(lì)學(xué)生用自己的語言來總結(jié)規(guī)律:

兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.(SAS)補(bǔ)充強(qiáng)調(diào):角必須是兩條相等的對(duì)應(yīng)邊的夾角,邊必須是夾相等角的兩對(duì)邊.

三、應(yīng)用新知,體驗(yàn)成功

出示例2,如圖,有—池塘,要測(cè)池塘兩端A、B的距離,可先在平地上取一個(gè)可以直接到達(dá)A和B的點(diǎn)C,連接AC并延長(zhǎng)到D,使CD=CA,連接BC并延長(zhǎng)到E,使CE=CB.連接DE,那么量出DE的長(zhǎng)就是A、B的距離,為什么?

讓學(xué)生充分思考后,書寫推理過程,并說明每一步的依據(jù).(若學(xué)生不能順利得到證明思路,教師也可作如下分析:

要想證AB=DE,只需證△ABC≌△DEC △ABC與△DEC全等的條件現(xiàn)有??還需要??)明確證明分別屬于兩個(gè)三角形的線段相等或者角相等的問題,常常通過證明這兩個(gè)三角形全等來解決. 補(bǔ)充例題:

1、已知:如圖AB=AC,AD=AE,∠BAC=∠DAE

ABCDE5

求證: △ABD≌△ACE 證明:∵∠BAC=∠DAE(已知)

∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD ∴∠BAD=∠CAE 在△ABD與△ACE AB=AC(已知)

∠BAD= ∠CAE(已證)AD=AE(已知)

∴△ABD≌△ACE(SAS)思考: 求證:1.BD=CE 2.∠B= ∠C 3.∠ADB= ∠AEC 變式1:已知:如圖,AB⊥AC,AD⊥AE,AB=AC,AD=AE.求證: ⑴ △DAC≌△EAB 1.BE=DC 2.∠B= ∠ C 3.∠ D= ∠ E 4.BE⊥CD

四、再次探究,釋解疑惑

出示探究4,我們知道,兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.由“兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的條件能判定兩個(gè)三角形全等嗎?為什么? 讓學(xué)生模仿前面的探究方法,得出結(jié)論:兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.

教師演示:方法(一)教科書98頁圖13.2-7.

方法(二)通過畫圖,讓學(xué)生更直觀地獲得結(jié)論.

五、鞏固練習(xí)

教科書第9頁,練習(xí)(1)(2).

六、小結(jié)提高

1.判定三角形全等的方法;

2.證明線段、角相等常見的方法有哪些?讓學(xué)生自由表述,其他學(xué)生補(bǔ)充,讓學(xué)生自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu).

七、布置作業(yè)

1.必做題:教科書第15頁,習(xí)題13.2第3、4題. 2.選做題:教科書第16頁第10題. 3.備選題:

(1)小明做了一個(gè)如圖所示的風(fēng)箏,測(cè)得DE=DF,EH=FH,你能發(fā)現(xiàn)哪些結(jié)淪?并說明理由.(2)如圖,∠1=∠2,AB=AD,AE=AC,求證BC=DE.

B

AMDFCE

課題: 11.2 三角形全等的條件(3)

教學(xué)目標(biāo)

①探索并掌握兩個(gè)三角形全等的條件:“ASA”“AAS”,并能應(yīng)用它們判別兩個(gè)三角形是否全等.

②經(jīng)歷作圖、比較、證明等探究過程,提高分析、作圖、歸納、表達(dá)、邏輯推理等能力;并通過對(duì)知識(shí)方法的總結(jié),培養(yǎng)反思的習(xí)慣,培養(yǎng)理性思維.

③敢于面對(duì)教學(xué)活動(dòng)中的困難,能通過合作交流解決遇到的困難. 教學(xué)重點(diǎn)

理解,掌握三角形全等的條件:“ASA”“AAS”. 教學(xué)難點(diǎn)

探究出“ASA”“AAS”以及它們的應(yīng)用. 教學(xué)過程(師生活動(dòng))創(chuàng)設(shè)情境 復(fù)習(xí):

師:我們已經(jīng)知道,三角形全等的判定條件有哪些? 生:“SSS”“SAS”

師:那除了這兩個(gè)條件,滿足另一些條件的兩個(gè)三角形是否 也可能全等呢?今天我們就來探究三角形全等的另一些條件。探究新知:

一張教學(xué)用的三角形硬紙板不小心 被撕壞了,如圖,你能制作一張與原來 同樣大小的新教具?能恢復(fù)原來三角形 的原貌嗎?

1.師:我們先來探究第一種情況.(課件出示“探究5??”)(1)探究5 先任意畫出一個(gè)△ABC,再畫一個(gè)△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使兩角和它們的夾邊對(duì)應(yīng)相等).把畫好的△A'B'C'剪下,放到△ABC上,它們?nèi)葐? 師:怎樣畫出△A'B'C'?先自己獨(dú)立思考,動(dòng)手畫一畫。

在畫的過程中若遇到不能解決的問題.可小組合作交流解決.

生:獨(dú)立探究,試著畫△A'B'C',(有問題的,可以小組內(nèi)交流解決??)??(2)全班討論交流

師:畫好之后,我們看這兒有一種畫法:(課件出示畫法,出現(xiàn)一步,畫一步)你是這樣畫的嗎? 師:把畫好的△A'B'C'剪下,放到△ABC上,看看它們是否全等. 生:(剪△A'B'C',與△ABC作比較??)師:全等嗎? 生:全等.

師:這個(gè)探究結(jié)果反映了什么規(guī)律?試著說說你的發(fā)現(xiàn). 生1:我發(fā)現(xiàn)?? 生2:??

生3:兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等. 師:這條件可以簡(jiǎn)寫成“角邊角”或“ASA”.至此,我們又增加了—種判別三角形全等的方法.特別應(yīng)

AA'

EBDC7

注意,“邊”必須是“兩角的夾邊”.

練習(xí):已知:如圖,AB=A’C,∠A=∠A’,∠B=∠C 求證:△ABE≌ △A’CD

例1.已知:點(diǎn)D在AB上,點(diǎn)E在AC上,BE和CD

ADOBCE相交于點(diǎn)O,AB=AC,∠B=∠C。求證:BD=CE

2.探究6 師:我們?cè)倏纯聪旅娴臈l件:

在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC與△DEF全等嗎?能利用角邊角條件證明你的結(jié)論嗎? ABCEDF

師:看已知條什,能否用“角邊角”條件證明. 生獨(dú)立思考,探究??再小組合作完成. 師:你是怎么證明的?(讓小組派代表上臺(tái)匯報(bào))小組1:?.

小組2:??投影儀展示學(xué)生證明過程(根據(jù)學(xué)生的不同探究結(jié)果,進(jìn)行不同的引導(dǎo))師:從這可以看出,從這些已知條件中能得出兩個(gè)三角形全等.這又反映了一個(gè)什么規(guī)律? 生l:兩個(gè)角和其中一條邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

生2:在"ASA”中,“邊”必須是“兩角的夾邊”,而這里,“邊”可以是“其中一個(gè)角的對(duì)邊”.

師:非常好,這里的“邊”是“其中一個(gè)角的對(duì)邊”.那怎樣更完整的表述這一規(guī)律? 生1:兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

師:生1很好,這條件我們可以簡(jiǎn)寫成“角角邊”或“AAS”,又增加了判定兩個(gè)三角形全等的一個(gè)條件.

強(qiáng)調(diào)“AAS”中的邊是“其中一個(gè)角的對(duì)邊”.

多讓幾個(gè)學(xué)生描述,進(jìn)一步培養(yǎng)歸納、表達(dá)的能力.

例2.教材11頁1題。

師:從這道例題中,我們又得出了證明線段相等的又一方法,先證兩線段所在的三角形全等,這樣,對(duì)應(yīng)邊也就相等了. 探究7:

(1)三角對(duì)應(yīng)相等的兩個(gè)三角形全等嗎?(課件出示題目)師:想想,怎樣來探究這個(gè)問題? 生1:??

生2:?.

引導(dǎo)學(xué)生通過“畫兩個(gè)三角對(duì)應(yīng)相等的三角形”,看是否一定全等,或“用兩個(gè)同一形狀但大小不同的三角板”等等方法來探究說明.

師:這一規(guī)律我們可以怎樣表達(dá)? 生1:?.

生2:三個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.

(2)師:說得非常好.現(xiàn)在我們來小結(jié)一下;判定兩個(gè)三角形全等我們已有了哪些方法?

生:SSS SAS ASA AAS 小結(jié)提高

師:這節(jié)課通過對(duì)兩個(gè)三角形全等條件的進(jìn)一步探究,你有什么收獲? 鞏固練習(xí)

教科書第11頁,練習(xí)2. 布置作業(yè)

1。必做題:教科書第13頁習(xí)題11.2第6、11題

2.如圖,小明不慎將一塊三角形模具打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊與原來一樣的三角形模具呢?如果可以,帶哪塊去合適?為什么? ⑵⑴

課題: 11.2 三角形全等的條件(4)

教學(xué)目標(biāo)

①探索并掌握兩個(gè)直角三角形全等的條件:HL,并能應(yīng)用它判別兩個(gè)直角三角形是否全等.

②經(jīng)歷作圖、比較、證明等探究過程,提高分析、作圖、歸納、表達(dá)、邏輯推理等能力;并通過對(duì)知識(shí)方法的總結(jié),培養(yǎng)反思的習(xí)慣,培養(yǎng)理性思維. ③提高應(yīng)用數(shù)學(xué)的意識(shí). 教學(xué)重點(diǎn)

理解,掌握三角形全等的條件:HL. 教學(xué)過程: 提問:

1、判定兩個(gè)三角形全等方法有:,。創(chuàng)設(shè)情境:

(顯示圖片),舞臺(tái)背景的形狀是兩個(gè)直角三角形,工作人員想知道這兩個(gè)直角三角形是否全等,但每個(gè)三角形都有一條直角邊被花盆遮住無法測(cè)量.(1)你能幫他想個(gè)辦法嗎?

方法一:測(cè)量斜邊和一個(gè)對(duì)應(yīng)的銳角.(AAS)方法二:測(cè)量沒遮住的一條直角邊和一個(gè)對(duì)應(yīng)的銳角.(ASA)或(AAS)⑵ 如果他只帶了一個(gè)卷尺,能完成這個(gè)任務(wù)嗎?

工作人員測(cè)量了每個(gè)三角形沒有被遮住的直角邊和斜邊,發(fā)現(xiàn)它們分別對(duì)應(yīng)相等,于是他就肯定“兩個(gè)直角三角形是全等的”.你相信他的結(jié)論嗎? 下面讓我們一起來驗(yàn)證這個(gè)結(jié)論。新課:

已知線段a、c(a﹤c)和一個(gè)直角α,利用尺規(guī)作一個(gè)Rt△ABC,使∠C= ∠ α,CB=a,AB=c.想一想,怎樣畫呢? 按照下面的步驟做一做: ⑴ 作∠MCN=∠α=90°;⑵ 在射線CM上截取線段CB=a ⑶ 以B為圓心,C為半徑畫弧,交射線CN于點(diǎn)A;⑷ 連接AB.⑴ △ABC就是所求作的三角形嗎?

⑵ 剪下這個(gè)三角形,和其他同學(xué)所作的三角形進(jìn)行比較,它們能重合嗎?

直角三角形全等的條件

斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.簡(jiǎn)寫成“斜邊、直角邊”或“HL”.想一想

你能夠用幾種方法說明兩個(gè)直角三角形全等? 直角三角形是特殊的三角形,所以不僅有一般 三角形判定全等的方法:SAS、ASA、AAS、SSS,還有直角三角形特殊的判定方法——“HL”.練一練:

1.如圖,兩根長(zhǎng)度為12米的繩子,一端系在旗桿上,另一端分別固定在地面兩個(gè)木樁上,兩個(gè)木樁離旗 桿底部的距離相等嗎?請(qǐng)說明你的理由。

2.如圖,有兩個(gè)長(zhǎng)度相同的滑梯,左邊滑梯的高度AC 與右邊滑梯水平方向的長(zhǎng)度DF相等,兩個(gè)滑梯的傾 斜角∠ABC和∠DFE的大小有什么關(guān)系? 解:∠ABC+∠DFE=90°.理由如下: 在Rt△ABC和Rt△DEF中, 則 BC=EF, AC=DF.∴ Rt△ABC≌Rt△DEF(HL).∴∠ABC=∠DEF(全等三角形對(duì)應(yīng)角相等).又 ∠DEF+∠DFE=90°, ∴∠ABC+∠DFE=90°.小結(jié):這節(jié)課你有什么收獲呢?與你的同伴進(jìn)行交流 作業(yè):14頁7、8。

§11.3.1 角的平分線的性質(zhì)

(一)教學(xué)目標(biāo)

(一)教學(xué)知識(shí)點(diǎn)

角平分線的畫法.

(二)能力訓(xùn)練要求

1.應(yīng)用三角形全等的知識(shí),解釋角平分線的原理. 2.會(huì)用尺規(guī)作一個(gè)已知角的平分線.

(三)情感與價(jià)值觀要求

在利用尺規(guī)作圖的過程中,培養(yǎng)學(xué)生動(dòng)手操作能力與探索精神. 例如圖,AC?BC,BD?AD,AC?BD求證:BC?AD.10

教學(xué)重點(diǎn)

利用尺規(guī)作已知角的平分線.

教學(xué)難點(diǎn)

角的平分線的作圖方法的提煉.

教學(xué)方法

講練結(jié)合法.

教具準(zhǔn)備

多媒體課件(或投影).

教學(xué)過程

Ⅰ.提出問題,創(chuàng)設(shè)情境

問題1:三角形中有哪些重要線段.

問題2:你能作出這些線段嗎?

[生甲]三角形中有三條重要線段,它們分別是:三角形的高,三角形的中線,三角形的角的平分線.

過三角形的頂點(diǎn)作這個(gè)頂點(diǎn)的對(duì)邊的垂線,交對(duì)邊于一點(diǎn),頂點(diǎn)與垂足的連線就是這個(gè)三角形的高.

取三角形一邊的中點(diǎn),此中點(diǎn)與這個(gè)邊對(duì)應(yīng)頂點(diǎn)的連線就是這條邊的中線.

用量角器量出三角形的角的大小,量角器零度線與這個(gè)角的一邊重合,這個(gè)角一半所對(duì)應(yīng)的線就是這個(gè)角的角平分線.

[生乙]我不同意你對(duì)角平分線的描述,三角形的角平分線是一條線段,而一個(gè)已知角的平分線是一條射線,這兩個(gè)概念是有區(qū)別的.

[師]你補(bǔ)充得很好.?dāng)?shù)學(xué)是一門嚴(yán)密性很強(qiáng)的學(xué)科,你的這種精神值得我們學(xué)習(xí).

如果老師手里只有直尺和圓規(guī),你能幫我設(shè)計(jì)一個(gè)作角的平分線的操作方案嗎?

Ⅱ.導(dǎo)入新課

[生]我記得在學(xué)直角三角形全等的條件時(shí)做過這樣一個(gè)題:

在∠AOB的兩邊OA和OB上分別取OM=ON,MC⊥OA,NC⊥OB.MC與NC交于C點(diǎn).

求證:∠MOC=∠NOC.

通過證明Rt△MOC≌Rt△NOC,即可證明∠MOC=∠NOC,所以射線OC就是∠AOB的平分線.

受這個(gè)題的啟示,我們能不能這樣做:

在已知∠AOB的兩邊上分別截取OM=ON,再分別過M、N作MC⊥OA,NC⊥OB,MC?與NC交于C點(diǎn),連接OC,那么OC就是∠AOB的平分線了. [師]他這個(gè)方案可行嗎?

(學(xué)生思考、討論后,統(tǒng)一思想,認(rèn)為可行)

[師]這位同學(xué)不僅給了操作方法,而且還講明了操作原理.這種學(xué)以致用,?聯(lián)想遷移的學(xué)習(xí)方法值得大家借鑒.

議一議:下圖是一個(gè)平分角的儀器,其中AB=AD,BC=DC.將點(diǎn)A放在角的頂點(diǎn),AB和AD沿著角的兩邊放下,沿AC畫一條射線AE,AE就是角平分線.你能說明它的道理嗎?

教師活動(dòng):

播放多媒體課件,演示角平分儀器的操作過程,使學(xué)生直觀了解得到射線AC的方法.

學(xué)生活動(dòng):

觀看多媒體課件,討論操作原理.

[生1]要說明AC是∠DAC的平分線,其實(shí)就是證明∠CAD=∠CAB. [生2]∠CAD和∠CAB分別在△CAD和△CAB中,那么證明這兩個(gè)三角形

全等就可以了.

[生3]我們看看條件夠不夠.

?AB?AD? ?BC?DC

?AC?AC? 所以△ABC≌△ADC(SSS).

所以∠CAD=∠CAB.

即射線AC就是∠DAB的平分線.

[生4]原來用三角形全等,就可以解決角相等.線段相等的一些問題.看來溫故是可以知新的.

老師再提出問題:

通過上述探究,能否總結(jié)出尺規(guī)作已知角的平分線的一般方法.自己動(dòng)手做做看.然后與同伴交流操作心得.

(分小組完成這項(xiàng)活動(dòng),教師可參與到學(xué)生活動(dòng)中,及時(shí)發(fā)現(xiàn)問題,給予啟發(fā)和指導(dǎo),使講評(píng)更具有針對(duì)性)

討論結(jié)果展示:

作已知角的平分線的方法:

已知:∠AOB.

求作:∠AOB的平分線.

作法:

(1)以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑作弧,分別交OA、OB于M、N.

(2)分別以M、N為圓心,大于

12MN的長(zhǎng)為半徑作弧.兩弧在∠AOB內(nèi)部交于點(diǎn)C.

(3)作射線OC,射線OC即為所求.

(教師根據(jù)學(xué)生的敘述,作多媒體課件演示,使學(xué)生能更直觀地理解畫法,提高學(xué)習(xí)數(shù)學(xué)的興趣).

議一議:

1.在上面作法的第二步中,去掉“大于

12MN的長(zhǎng)”這個(gè)條件行嗎?

2.第二步中所作的兩弧交點(diǎn)一定在∠AOB的內(nèi)部嗎?

(設(shè)計(jì)這兩個(gè)問題的目的在于加深對(duì)角的平分線的作法的理解,培養(yǎng)數(shù)學(xué)嚴(yán)密性的良好學(xué)習(xí)習(xí)慣)

學(xué)生討論結(jié)果總結(jié): 1.去掉“大于12MN的長(zhǎng)”這個(gè)條件,所作的兩弧可能沒有交點(diǎn),所以就找不到角的平分線.

2.若分別以M、N為圓心,大于

12MN的長(zhǎng)為半徑畫兩弧,兩弧的交點(diǎn)可能在∠AOB?的內(nèi)部,也可能在∠AOB的外部,而我們要找的是∠AOB內(nèi)部的交點(diǎn),?否則兩弧交點(diǎn)與頂點(diǎn)連線得到的射線就不是∠AOB的平分線了.

3.角的平分線是一條射線.它不是線段,也不是直線,?所以第二步中的兩個(gè)限制缺一不可.

4.這種作法的可行性可以通過全等三角形來證明.

練一練:

任意畫一角∠AOB,作它的平分線.

Ⅲ.隨堂練習(xí)

課本P16練習(xí).

練后總結(jié):

平角∠AOB的平分線OC與直線AB垂直.將OC反向延長(zhǎng)得到直線CD,直線CD與AB?也垂直.

Ⅳ.課時(shí)小結(jié)

本節(jié)課中我們利用已學(xué)過的三角形全等的知識(shí),?探究得到了角平分線儀器的操作原理,由此歸納出角的平分線的尺規(guī)畫法,進(jìn)一步體會(huì)溫故而知新是一種很好的學(xué)習(xí)方法.

Ⅴ.課后作業(yè)

1.課本P18習(xí)題11.2─1、2. 2.預(yù)習(xí)課本P16~18內(nèi)容.

第四篇:全等三角形教案

第十一章 全等三角形

11.1全等三角形

教學(xué)目標(biāo):1了解全等形及全等三角形的的概念;

理解全等三角形的性質(zhì)

在圖形變換以及實(shí)際操作的過程中發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的幾何直覺,學(xué)生通過觀察、發(fā)現(xiàn)生活中的全等形和實(shí)際操作中獲得全等三角形的體驗(yàn)在探索和運(yùn)用全等三角形性質(zhì)的過程中感受到數(shù)學(xué)的樂趣 重點(diǎn):探究全等三角形的性質(zhì)

難點(diǎn):掌握兩個(gè)全等三角形的對(duì)應(yīng)邊,對(duì)應(yīng)角

教學(xué)過程:觀察下列圖案,指出這些圖案中中形狀與大小相同的圖形

問題:你還能舉出生活中一些實(shí)際例子嗎?

這些形狀、大小相同的圖形放在一起能夠完全重合。能夠完全重合的兩個(gè)三角形叫做全等三角形 思考:

一個(gè)圖形經(jīng)過平移、翻折、旋轉(zhuǎn)后,位置變化了,但形狀、大小都沒有改變,即平移、翻折、旋轉(zhuǎn)前后的圖形全等。

“全等”用?表示,讀作“全等于”

兩個(gè)三角形全等時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上,如?ABC和?DEF全等時(shí),點(diǎn)A和點(diǎn)D,點(diǎn)B和點(diǎn)E,點(diǎn)C和點(diǎn)F是對(duì)應(yīng)頂點(diǎn),記作?ABC??DEF

把兩個(gè)全等的三角形重合到一起,重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),重合的邊叫做對(duì)應(yīng)邊,重合 的角叫做對(duì)應(yīng)角

思考:如上圖,13。1-1?ABC??DEF,對(duì)應(yīng)邊有什么關(guān)系?對(duì)應(yīng)角呢? 全等三角形性質(zhì):

全等三角形的對(duì)應(yīng)邊相等; 全等三角形的對(duì)應(yīng)角相等。思考:

(1)下面是兩個(gè)全等的三角形,按下列圖形的位置擺放,指出它們的對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)邊、對(duì)應(yīng)角

BCAoOADBDCACDBCDA

(2)將?ABC沿直線BC平移,得到?DEF,說出你得到的結(jié)論,說明理由?

ADBBECF

(3)如圖,?ABE??ACD,AB與AC,AD與AE是對(duì)應(yīng)邊,已知:?A?43?,?B?30?,求?ADC的大小。

ADEBC

隨堂練習(xí)注:檢查學(xué)生對(duì)本節(jié)課的掌握情況.1.全等用符號(hào)__表示.讀作__.2.△ABC全等于三角形△DEF,用式子表示為__.3.△ABC≌△DEF,∠A的對(duì)應(yīng)角是∠D,∠B的對(duì)應(yīng)角∠E,則∠C與__是對(duì)應(yīng)角;AB與__是對(duì)應(yīng)邊,BC與__是對(duì)應(yīng)邊,AC與__是對(duì)應(yīng)邊.4.判斷題:

(1)全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.()(2)全等三角形的周長(zhǎng)相等.()(3)面積相等的三角形是全等三角形.()(4)全等三角形的面積相等.()

11.2 三角形全等的條件(1)教學(xué)目標(biāo)

①經(jīng)歷探索三角形全等條件的過程,體會(huì)利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程. ②掌握三角形全等的“邊邊邊”條件,了解三角形的穩(wěn)定性. ③通過對(duì)問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神. 教學(xué)難點(diǎn)

三角形全等條件的探索過程.

一、復(fù)習(xí)過程,引入新知

多媒體顯示,帶領(lǐng)學(xué)生復(fù)習(xí)全等三角形的定義及其性質(zhì),從而得出結(jié)論:全等三角形三條邊對(duì)應(yīng)相等,三個(gè)角分別對(duì)應(yīng)相等.反之,這六個(gè)元素分別相等,這樣的兩個(gè)三角形一定全等.

二、創(chuàng)設(shè)情境,提出問題

根據(jù)上面的結(jié)論,提出問題:兩個(gè)三角形全等,是否一定需要六個(gè)條件呢?如果只滿足上述六個(gè)條件中的一部分,是否也能保證兩個(gè)三角形全等呢? 組織學(xué)生進(jìn)行討論交流,經(jīng)過學(xué)生逐步分析,各種情況逐漸明朗,進(jìn)行交流予以匯總歸納.

三、建立模型,探索發(fā)現(xiàn)

出示探究1,先任意畫一個(gè)△ABC,再畫一個(gè)△A'B'C',使△ABC與△A'B'C',滿足上述條件中的一個(gè)或兩個(gè).你畫出的△A'B'C'與△ABC一定全等嗎? 讓學(xué)生按照下面給出的條件作出三角形.(1)三角形的兩個(gè)角分別是30°、50°.(2)三角形的兩條邊分別是4cm,6cm.

(3)三角形的一個(gè)角為30°,—條邊為3cm.

再通過畫一畫,剪一剪,比一比的方式,得出結(jié)論:只給出一個(gè)或兩個(gè)條件時(shí),都不能保證所畫出的三角形一定全等.

出示探究2,先任意畫出一個(gè)△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把畫好的△A'B'C'剪下,放到△ABC上,它們?nèi)葐? 讓學(xué)生充分交流后,在教師的引導(dǎo)下作出△A'B'C',并通過比較得出結(jié)論:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

四、應(yīng)用新知,體驗(yàn)成功

實(shí)物演示:由三根木條釘成的一個(gè)三角形的框架,它的大小和形狀是固定不變的. 鼓勵(lì)學(xué)生舉出生活中的實(shí)例.

給出例l,如下圖△ABC是一個(gè)鋼架,AB=AC,AD是連接點(diǎn)A與BC中點(diǎn)D的支架,求證△ABD≌△ACD.

A

讓學(xué)生獨(dú)立思考后口頭表達(dá)理由,由教師板演推理過程.

例2 如圖是用圓規(guī)和直尺畫已知角的平分線的示意圖,作法如下: BDC

①以A為圓心畫弧,分別交角的兩邊于點(diǎn)B和點(diǎn)C;

②分別以點(diǎn)B、C為圓心,相同長(zhǎng)度為半徑畫兩條弧,兩弧交于點(diǎn)D; ③畫射線AD.

AD就是∠BAC的平分線.你能說明該畫法正確的理由嗎?

例3 如圖四邊形ABCD中,AB=CD,AD=BC,你能把四邊形ABCD分成兩個(gè)相互全等的三角形嗎?你有幾種方法?你能證明你的方法嗎?試一試.

ABDC

五、鞏固練習(xí)

教科書第96頁的思考及練習(xí).

六、反思小結(jié)

回顧反思本節(jié)課對(duì)知識(shí)的研究探索過程、小結(jié)方法及結(jié)論,提煉數(shù)學(xué)思想,掌握數(shù)學(xué)規(guī)律.

七、布置作業(yè)

1.必做題:教科書第103頁習(xí)題13.2中的第1、2題. 2.選做題:教科書第104頁第9題.

11.2 三角形全等的條件(2)教學(xué)目標(biāo)

①經(jīng)歷探索三角形全等條件的過程,培養(yǎng)學(xué)生觀察分析圖形能力、動(dòng)手能力.

②在探索三角形全等條件及其運(yùn)用的過程中,能夠進(jìn)行有條理的思考并進(jìn)行簡(jiǎn)單的推理.

③通過對(duì)問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神. 教學(xué)難點(diǎn)

指導(dǎo)學(xué)生分析問題,尋找判定三角形全等的條件. 知識(shí)重點(diǎn) 應(yīng)用“邊角邊”證明兩個(gè)三角形全等,進(jìn)而得出線段或角相等. 教學(xué)過程(師生活動(dòng))

一、創(chuàng)設(shè)情境,引入課題

多媒體出示探究3:已知任意△ABC,畫△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.

教帥點(diǎn)撥,學(xué)生邊學(xué)邊畫圖,再讓學(xué)生把畫好的△A'B'C',剪下放在△ABC上,觀察這兩個(gè)三角形是否全等.

二、交流對(duì)話,探求新知

根據(jù)前面的操作,鼓勵(lì)學(xué)生用自己的語言來總結(jié)規(guī)律:

兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.(SAS)補(bǔ)充強(qiáng)調(diào):角必須是兩條相等的對(duì)應(yīng)邊的夾角,邊必須是夾相等角的兩對(duì)邊.

三、應(yīng)用新知,體驗(yàn)成功

出示例2,如圖,有—池塘,要測(cè)池塘兩端A、B的距離,可先在平地上取一個(gè)可以直接到達(dá)A和B的點(diǎn)C,連接AC并延長(zhǎng)到D,使CD=CA,連接BC并延長(zhǎng)到E,使CE=CB.連接DE,那么量出DE的長(zhǎng)就是A、B的距離,為什么?

讓學(xué)生充分思考后,書寫推理過程,并說明每一步的依據(jù).(若學(xué)生不能順利得到證明思路,教師也可作如下分析:

要想證AB=DE,只需證△ABC≌△DEC

△ABC與△DEC全等的條件現(xiàn)有??還需要??)

明確證明分別屬于兩個(gè)三角形的線段相等或者角相等的問題,常常通過證明這兩個(gè)三角形全等來解決. 補(bǔ)充例題:

A1、已知:如圖AB=AC,AD=AE,∠BAC=∠DAE

求證: △ABD≌△ACE 證明:∵∠BAC=∠DAE(已知)

B ∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD

∴∠BAD=∠CAE

在△ABD與△ACE

EC AB=AC(已知)D ∠BAD= ∠CAE(已證)AD=AE(已知)

∴△ABD≌△ACE(SAS)B思考:

求證:1.BD=CE 2.∠B= ∠C A3.∠ADB= ∠AEC

變式1:已知:如圖,AB⊥AC,AD⊥AE,AB=AC,AD=AE.M 求證: ⑴ △DAC≌△EAB

DCFE1.BE=DC 2.∠B= ∠ C 3.∠ D= ∠ E 4.BE⊥CD

四、再次探究,釋解疑惑

出示探究4,我們知道,兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.由“兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的條件能判定兩個(gè)三角形全等嗎?為什么? 讓學(xué)生模仿前面的探究方法,得出結(jié)論:兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.

教師演示:方法(一)教科書98頁圖13.2-7.

方法(二)通過畫圖,讓學(xué)生更直觀地獲得結(jié)論.

五、鞏固練習(xí)

教科書第99頁,練習(xí)(1)(2).

六、小結(jié)提高

1.判定三角形全等的方法;

2.證明線段、角相等常見的方法有哪些?讓學(xué)生自由表述,其他學(xué)生補(bǔ)充,讓學(xué)生自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu).

七、布置作業(yè)

1.必做題:教科書第104頁,習(xí)題13.2第3、4題. 2.選做題:教科書第105頁第10題. 3.備選題:

(1)小明做了一個(gè)如圖所示的風(fēng)箏,測(cè)得DE=DF,EH=FH,你能發(fā)現(xiàn)哪些結(jié)淪?并說明理由.

(2)如圖,∠1=∠2,AB=AD,AE=AC,求證BC=DE.

11.2 三角形全等的條件(3)

教學(xué)目標(biāo)

①探索并掌握兩個(gè)三角形全等的條件:“ASA”“AAS”,并能應(yīng)用它們判別兩個(gè)三角形是否全等.

②經(jīng)歷作圖、比較、證明等探究過程,提高分析、作圖、歸納、表達(dá)、邏輯推理等能力;并通過對(duì)知識(shí)方法的總結(jié),培養(yǎng)反思的習(xí)慣,培養(yǎng)理性思維.

③敢于面對(duì)教學(xué)活動(dòng)中的困難,能通過合作交流解決遇到的困難. 教學(xué)重點(diǎn) 理解,掌握三角形全等的條件:“ASA”“AAS”. 教學(xué)難點(diǎn)

探究出“ASA”“AAS”以及它們的應(yīng)用. 教學(xué)過程(師生活動(dòng))創(chuàng)設(shè)情境 復(fù)習(xí):

師:我們已經(jīng)知道,三角形全等的判定條件有哪些? 生:“SSS”“SAS”

師:那除了這兩個(gè)條件,滿足另一些條件的兩個(gè)三角形是否 也可能全等呢?今天我們就來探究三角形全等的另一些條件。探究新知:

一張教學(xué)用的三角形硬紙板不小心 被撕壞了,如圖,你能制作一張與原來 同樣大小的新教具?能恢復(fù)原來三角形 的原貌嗎?

1.師:我們先來探究第一種情況.(課件出示“探究5??”)(1)探究5 先任意畫出一個(gè)△ABC,再畫一個(gè)△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使兩角和它們的夾邊對(duì)應(yīng)相等).把畫好的△A'B'C'剪下,放到△ABC上,它們?nèi)葐? 師:怎樣畫出△A'B'C'?先自己獨(dú)立思考,動(dòng)手畫一畫。

在畫的過程中若遇到不能解決的問題.可小組合作交流解決.

生:獨(dú)立探究,試著畫△A'B'C',(有問題的,可以小組內(nèi)交流解決??)??(2)全班討論交流

師:畫好之后,我們看這兒有一種畫法:(課件出示畫法,出現(xiàn)一步,畫一步)你是這樣畫的嗎? AA'師:把畫好的△A'B'C'剪下,放到△ABC上,看看它們是否全等. 生:(剪△A'B'C',與△ABC作比較??)師:全等嗎? 生:全等.

ED師:這個(gè)探究結(jié)果反映了什么規(guī)律?試著說說你的發(fā)現(xiàn).

B生1:我發(fā)現(xiàn)?? 生2:??

A生3:兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

師:這條件可以簡(jiǎn)寫成“角邊角”或“ASA”.至此,ED我們又增加了—種判別三角形全等的方法.特別應(yīng)

注意,“邊”必須是“兩角的夾邊”.

O練習(xí):已知:如圖,AB=A’C,∠A=∠A’,∠B=∠C

求證:△ABE≌ △A’CD BC

例1.已知:點(diǎn)D在AB上,點(diǎn)E在AC上,BE和CD 相交于點(diǎn)O,AB=AC,∠B=∠C。求證:BD=CE

C

2.探究6 師:我們?cè)倏纯聪旅娴臈l件:

在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC與△DEF全等嗎?能利用角邊角條件證明你的結(jié)論嗎? ABCEDF

師:看已知條什,能否用“角邊角”條件證明. 生獨(dú)立思考,探究??再小組合作完成.

師:你是怎么證明的?(讓小組派代表上臺(tái)匯報(bào))小組1:?.

小組2:??投影儀展示學(xué)生證明過程

(根據(jù)學(xué)生的不同探究結(jié)果,進(jìn)行不同的引導(dǎo))師:從這可以看出,從這些已知條件中能得出兩個(gè)三角形全等.這又反映了一個(gè)什么規(guī)律? 生l:兩個(gè)角和其中一條邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

生2:在"ASA”中,“邊”必須是“兩角的夾邊”,而這里,“邊”可以是“其中一個(gè)角的對(duì)邊”.

師:非常好,這里的“邊”是“其中一個(gè)角的對(duì)邊”.那怎樣更完整的表述這一規(guī)律? 生1:兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.

師:生1很好,這條件我們可以簡(jiǎn)寫成“角角邊”或“AAS”,又增加了判定兩個(gè)三角形全等的一個(gè)條件.

強(qiáng)調(diào)“AAS”中的邊是“其中一個(gè)角的對(duì)邊”.

多讓幾個(gè)學(xué)生描述,進(jìn)一步培養(yǎng)歸納、表達(dá)的能力.

例2.教材101頁1題。

師:從這道例題中,我們又得出了證明線段相等的又一方法,先證兩線段所在的三角形全等,這樣,對(duì)應(yīng)邊也就相等了. 探究7:

(1)三角對(duì)應(yīng)相等的兩個(gè)三角形全等嗎?(課件出示題目)師:想想,怎樣來探究這個(gè)問題? 生1:??

生2:?.

引導(dǎo)學(xué)生通過“畫兩個(gè)三角對(duì)應(yīng)相等的三角形”,看是否一定全等,或“用兩個(gè)同一形狀但大小不同的三角板”等等方法來探究說明.

師:這一規(guī)律我們可以怎樣表達(dá)? 生1:?.

生2:三個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.

(2)師:說得非常好.現(xiàn)在我們來小結(jié)一下;判定兩個(gè)三角形全等我們已有了哪些方法? 生:SSS SAS ASA AAS 小結(jié)提高

師:這節(jié)課通過對(duì)兩個(gè)三角形全等條件的進(jìn)一步探究,你有什么收獲? 鞏固練習(xí)

教科書第101頁,練習(xí)2. 布置作業(yè)

1。必做題:教科書第103頁習(xí)題13.2第6、11題

2.如圖,小明不慎將一塊三角形模具打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊與原來一樣的三角形模具呢?如果可以,帶哪塊去合適?為什么? ⑵⑴

11.2 三角形全等的條件(4)

教學(xué)目標(biāo)

①探索并掌握兩個(gè)直角三角形全等的條件:HL,并能應(yīng)用它判別兩個(gè)直角三角形是否全等.

②經(jīng)歷作圖、比較、證明等探究過程,提高分析、作圖、歸納、表達(dá)、邏輯推理等能力;并通過對(duì)知識(shí)方法的總結(jié),培養(yǎng)反思的習(xí)慣,培養(yǎng)理性思維. ③提高應(yīng)用數(shù)學(xué)的意識(shí). 教學(xué)重點(diǎn)

理解,掌握三角形全等的條件:HL. 教學(xué)過程: 提問:

1、判定兩個(gè)三角形全等方法有:,。創(chuàng)設(shè)情境:(顯示圖片),舞臺(tái)背景的形狀是兩個(gè)直角三角形,工作人員想知道這兩個(gè)直角三角形是否全等,但每個(gè)三角形都有一條直角邊被花盆遮住無法測(cè)量.(1)你能幫他想個(gè)辦法嗎?

方法一:測(cè)量斜邊和一個(gè)對(duì)應(yīng)的銳角.(AAS)方法二:測(cè)量沒遮住的一條直角邊和一個(gè)對(duì)應(yīng)的銳角.(ASA)或(AAS)⑵ 如果他只帶了一個(gè)卷尺,能完成這個(gè)任務(wù)嗎?

工作人員測(cè)量了每個(gè)三角形沒有被遮住的直角邊和斜邊,發(fā)現(xiàn)它們分別對(duì)應(yīng)相等,于是他就肯定“兩個(gè)直角三角形是全等的”.你相信他的結(jié)論嗎? 下面讓我們一起來驗(yàn)證這個(gè)結(jié)論。新課:

已知線段a、c(a﹤c)和一個(gè)直角α,利用尺規(guī)作一個(gè)Rt△ABC,使∠C= ∠ α,CB=a,AB=c.想一想,怎樣畫呢? 按照下面的步驟做一做: ⑴ 作∠MCN=∠α=90°;

⑵ 在射線CM上截取線段CB=a ⑶ 以B為圓心,C為半徑畫弧,交射線CN于點(diǎn)A;⑷ 連接AB.⑴ △ABC就是所求作的三角形嗎?

⑵ 剪下這個(gè)三角形,和其他同學(xué)所作的三角形進(jìn)行比較,它們能重合嗎? 直角三角形全等的條件

斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.簡(jiǎn)寫成“斜邊、直角邊”或“HL”.想一想

你能夠用幾種方法說明兩個(gè)直角三角形全等? 直角三角形是特殊的三角形,所以不僅有一般 三角形判定全等的方法:SAS、ASA、AAS、SSS,還有直角三角形特殊的判定方法——“HL”.例如圖,AC?BC,BD?AD,AC?BD

求證:BC?AD.練一練:

1.如圖,兩根長(zhǎng)度為12米的繩子,一端系在旗桿上,另一端分別固定在地面兩個(gè)木樁上,兩個(gè)木樁離旗 桿底部的距離相等嗎?請(qǐng)說明你的理由。

2.如圖,有兩個(gè)長(zhǎng)度相同的滑梯,左邊滑梯的高度AC 與右邊滑梯水平方向的長(zhǎng)度DF相等,兩個(gè)滑梯的傾 斜角∠ABC和∠DFE的大小有什么關(guān)系?

解:∠ABC+∠DFE=90°.理由如下: 在Rt△ABC和Rt△DEF中, 則

BC=EF, AC=DF.∴ Rt△ABC≌Rt△DEF(HL).∴∠ABC=∠DEF

(全等三角形對(duì)應(yīng)角相等).又 ∠DEF+∠DFE=90°, ∴∠ABC+∠DFE=90°.小結(jié):這節(jié)課你有什么收獲呢?與你的同伴進(jìn)行交流 作業(yè):104頁7、8。

§11.3 角的平分線的性質(zhì) §11.3.1 角的平分線的性質(zhì)

(一)教學(xué)目標(biāo)

(一)教學(xué)知識(shí)點(diǎn)

角平分線的畫法.

(二)能力訓(xùn)練要求

1.應(yīng)用三角形全等的知識(shí),解釋角平分線的原理. 2.會(huì)用尺規(guī)作一個(gè)已知角的平分線.

(三)情感與價(jià)值觀要求

在利用尺規(guī)作圖的過程中,培養(yǎng)學(xué)生動(dòng)手操作能力與探索精神.

教學(xué)重點(diǎn)

利用尺規(guī)作已知角的平分線.

教學(xué)難點(diǎn)

角的平分線的作圖方法的提煉.

教學(xué)方法

講練結(jié)合法.

教具準(zhǔn)備

多媒體課件(或投影).

教學(xué)過程

Ⅰ.提出問題,創(chuàng)設(shè)情境

問題1:三角形中有哪些重要線段.

問題2:你能作出這些線段嗎?

[生甲]三角形中有三條重要線段,它們分別是:三角形的高,三角形的中線,三角形的角的平分線. 過三角形的頂點(diǎn)作這個(gè)頂點(diǎn)的對(duì)邊的垂線,交對(duì)邊于一點(diǎn),頂點(diǎn)與垂足的連線就是這個(gè)三角形的高.

取三角形一邊的中點(diǎn),此中點(diǎn)與這個(gè)邊對(duì)應(yīng)頂點(diǎn)的連線就是這條邊的中線.

用量角器量出三角形的角的大小,量角器零度線與這個(gè)角的一邊重合,這個(gè)角一半所對(duì)應(yīng)的線就是這個(gè)角的角平分線.

[生乙]我不同意你對(duì)角平分線的描述,三角形的角平分線是一條線段,而一個(gè)已知角的平分線是一條射線,這兩個(gè)概念是有區(qū)別的.

[師]你補(bǔ)充得很好.?dāng)?shù)學(xué)是一門嚴(yán)密性很強(qiáng)的學(xué)科,你的這種精神值得我們學(xué)習(xí).

如果老師手里只有直尺和圓規(guī),你能幫我設(shè)計(jì)一個(gè)作角的平分線的操作方案嗎?

Ⅱ.導(dǎo)入新課

[生]我記得在學(xué)直角三角形全等的條件時(shí)做過這樣一個(gè)題:

在∠AOB的兩邊OA和OB上分別取OM=ON,MC⊥OA,NC⊥OB.MC與NC交于C點(diǎn).

求證:∠MOC=∠NOC.

通過證明Rt△MOC≌Rt△NOC,即可證明∠MOC=∠NOC,所以射線OC就是∠AOB的平分線.

受這個(gè)題的啟示,我們能不能這樣做:

在已知∠AOB的兩邊上分別截取OM=ON,再分別過M、N作MC⊥OA,NC⊥OB,MC?與NC交于C點(diǎn),連接OC,那么OC就是∠AOB的平分線了. [師]他這個(gè)方案可行嗎?

(學(xué)生思考、討論后,統(tǒng)一思想,認(rèn)為可行)

[師]這位同學(xué)不僅給了操作方法,而且還講明了操作原理.這種學(xué)以致用,?聯(lián)想遷移的學(xué)習(xí)方法值得大家借鑒.

議一議:下圖是一個(gè)平分角的儀器,其中AB=AD,BC=DC.將點(diǎn)A放在角的頂點(diǎn),AB和AD沿著角的兩邊放下,沿AC畫一條射線AE,AE就是角平分線.你能說明它的道理嗎?

教師活動(dòng):

播放多媒體課件,演示角平分儀器的操作過程,使學(xué)生直觀了解得到射線AC的方法.

學(xué)生活動(dòng):

觀看多媒體課件,討論操作原理.

[生1]要說明AC是∠DAC的平分線,其實(shí)就是證明∠CAD=∠CAB.

[生2]∠CAD和∠CAB分別在△CAD和△CAB中,那么證明這兩個(gè)三角形全等就可以了.

[生3]我們看看條件夠不夠.

?AB?AD? ?BC?DC

?AC?AC? 所以△ABC≌△ADC(SSS).

所以∠CAD=∠CAB. 即射線AC就是∠DAB的平分線.

[生4]原來用三角形全等,就可以解決角相等.線段相等的一些問題.看來溫故是可以知新的.

老師再提出問題:

通過上述探究,能否總結(jié)出尺規(guī)作已知角的平分線的一般方法.自己動(dòng)手做做看.然后與同伴交流操作心得.

(分小組完成這項(xiàng)活動(dòng),教師可參與到學(xué)生活動(dòng)中,及時(shí)發(fā)現(xiàn)問題,給予啟發(fā)和指導(dǎo),使講評(píng)更具有針對(duì)性)

討論結(jié)果展示:

作已知角的平分線的方法:

已知:∠AOB.

求作:∠AOB的平分線.

作法:

(1)以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑作弧,分別交OA、OB于M、N.

(2)分別以M、N為圓心,大于

1MN的長(zhǎng)為半徑作弧.兩弧在∠AOB內(nèi)部交于點(diǎn)C. 2(3)作射線OC,射線OC即為所求.

(教師根據(jù)學(xué)生的敘述,作多媒體課件演示,使學(xué)生能更直觀地理解畫法,提高學(xué)習(xí)數(shù)學(xué)的興趣).

議一議:

1.在上面作法的第二步中,去掉“大于

1MN的長(zhǎng)”這個(gè)條件行嗎? 2 2.第二步中所作的兩弧交點(diǎn)一定在∠AOB的內(nèi)部嗎?

(設(shè)計(jì)這兩個(gè)問題的目的在于加深對(duì)角的平分線的作法的理解,培養(yǎng)數(shù)學(xué)嚴(yán)密性的良好學(xué)習(xí)習(xí)慣)

學(xué)生討論結(jié)果總結(jié): 1.去掉“大于的平分線.

2.若分別以M、N為圓心,大于1MN的長(zhǎng)”這個(gè)條件,所作的兩弧可能沒有交點(diǎn),所以就找不到角21MN的長(zhǎng)為半徑畫兩弧,兩弧的交點(diǎn)可能在∠AOB2的內(nèi)部,也可能在∠AOB的外部,而我們要找的是∠AOB內(nèi)部的交點(diǎn),?否則兩弧交點(diǎn)與頂點(diǎn)連線得到的射線就不是∠AOB的平分線了.

3.角的平分線是一條射線.它不是線段,也不是直線,?所以第二步中的兩個(gè)限制缺一不可.

4.這種作法的可行性可以通過全等三角形來證明.

練一練:

任意畫一角∠AOB,作它的平分線. Ⅲ.隨堂練習(xí)

課本P106練習(xí).

練后總結(jié):

平角∠AOB的平分線OC與直線AB垂直.將OC反向延長(zhǎng)得到直線CD,直線CD與AB?也垂直.

Ⅳ.課時(shí)小結(jié)

本節(jié)課中我們利用已學(xué)過的三角形全等的知識(shí),?探究得到了角平分線儀器的操作原理,由此歸納出角的平分線的尺規(guī)畫法,進(jìn)一步體會(huì)溫故而知新是一種很好的學(xué)習(xí)方法.

Ⅴ.課后作業(yè)

1.課本P108習(xí)題13.2─1、2. 2.預(yù)習(xí)課本P106~107內(nèi)容.

§11.3.2 角的平分線的性質(zhì)

(二)教學(xué)目標(biāo)

(一)教學(xué)知識(shí)點(diǎn)

角的平分線的性質(zhì)

(二)能力訓(xùn)練要求

1.會(huì)敘述角的平分線的性質(zhì)及“到角兩邊距離相等的點(diǎn)在角的平分線上”. 2.能應(yīng)用這兩個(gè)性質(zhì)解決一些簡(jiǎn)單的實(shí)際問題.

(三)情感與價(jià)值觀要求

通過折紙、畫圖、文字一符號(hào)的翻譯活動(dòng),培養(yǎng)學(xué)生的聯(lián)想、探索、概括歸納的能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

教學(xué)重點(diǎn)

角平分線的性質(zhì)及其應(yīng)用.

教學(xué)難點(diǎn)

靈活應(yīng)用兩個(gè)性質(zhì)解決問題.

教學(xué)方法

探索、歸納的方法.

教具準(zhǔn)備

剪刀、折紙、投影片.

教學(xué)過程

Ⅰ.創(chuàng)設(shè)情境,引入新課

[師]請(qǐng)同學(xué)們拿出準(zhǔn)備好的折紙與剪刀,自己動(dòng)手,剪一個(gè)角,把剪好的角對(duì)折,使角的兩邊疊合在一起,再把紙片展開,你看到了什么?把對(duì)折的紙片再任意折一次,然后把紙片展開,又看到了什么?

[生]我發(fā)現(xiàn)第一次對(duì)折后的折痕是這個(gè)角的平分線;再折一次,又會(huì)出現(xiàn)兩條折痕,而且這兩條折痕是等長(zhǎng)的.這種方法可以做無數(shù)次,所以這種等長(zhǎng)的折痕可以折出無數(shù)對(duì).

[師]你的敘述太精彩了.這說明角的平分線除了有平分角的性質(zhì),還有其他性質(zhì),今天我們就來研究這個(gè)問題.

Ⅱ.導(dǎo)入新課 角平分線的性質(zhì)即已知角的平分線,能推出什么樣的結(jié)論.

操作:

1.折出如圖所示的折痕PD、PE.

2.你與同伴用三角板檢測(cè)你們所折的折痕是否符合圖示要求.

畫一畫:

按照折紙的順序畫出一個(gè)角的三條折痕,并度量所畫PD、PE是否等長(zhǎng)?

拿出兩名同學(xué)的畫圖,放在投影下,請(qǐng)大家評(píng)一評(píng),以達(dá)明確概念的目的.

[生]同學(xué)乙的畫法是正確的.同學(xué)甲畫的是過角平分線上一點(diǎn)畫角平分線的垂線,而不是過角平分線上一點(diǎn)畫兩邊的垂線段,所以同學(xué)甲的畫法不符合要求. [生甲]噢,對(duì)于,我知道了.

[師]同學(xué)甲,你再做一遍加深一下印象.

問題1:你能用文字語言敘述所畫圖形的性質(zhì)嗎? [生]角平分線上的點(diǎn)到角的兩邊的距離相等.

問題2:(出示投影片)

能否用符號(hào)語言來翻譯“角平分線上的點(diǎn)到角的兩邊的距離相等”這句話.請(qǐng)?zhí)钕卤恚?/p>

學(xué)生通過討論作出下列概括:

已知事項(xiàng):OC平分∠AOB,PD⊥OA,PE⊥OB,D、E為垂足.

由已知事項(xiàng)推出的事項(xiàng):PD=PE.

于是我們得角的平分線的性質(zhì):

在角的平分線上的點(diǎn)到角的兩邊的距離相等. [師]那么到角的兩邊距離相等的點(diǎn)是否在角的平分線上呢?(出示投影)

問題3:根據(jù)下表中的圖形和已知事項(xiàng),猜想由已知事項(xiàng)可推出的事項(xiàng),并用符號(hào)語言填寫下表:

[生討論]已知事項(xiàng)符合直角三角形全等的條件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.

由已知推出的事項(xiàng):點(diǎn)P在∠AOB的平分線上.

[師]這樣的話,我們又可以得到一個(gè)性質(zhì):到角的兩邊距離相等的點(diǎn)在角的平分線上.同學(xué)們思考一下,這兩個(gè)性質(zhì)有什么聯(lián)系嗎?

[生]這兩個(gè)性質(zhì)已知條件和所推出的結(jié)論可以互換.

[師]對(duì),這是自己的語言,這一點(diǎn)在數(shù)學(xué)上叫“互逆性”.

下面請(qǐng)同學(xué)們思考一個(gè)問題.

思考:

如圖所示,要在S區(qū)建一個(gè)集貿(mào)市場(chǎng),使它到公路、鐵路距離相等,?離公路與鐵路交叉處500m,這個(gè)集貿(mào)市場(chǎng)應(yīng)建于何處(在圖上標(biāo)出它的位置,比例尺為1:20000)?

1.集貿(mào)市場(chǎng)建于何處,和本節(jié)學(xué)的角平分線性質(zhì)有關(guān)嗎?用哪一個(gè)性質(zhì)可以解決這個(gè)問題?

2.比例尺為1:20000是什么意思?

(學(xué)生以小組為單位討論,教師可深入到學(xué)生中,及時(shí)引導(dǎo))

討論結(jié)果展示: 1.應(yīng)該是用第二個(gè)性質(zhì).?這個(gè)集貿(mào)市場(chǎng)應(yīng)該建在公路與鐵路形成的角的平分線上,并且要求離角的頂點(diǎn)500米處.

2.在紙上畫圖時(shí),我們經(jīng)常在厘米為單位,而題中距離又是以米為單位,?這就涉及一個(gè)單位換算問題了.1m=100cm,所以比例尺為1:20000,其實(shí)就是圖中1cm?表示實(shí)際距離200m的意思.作圖如下:

第一步:尺規(guī)作圖法作出∠AOB的平分線OP.

第二步:在射線OP上截取OC=2.5cm,確定C點(diǎn),C點(diǎn)就是集貿(mào)市場(chǎng)所建地了.

總結(jié):應(yīng)用角平分線的性質(zhì),就可以省去證明三角形全等的步驟,?使問題簡(jiǎn)單化.所以若遇到有關(guān)角平分線,又要證線段相等的問題,?我們可以直接利用性質(zhì)解決問題. [例]如圖,△ABC的角平分線BM、CN相交于點(diǎn)P.

求證:點(diǎn)P到三邊AB、BC、CA的距離相等.

[師生共析]點(diǎn)P到AB、BC、CA的垂線段PD、PE、PF的長(zhǎng)就是P點(diǎn)到三邊的距離,?也就是說要證:PD=PE=PF.而BM、CN分別是∠B、∠C的平分線,?根據(jù)角平分線性質(zhì)和等式的傳遞性可以解決這個(gè)問題.

證明:過點(diǎn)P作PD⊥AB,PE⊥BC,PF⊥AC,垂足為D、E、F.

因?yàn)锽M是△ABC的角平分線,點(diǎn)P在BM上.

所以PD=PE.

同理PE=PF.

所以PD=PE=PF.

即點(diǎn)P到三邊AB、BC、CA的距離相等.

Ⅲ.隨堂練習(xí)

1.課本P107練習(xí).

2.課本P108習(xí)題13.3─2.

在這里要提醒學(xué)生直接利用角平分線的性質(zhì),無須再證三角形全等.

Ⅳ.課時(shí)小結(jié) 今天,我們學(xué)習(xí)了關(guān)于角平分線的兩個(gè)性質(zhì):①角平分線上的點(diǎn)到角的兩邊的距離相等;②到角的兩邊距離相等的點(diǎn)在角的平分線上.它們具有互逆性,可以看出,隨著研究的深入,解決問題越來越簡(jiǎn)便了.像與角平分線有關(guān)的求證線段相等、角相等問題,我們可以直接利用角平分線的性質(zhì),而不必再去證明三角形全等而得出線段相等.

Ⅴ.課后作業(yè)

課本習(xí)題13.3─3、4、5題.

第五篇:全等三角形教案

15.1 全 等 三 角 形

教材內(nèi)容分析:

本節(jié)課內(nèi)容是全章學(xué)習(xí)的開篇課,也是本章學(xué)習(xí)的主線,主要介紹全等三角形的概念和性質(zhì)。通過對(duì)生活中的全等圖形和抽象的幾何圖形的觀察,使學(xué)生對(duì)全等有一個(gè)感性的認(rèn)識(shí),建立對(duì)應(yīng)的概念,掌握尋找全等三角形中對(duì)應(yīng)元素的方法,理解全等三角形的性質(zhì),為學(xué)習(xí)判定兩個(gè)三角形全等以及第十六章軸對(duì)稱圖形提供了必要的理論基礎(chǔ)。

全等三角形中嚴(yán)密的對(duì)應(yīng)關(guān)系能夠鍛煉學(xué)生的觀察力和推理能力,對(duì)它的深入研究有助于學(xué)生理解數(shù)學(xué)的本質(zhì),提升思維水平。

教學(xué)目標(biāo):

1.了解全等形、全等三角形的概念;理解全等三角形的性質(zhì); 2.能夠準(zhǔn)確找出全等三角形的對(duì)應(yīng)元素,逐步培養(yǎng)學(xué)生的識(shí)圖 能力;

3.讓學(xué)生通過觀察生活中的全等形和動(dòng)手操作獲得全等三角形 的體驗(yàn),在探究和運(yùn)用全等三角形性質(zhì)的過程中感受到數(shù)學(xué)活動(dòng)的樂趣。

教學(xué)重難點(diǎn)及突破:

重點(diǎn):全等三角形的概練和性質(zhì);

難點(diǎn):能在全等變換中準(zhǔn)確找到對(duì)應(yīng)角、對(duì)應(yīng)邊。

教學(xué)突破:通過生活中的實(shí)例觀察、感受全等形和全等三角形,動(dòng)手操作、合作交流,親身體驗(yàn)創(chuàng)造全等三角形,加深全等三角形的有關(guān)概念的理解。

教學(xué)準(zhǔn)備:

1.教師準(zhǔn)備:多媒體課件、剪刀、白紙等; 2.學(xué)生準(zhǔn)備:白紙、剪刀等。

教學(xué)流程: 創(chuàng)設(shè)情境,引入新知→合作交流,探索新知→手腦并用,理解新知→合作交流,應(yīng)用新知→課堂練習(xí),鞏固新知→師生互動(dòng),小結(jié)新知。

教學(xué)過程設(shè)計(jì):

一、創(chuàng)設(shè)情境,引入新課。

1、與學(xué)生談話,努力走近學(xué)生之中。

2、游戲情景,引入新課 出示課件:大家來找茬游戲

引導(dǎo):

1、觀察兩副圖形在形狀、大小、位置方面的共同點(diǎn)

2、兩副圖形形狀、大小若相同該如何檢驗(yàn)?

引導(dǎo):什么樣的圖形叫做全等形?

定義:能夠完全重合的兩個(gè)圖形叫做全等形; 列舉生活中的實(shí)例(一百元人民幣)感知全等形。

二、合作交流,探索新知。

1、手腦并用,感受新知

用剪刀在一張紙上剪出兩個(gè)形狀、大小完全一樣的三角形,引出全等三角形教學(xué)。

2、觀察誘導(dǎo),探究新知。(1)全等三角形相關(guān)概念

引導(dǎo)觀察:課件操作演示兩個(gè)三角形完全重合。引導(dǎo)學(xué)生類比得出全等三角形定義;

中國(guó)人民郵政

能夠完全重合的兩個(gè)三角形叫做全等三角形 引導(dǎo)學(xué)生概括對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)邊、對(duì)應(yīng)角定義;

全等三角形中,互相重合的頂點(diǎn)叫對(duì)應(yīng)頂點(diǎn).互相重合的邊叫對(duì)應(yīng)邊.互相重合的角叫對(duì)應(yīng)角。

(2)全等三角形的表達(dá)式

引導(dǎo)學(xué)生書寫全等三角形的表達(dá)式:△ABC≌△DEF,讀作 :△ABC全等于△DEF。

溫馨提示:

①記兩個(gè)三角形全等時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上。②全等符號(hào)“≌”中“∽”表示形狀相同,“=”表示大小相等,合起來就是形狀相同、大小相等,即全等。

引導(dǎo)學(xué)生感悟:三角形全等表達(dá)式充分體現(xiàn)出數(shù)學(xué)的秩序性和精確性,使用規(guī)范的表達(dá)式將有助于解決相關(guān)的問題

(3)全等三角形性質(zhì)

引導(dǎo)學(xué)生觀察并概括全等三角形性質(zhì)

全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。用幾何語言表達(dá)全等三角形性質(zhì): ∵△ABC≌△DEF(已知)∴AB=DE,AC=DF,BC=EF;

∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等)

3、合作交流,探究新知(1)手腦并用,體驗(yàn)新知

利用剛才剪下的兩個(gè)全等三角形,在課桌上擺出不同形狀的圖形,再與同伴合作交流,探究如何通過操作其中一個(gè)三角形使它們?cè)俅沃睾希?/p>

通過課件展示引導(dǎo)學(xué)生理解只要兩個(gè)三角形的形狀大小相同,不管位置怎樣變化,都能通過平移旋轉(zhuǎn)翻折的方式使之重合。

(2)觀察交流,探究新知

引導(dǎo)學(xué)生觀察,交流探索規(guī)律。在全等三角形中,一般是: 1.有公共邊,則公共邊為對(duì)應(yīng)邊; 2.有公共角,則公共角為對(duì)應(yīng)角;

3.最大邊與最大邊(最小邊與最小邊)為對(duì)應(yīng)邊;最大角與最大角(最小角與最小角)為對(duì)應(yīng)角;

引導(dǎo)學(xué)生觀察,交流發(fā)現(xiàn)規(guī)律。

針對(duì)所得的對(duì)應(yīng)角、對(duì)應(yīng)邊情況引導(dǎo)學(xué)生總結(jié):規(guī)范地寫出全等三角形表達(dá)式具有重要的意義,根據(jù)表達(dá)式中字母的對(duì)應(yīng)情況就能夠,準(zhǔn)確判斷出全等三角形的對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)邊、對(duì)應(yīng)角。

三、合作交流,應(yīng)用新知。

例:如圖,△ABO≌△DCO,指出所有的對(duì)應(yīng)邊和對(duì)應(yīng)角。

解:∵△ABO≌△DCO(已知)∴AB=DC,BO=CO,AO=DO(全等三角形的對(duì)應(yīng)邊相等)

∠A=∠D,∠ABO=∠DCO,∠AOB=∠DOC(全等三角形的對(duì)應(yīng)角相等)變式:若上圖中△ABC≌△DCB,試寫出這兩個(gè)三角形中相等的邊和相等的角。

解: ∵△ABC≌△DCB(已知)∴AB=DC,BC=CB,AC=BD(全等三角形的對(duì)應(yīng)邊相等)

∠A=∠ D,∠ABC=∠DCB,∠ACB=∠DBC(全等三角形的對(duì)應(yīng)角相等)

四、課堂練習(xí),鞏固新知。

(1)如圖,△ABD≌△EBC,AB=3cm,BC=5cm, 求DE的長(zhǎng).解:∵△ABD≌△EBC,且AB=3cm,BC=5cm(已知)

∴AB=EB=3cm,BC=BD=5cm(全等三角形的對(duì)應(yīng)邊相等)∴DE=BD-EB=5-3=2cm

(2)如圖,已知△ABC≌△ADE, 想一想: ∠ BAD= ∠ CAE嗎?為什么?

解:相等,∵△ABC≌△ADE(已知)∴∠BAC=∠DAE(全等三角形對(duì)應(yīng)角相等)∴∠BAC—∠DAC=∠DAE—∠DAC(等式性質(zhì))即∠BAC=∠DAE

五、師生互動(dòng),小結(jié)新知。

學(xué)習(xí)了這堂課你有哪些收獲?并把它與同伴一起分享。

1、全等形的定義:能夠完全重合的兩個(gè)圖形,叫做全等形。

2、全等三角形的定義:能夠完全重合的兩個(gè)三角形叫做全等三角形。

3、全等三角形的性質(zhì):全等三角形對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。

4、尋找全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角得規(guī)律。(1)觀察圖形特點(diǎn);

(2)觀察表達(dá)式(對(duì)應(yīng)關(guān)系)

六、布置作業(yè)。

課本P92習(xí)題15.1,第2、4題。

七、教 后 感

······

板書設(shè)計(jì):

15.1 全 等 三 角 形

定義:

表示 性質(zhì):

(學(xué)生板書)

下載全等三角形 教案word格式文檔
下載全等三角形 教案.doc
將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    全等三角形教案

    《全等三角形》教學(xué)設(shè)計(jì) 五常市牛家中學(xué) 王冬梅 《全等三角形》說課 一.教材分析 《全等三角形》是八年級(jí)上冊(cè)數(shù)學(xué)教材第十一章第一節(jié)的教學(xué)內(nèi)容。本節(jié)課是“全等三角形......

    《全等三角形》教案

    《全等三角形》導(dǎo)學(xué)單 【學(xué)習(xí)目標(biāo)】 1.理解全等三角形的概念及表示方法,會(huì)尋找全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角和對(duì)應(yīng)頂點(diǎn)。 2.掌握全等三角形的性質(zhì),并能進(jìn)行簡(jiǎn)單的推理和計(jì)算,能解......

    全等三角形

    復(fù)習(xí)提問 通過前兩個(gè)問題復(fù)習(xí)鞏固上一節(jié)所講的知識(shí),通過問題3引導(dǎo)學(xué)生認(rèn)識(shí)到三角形全等是證明角相等、線段相等的重要方法,然后設(shè)疑,如何證明兩個(gè)三角形全等?從而引出課題。 活......

    全等三角形教案(合集5篇)

    篇1:全等三角形教案〖教學(xué)目標(biāo)〗◆1、探索兩個(gè)直角三角形全等的條件.◆2、掌握兩個(gè)直角三角形全等的條件(hl).◆3、了解角平分線的性質(zhì):角的內(nèi)部,到角兩邊距離相等的點(diǎn),在角平分線......

    12.1全等三角形 教案

    12.1全等三角形教學(xué)目標(biāo):1了解全等形及全等三角形的的概念; 2 理解全等三角形的性質(zhì) 3 在圖形變換以及實(shí)際操作的過程中發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的幾何直覺, 重點(diǎn):探究全等三......

    “全等三角形”公開課教案

    公開課教案 課題:全等三角形教學(xué)教案 年級(jí)科目:八年級(jí)數(shù)學(xué) 執(zhí)教時(shí)間:2010年10月21日 地點(diǎn):層臺(tái)鎮(zhèn)斯栗小學(xué)八年級(jí)(2)班教室 執(zhí) 教 人:穆紅 教學(xué)目標(biāo) 1. 知道什么是全等形、全等三角......

    全等三角形的教案[合集五篇]

    課題13.1全等三角形班級(jí) 初二3班授課人 甄運(yùn)超 教學(xué)目標(biāo):1了解全等形及全等三角形的的概念; 2 理解全等三角形的性質(zhì) 3 在圖形變換以及實(shí)際操作的過程中發(fā)展學(xué)生的空間觀念,培......

    全等三角形的判定教案

    全等三角形的判定(第4課時(shí)) 教學(xué)任務(wù)分析 一、教學(xué)目標(biāo) 1、知識(shí)技能: 1)掌握全等三角形的4種判定方法; 2)利用三角形全等的判定方法證明三角形全等; 3)通過證明三角形的全等,利用......

主站蜘蛛池模板: 国产网红主播无码精品| 精品自拍亚洲一区在线| 中文字幕av一区中文字幕天堂| 久久久久亚洲av片无码v| 99久久久无码国产精品秋霞网| 人人妻人人澡人人爽人人精品浪潮| 中文字幕亚洲无线码a| 亚洲老熟女性亚洲| 在线精品视频一区二区三四| 亚洲最大av资源网在线观看| 亚洲国产成人久久一区www| 四虎永久在线精品无码视频| 不卡无在线一区二区三区观| 欧美丰满熟妇bbbbbb百度| 精品一区二区三区在线观看视频| 亚洲国产香蕉碰碰人人| 成年女人午夜毛片免费| 岛国av无码免费无禁网站| 日韩成人无码| 亚洲成aⅴ人片久青草影院| 国产人妻大战黑人20p| 国产精品99久久精品爆乳| 免费无码又爽又刺激网站| 4438xx亚洲最大五色丁香| 婷婷五月六月激情综合色中文字幕| 影音先锋熟女少妇av资源| 三上悠亚在线精品二区| 97久久天天综合色天天综合色hd| 欧美成年黄网站色视频| 免费天堂无码人妻成人av电影| 天天综合网天天综合色| 伊人蕉影院久亚洲高清| 免费精品国自产拍在线观看| 欧美伊人色综合久久天天| 日本视频高清一道一区| 2021亚洲国产精品无码| 亚洲精品图片区小说区| 日本19禁啪啪吃奶大尺度| 国产欧美另类久久精品蜜芽| 车上震动a级作爱视频| 国产好爽…又高潮了毛片|