久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

高一數(shù)學(xué)必修1知識點(最終定稿)

時間:2020-12-10 01:01:24下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《高一數(shù)學(xué)必修1知識點》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《高一數(shù)學(xué)必修1知識點》。

第一篇:高一數(shù)學(xué)必修1知識點

進(jìn)入高中后,很多新生有這樣的心理落差,比自己成績優(yōu)秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應(yīng)盡快進(jìn)入學(xué)習(xí)狀態(tài)。下面給大家分享一些關(guān)于高一數(shù)學(xué)必修1知識點,希望對大家有所幫助。

高一數(shù)學(xué)必修1知識1

集合的分類

(1)按元素屬性分類,如點集,數(shù)集。

(2)按元素的個數(shù)多少,分為有/無限集

關(guān)于集合的概念:

(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

(2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

(3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標(biāo)準(zhǔn)。

集合可以根據(jù)它含有的元素的個數(shù)分為兩類:

含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N-;

整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應(yīng)的數(shù)。)

1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的集合可表示為{0,1}.有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”

而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高一數(shù)學(xué)必修1知識2

一、集合有關(guān)概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1.元素的確定性;

2.元素的互異性;

3.元素的無序性

說明:

(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

注意啊:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N-或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

關(guān)于“屬于”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數(shù)學(xué)式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{---3>2}

4、集合的分類:

1.有限集含有有限個元素的集合2.無限集含有無限個元素的集合3.空集不含任何元素的集合例:{--2=-5}

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

實例:設(shè)A={--2-1=0}B={-1,1}“元素相同”

結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同時BíA那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集

高一數(shù)學(xué)必修1知識3

一、高中數(shù)學(xué)函數(shù)的有關(guān)概念

1.高中數(shù)學(xué)函數(shù)函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于函數(shù)A中的任意一個數(shù)x,在函數(shù)B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從函數(shù)A到函數(shù)B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的函數(shù){f(x)|x∈A}叫做函數(shù)的值域.注意:

函數(shù)定義域:能使函數(shù)式有意義的實數(shù)x的函數(shù)稱為函數(shù)的定義域。

求函數(shù)的定義域時列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的函數(shù).(6)指數(shù)為零底不可以等于零,(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.?相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點必須同時具備)

2.高中數(shù)學(xué)函數(shù)值域:先考慮其定義域

(1)觀察法

(2)配方法

(3)代換法

3.函數(shù)圖象知識歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上.(2)畫法

A、描點法:

B、圖象變換法

常用變換方法有三種

1)平移變換

2)伸縮變換

3)對稱變換

4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

(1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

(2)無窮區(qū)間

5.映射

一般地,設(shè)A、B是兩個非空的函數(shù),如果按某一個確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”

對于映射f:A→B來說,則應(yīng)滿足:

(1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;

(2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個;

(3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。

6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

(2)各部分的自變量的取值情況.(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.補充:復(fù)合函數(shù)

如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

第二篇:高中高一數(shù)學(xué)必修1各章知識點總結(jié)

高中高一數(shù)學(xué)必修1各章知識點總結(jié)(1)第一章 集合與函數(shù)(1)

一、集合有關(guān)概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

元素的確定性;??元素的互異性;??元素的無序性

(1)對于一個給定的集合,集合中的元素是確定的。任何一個對象是不是這個給定的集合的元素,是毫不含糊的。

(2)在任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,不論其先后順序。因此判定兩個集合是否相等,僅需比較它們的元素是否一致,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:

(1)用拉丁字母記集合;

注意:常用數(shù)集及其記號:

自然數(shù)集N 正整數(shù)集N*或 N+? 整數(shù)集Z?? 有理數(shù)Q?? 實數(shù)集R(2)集合的表示方法:列舉法與描述法。

列舉法:把集合中的元素一一列舉出來,然后用一個大括號括起來。

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

①語言描述法:例:{直角三角形}

②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x|x-3>2}.注意:要特別

4、元素與集合的關(guān)系:從屬關(guān)系

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A,記作 a∈A,相反,a不屬于集合A,記作 A(a

5、集合的分類:

(1)有限集??? 含有有限個元素的集合(2)無限集??? 含有無限個元素的集合

(3)空集Φ不含任何元素的集合 例:{x|x2=-5}。

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

(1)包含 ;

(2)真包含。①包含包括真包含和相等兩種情形。②任何一個集合是它本身的子集。

③空集是任何集合的子集,是任何非空集合的真子集。

2、互補關(guān)系

(1)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(2)補集:設(shè)A是U的一個子集,由U中所有不屬于A的元素組成的集合,叫做集合A的補集(或余集)(3)性質(zhì):①CU(CUA)=A?? ②(CUA)∩A=Φ??③(CUA)∪A=U ④CUΦ=U

⑤CUU=Φ

三、集合的運算

1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A∩B,即A∩B={x|x∈A,且x∈B}.

2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、集合主要的運算性質(zhì):交換律、結(jié)合律、分配律和反演律.反演律:①CU(A∩B)=(CUA)∪(CUB);②CU(A∪B)=(CUA)∩(CUB)。

四、重要結(jié)論

1、crd(A∪B)+ crd(A∩B)= crd(A)+crd(B)。

2、若crd(A)=n,則集合A有2n個子集,2n-1個真子集,2n-1個非空子集,2n-2個非空真子集(n≥1).3、AB A∩B=A A∪B=B(CUA)∪B= UA∩(CUB)=Φ。

第三篇:高一數(shù)學(xué)必修2知識點總結(jié)

高中數(shù)學(xué)必修2知識點

三、立體幾何初步

1、柱、錐、臺、球的結(jié)構(gòu)特征

(1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共

邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱ABCDE?ABCDE或用對角線的端點字母,如五棱柱'''''

AD'

幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且

相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐P?ABCDE

幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到

截面距離與高的比的平方。

(3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

表示:用各頂點字母,如五棱臺P?ABCDE

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖

是一個矩形。

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

(6)圓臺:定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖 ''''''''''

第1頁

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

4、柱體、錐體、臺體的表面積與體積

(1)幾何體的表面積為幾何體各個面的面積的和。

(2)特殊幾何體表面積公式(c為底面周長,h為高,h為斜高,l為母線)'

S直棱柱側(cè)面積?chS圓柱側(cè)?2?rh S正棱錐側(cè)面積?1ch'S圓錐側(cè)面積??rl

2S正棱臺側(cè)面積?1(c1?c2)h'S圓臺側(cè)面積?(r?R)?l 2

?2?r?r?l?S圓錐表??r?r?l?S圓臺表??r2?rl?Rl?R2S圓柱表??

(3)柱體、錐體、臺體的體積公式

1V柱?ShV圓柱?Sh??2r hV錐?ShV圓錐

?1?r2h 3

31'1122V臺?(S'S)h

V圓臺?(S?S)h??(r?rR?R)h

333

(4)球體的表面積和體積公式:V球=4?R3 3; S球面=4?R24、空間點、直線、平面的位置關(guān)系

(1)平面

①平面的概念:A.描述性說明;B.平面是無限伸展的;

②平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個銳角內(nèi));

也可以用兩個相對頂點的字母來表示,如平面BC。

③ 點與平面的關(guān)系:點A在平面?內(nèi),記作A??;點A不在平面?內(nèi),記作A??

點與直線的關(guān)系:點A的直線l上,記作:A∈l;點A在直線l外,記作A?l;

第2頁

直線與平面的關(guān)系:直線l在平面α內(nèi),記作l?α;直線l不在平面α內(nèi),記作l?α。

(2)公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。

(即直線在平面內(nèi),或者平面經(jīng)過直線)

應(yīng)用:檢驗桌面是否平; 判斷直線是否在平面內(nèi)

用符號語言表示公理1:A?l,B?l,A??,B???l??

(3)公理2:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一

平面。

公理2及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

(4)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

符號:平面α和β相交,交線是a,記作α∩β=a。

符號語言:P?A?B?A?B?l,P?l

公理3的作用:

①它是判定兩個平面相交的方法。

②它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點。

③它可以判斷點在直線上,即證若干個點共線的重要依據(jù)。

(5)公理4:平行于同一條直線的兩條直線互相平行

(6)空間直線與直線之間的位置關(guān)系

① 異面直線定義:不同在任何一個平面內(nèi)的兩條直線

② 異面直線性質(zhì):既不平行,又不相交。

③ 異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線 ④ 異面直線所成角:直線a、b是異面直線,經(jīng)過空間任意一點O,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

說明:(1)判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理

(2)在異面直線所成角定義中,空間一點O是任取的,而和點O的位置無關(guān)。

②求異面直線所成角步驟:

A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點

選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

(8)空間直線與平面之間的位置關(guān)系

直線在平面內(nèi)——有無數(shù)個公共點.

三種位置關(guān)系的符號表示:a?αa∩α=Aa∥α

(9)平面與平面之間的位置關(guān)系:平行——沒有公共點;α∥β

相交——有一條公共直線。α∩β=b5、空間中的平行問題

(1)直線與平面平行的判定及其性質(zhì)

線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

第3頁

線線平行?線面平行

線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。線面平行?線線平行

(2)平面與平面平行的判定及其性質(zhì)

兩個平面平行的判定定理

(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

(線面平行→面面平行),(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。

(線線平行→面面平行),(3)垂直于同一條直線的兩個平面平行,兩個平面平行的性質(zhì)定理

(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

7、空間中的垂直問題

(1)線線、面面、線面垂直的定義

①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

(2)垂直關(guān)系的判定和性質(zhì)定理

①線面垂直判定定理和性質(zhì)定理

判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

②面面垂直的判定定理和性質(zhì)定理

判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

9、空間角問題

(1)直線與直線所成的角

①兩平行直線所成的角:規(guī)定為0?。

②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線a?,b?,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

(2)直線和平面所成的角

??①平面的平行線與平面所成的角:規(guī)定為0。②平面的垂線與平面所成的角:規(guī)定為90。

③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

(3)二面角和二面角的平面角

①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二

第4頁

面角的棱,這兩個半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射.....線,這兩條射線所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。

兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

④求二面角的方法

定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

7、空間直角坐標(biāo)系

(1)定義:如圖,OBCD?D,A,B,C,是單位正方體.以A為原點,分別以O(shè)D,OA,OB的方向為正方向,建立三條數(shù)軸x軸.y軸.z軸。

這時建立了一個空間直角坐標(biāo)系Oxyz.1)O叫做坐標(biāo)原點2)x 軸,y軸,z軸叫做坐標(biāo)軸.3)過每兩個坐標(biāo)軸的平面叫做坐標(biāo)面。

(2)右手表示法: 令右手大拇指、食指和中指相互垂直時,可能形成的位置。大拇指指向為x軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。

(3)任意點坐標(biāo)表示:空間一點M的坐標(biāo)可以用有序?qū)崝?shù)組(x,y,z)來表示,有序?qū)崝?shù)組(x,y,z)叫做點M在此空間直角坐標(biāo)系中的坐標(biāo),記作M(x,y,z)(x叫做點M的橫坐標(biāo),y叫做點M的縱坐標(biāo),z叫做點M的豎坐標(biāo))

(4)空間兩點距離坐標(biāo)公式:d?(x2?x1)2?(y2?y1)2?(z2?z1)2

第5頁

第四篇:高一數(shù)學(xué)知識點總結(jié)--必修5

高中數(shù)學(xué)必修5知識點

通項公式的變形:①an?am??n?m?d;②a1?an??n?1?d;③d?⑤d?

an?amn?m

an?a1n?

1;④n?

an?a1

d

?1;

14、若?an?是等差數(shù)列,且m?n?p?q(m、n、p、q??*),則am?an?ap?aq;若?an?是等差

數(shù)列,且2n?p?q(n、p、q??*),則2an?ap?aq;下角標(biāo)成等差數(shù)列的項仍是等差數(shù)列;連續(xù)m項和構(gòu)成的數(shù)列成等差數(shù)列。

15、等差數(shù)列的前n項和的公式:①Sn?

n?a1?an?

;②Sn?na1?

n?n?1?

2d.

16、等差數(shù)列的前n項和的性質(zhì):①若項數(shù)為2n?n??*?,則S2n?n?an?an?1?,且S偶?S奇?nd,S奇S偶

?anan?

1.②若項數(shù)為2n?1?n??*?,則S2n?1??2n?1?an,且S奇?S偶?an,S奇S偶

?

nn?1

(其中

S奇?nan,S偶??n?1?an).

17、如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),則這個數(shù)列稱為等比數(shù)列,這個

常數(shù)稱為等比數(shù)列的公比.

18、在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,則G稱為a與b的等比中項.若G2?ab,則

稱G為a與b的等比中項.

n?

119、若等比數(shù)列?an?的首項是a1,公比是q,則an?a1q.

n?m20、通項公式的變形:①an?amq;②a1?anq

??n?1?

;③q

n?

1?

ana1

;④q

n?m

?

anam

*

21、若?an?是等比數(shù)列,且m?n?p?q(m、n、p、q??),則am?an?ap?aq;若?an?是等比數(shù)

*

列,且2n?p?q(n、p、q??),則an?ap?aq;下角標(biāo)成等差數(shù)列的項仍是等比數(shù)列;連續(xù)m

項和構(gòu)成的數(shù)列成等比數(shù)列。

?na1?q?1?

?

22、等比數(shù)列?an?的前n項和的公式:Sn??a1?1?qn?a?aq.

1n??q?1??

1?q?1?q

q?1時,Sn?

a11?q

?

a11?q

q,即常數(shù)項與q項系數(shù)互為相反數(shù)。

nn23、等比數(shù)列的前n項和的性質(zhì):①若項數(shù)為2n?n??

*

?,則S

S偶

?q.

n

②Sn?m?Sn?q?Sm.③Sn,S2n?Sn,S3n?S2n成等比數(shù)列.

24、an與Sn的關(guān)系:an??

??Sn?Sn?1??S

1?n?2??n?1?

一些方法:

一、求通項公式的方法:

1、由數(shù)列的前幾項求通項公式:待定系數(shù)法

①若相鄰兩項相減后為同一個常數(shù)設(shè)為an?kn?b,列兩個方程求解;

②若相鄰兩項相減兩次后為同一個常數(shù)設(shè)為an?an2?bn?c,列三個方程求解; ③若相鄰兩項相減后相除后為同一個常數(shù)設(shè)為an?aq2、由遞推公式求通項公式:

①若化簡后為an?1?an?d形式,可用等差數(shù)列的通項公式代入求解; ②若化簡后為an?1?an?f(n),形式,可用疊加法求解;

③若化簡后為an?1?an?q形式,可用等比數(shù)列的通項公式代入求解;

④若化簡后為an?1?kan?b形式,則可化為(an?1?x)?k(an?x),從而新數(shù)列{an?x}是等比數(shù)列,用等比數(shù)列求解{an?x}的通項公式,再反過來求原來那個。(其中x是用待定系數(shù)法來求得)

3、由求和公式求通項公式:

①a1?S1② an?Sn?Sn?1③檢驗a1是否滿足an,若滿足則為an,不滿足用分段函數(shù)寫。

4、其他

(1)an?an?1?f?n?形式,f?n?便于求和,方法:迭加;

例如:an?an?1?n?1 有:an?an?1?n?1 a2?a1?3a3?a2?4?

an?an?1?n?

1各式相加得an?a1?3?4???n?1?a1?

n

?b,q為相除后的常數(shù),列兩個方程求解;

?n?4??n?1?

(2)an?an?1

?anan?1形式,同除以anan?1,構(gòu)造倒數(shù)為等差數(shù)列;

an?an?1anan?1

?2?

1an?1

?

例如:an?an?1?2anan?1,則

?1?,即??為以-2為公差的等差數(shù)列。an

?an?

(3)an?qan?1?m形式,q?1,方法:構(gòu)造:an?x?q?an?1?x?為等比數(shù)列;

例如:an?2an?1?2,通過待定系數(shù)法求得:an?2?2?an?1?2?,即?an?2?等比,公比為2。(4)an?qan?1?pn?r形式:構(gòu)造:an?xn?y?q?an?1?x?n?1??y?為等比數(shù)列;

nn

(5)an?qan?1?p形式,同除p,轉(zhuǎn)化為上面的幾種情況進(jìn)行構(gòu)造;

因為an?qan?1?pn,則

anp

n

?

qan?1pp

n?1

?1,若

qp

?1轉(zhuǎn)化為(1)的方法,若不為1,轉(zhuǎn)化為(3)的方

二、等差數(shù)列的求和最值問題:(二次函數(shù)的配方法;通項公式求臨界項法)

①若?②若?

?ak?0,則Sn有最大值,當(dāng)n=k時取到的最大值k滿足? d?0a?0??k?

1?a1?0?a1?0

?ak?0,則Sn有最小值,當(dāng)n=k時取到的最大值k滿足? d?0a?0??k?1

三、數(shù)列求和的方法:

①疊加法:倒序相加,具備等差數(shù)列的相關(guān)特點的,倒序之后和為定值;

②錯位相減法:適用于通項公式為等差的一次函數(shù)乘以等比的數(shù)列形式,如:an??2n?1??3;

n

③分式時拆項累加相約法:適用于分式形式的通項公式,把一項拆成兩個或多個的差的形式。如:an?

1n?n?1?

?1n?

1n?

1,an?

?2n?1??2n?1?

?

1?11?

???等;

2?2n?12n?1?

④一項內(nèi)含有多部分的拆開分別求和法:適用于通項中能分成兩個或幾個可以方便求和的部分,如:

an?2?n?1等;

n

四、綜合性問題中

①等差數(shù)列中一些在加法和乘法中設(shè)一些數(shù)為a?d和a?d類型,這樣可以相加約掉,相乘為平方差; ②等比數(shù)列中一些在加法和乘法中設(shè)一些數(shù)為aq和

aq

類型,這樣可以相乘約掉。

第三章:不等式

1、a?b?0?a?b;a?b?0?a?b;a?b?0?a?b.

比較兩個數(shù)的大小可以用相減法;相除法;平方法;開方法;倒數(shù)法等等。

2、不等式的性質(zhì): ①a?b?b?a;②a?b,b?c?a?c;③a?b?a?c?b?c;

④a?b,c?0?ac?bc,a?b,c?0?ac?bc;⑤a?b,c?d?a?c?b?d; ⑥a?b?0,c?d?0?ac?bd;⑦a?b?0?a?b⑧a?b?0?

nn

?n??,n?1?;

?

n??,n?1?.

3、一元二次不等式:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.

4、二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關(guān)系:

判別式??b?4ac

??0 ??0 ??0

二次函數(shù)y?ax?bx?c

?a?0?的圖象

有兩個相異實數(shù)根

一元二次方程ax?bx?c?0

有兩個相等實數(shù)根

?a?0?的根

ax?bx?c?0

一元二次不等式的解集

x1,2?

?b?2a

x1?x2??

b2a

沒有實數(shù)根

?x1?x2?

?a?0?

ax?bx?c?0

?xx?x1或x?x2?

?b?xx????

2a??

?

R

?a?0?

?xx1?x?x2?

?

5、二元一次不等式:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.

6、二元一次不等式組:由幾個二元一次不等式組成的不等式組.

7、二元一次不等式(組)的解集:滿足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對?x,y?,所有這樣的有序數(shù)對?x,y?構(gòu)成的集合.

8、在平面直角坐標(biāo)系中,已知直線?x??y?C?0,坐標(biāo)平面內(nèi)的點??x0,y0?.

①若??0,?x0??y0?C?0,則點??x0,y0?在直線?x??y?C?0的上方. ②若??0,?x0??y0?C?0,則點??x0,y0?在直線?x??y?C?0的下方.

9、在平面直角坐標(biāo)系中,已知直線?x??y?C?0.

①若??0,則?x??y?C?0表示直線?x??y?C?0上方的區(qū)域;?x??y?C?0表示直線

?x??y?C?0下方的區(qū)域.

②若??0,則?x??y?C?0表示直線?x??y?C?0下方的區(qū)域;?x??y?C?0表示直線

?x??y?C?0上方的區(qū)域.

10、線性約束條件:由x,y的不等式(或方程)組成的不等式組,是x,y的線性約束條件.

目標(biāo)函數(shù):欲達(dá)到最大值或最小值所涉及的變量x,y的解析式. 線性目標(biāo)函數(shù):目標(biāo)函數(shù)為x,y的一次解析式.

線性規(guī)劃問題:求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問題. 可行解:滿足線性約束條件的解?x,y?.

可行域:所有可行解組成的集合.

最優(yōu)解:使目標(biāo)函數(shù)取得最大值或最小值的可行解.

11、設(shè)a、b是兩個正數(shù),則

a?b稱為正數(shù)a、b

a、b的幾何平均數(shù).

12、均值不等式定理: 若a?0,b?

0,則a?b?,即a?b

2?

13、常用的基本不等式:

①a

2?b2

?2ab?a,b?R?;

②ab?

a?b2

?a,b?R?;

③ab??a?b?2

a2

?b2

?a?b2

??2???a?0,b?0?;④2???

?2?

?

?a,b?R?.

14、極值定理:設(shè)x、y都為正數(shù),則有

?s(和為定值),則當(dāng)x?y時,積xy取得最大值s2

⑴若x?y. 4

⑵若xy?p(積為定值),則當(dāng)x?y時,和x?

y取得最小值

第五篇:高一數(shù)學(xué)必修3知識點總結(jié)

導(dǎo)語:勤奮是學(xué)習(xí)的枝葉,當(dāng)然很苦,智慧是學(xué)習(xí)的花朵,當(dāng)然香郁。以下小編為大家介紹高一數(shù)學(xué)必修3知識點總結(jié)文章,歡迎大家閱讀參考!

高一數(shù)學(xué)必修3知識點總結(jié)

第一章算法初步

1.1.1算法的概念

1、算法概念:

在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計算機(jī)來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.2.算法的特點:

(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.(2)確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.(4)不唯一性:求解某一個問題的解法不一定是唯一的,對于一個問題可以有不同的算法.(5)普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.1.1.2程序框圖

1、程序框圖基本概念:

(一)程序構(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形。

一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明。

(二)構(gòu)成程序框的圖形符號及其作用

學(xué)習(xí)這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:

1、使用標(biāo)準(zhǔn)的圖形符號。

2、框圖一般按從上到下、從左到右的方向畫。

3、除判斷框外,大多數(shù)流程圖符號只有一個進(jìn)入點和一個退出點。判斷框具有超過一個退出點的唯一符號。

4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。

5、在圖形符號內(nèi)描述的語言要非常簡練清楚。

(三)、算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。

1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結(jié)構(gòu)。

順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。

2、條件結(jié)構(gòu):

條件結(jié)構(gòu)是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。

條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結(jié)構(gòu)可以有多個判斷框。

3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:

(1)、一類是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。

(2)、另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。

當(dāng)型循環(huán)結(jié)構(gòu)直到型循環(huán)結(jié)構(gòu)

注意:1循環(huán)結(jié)構(gòu)要在某個條件下終止循環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個計數(shù)變量和累加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計數(shù)變量和累加變量一般是同步......執(zhí)行的,累加一次,計數(shù)一次。1.2.1輸入、輸出語句和賦值語句

1、輸入語句

(1)輸入語句的一般格式

(2)輸入語句的作用是實現(xiàn)算法的輸入信息功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,變量是指程序在運行時其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達(dá)式;(5)提示內(nèi)容與變量之間用分號“;”隔開,若輸入多個變量,變量與變量之間用逗號“,”隔開。

2、輸出語句

(1)輸出語句的一般格式

(2)輸出語句的作用是實現(xiàn)算法的輸出結(jié)果功能;(3)“提示內(nèi)容”提示用戶輸入什么樣的信息,表達(dá)式是指程序要輸出的數(shù)據(jù);(4)輸出語句可以輸出常量、變量或表達(dá)式的值以及字符。

3、賦值語句

(1)賦值語句的一般格式

(2)賦值語句的作用是將表達(dá)式所代表的值賦給變量;(3)賦值語句中的“=”稱作賦值號,與數(shù)學(xué)中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達(dá)式的值賦給賦值號左邊的變量;(4)賦值語句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個數(shù)據(jù)、常量或算式;(5)對于一個變量可以多次賦值。

注意:①賦值號左邊只能是變量名字,而不能是表達(dá)式。如:2=X是錯誤的。②賦值號左

右不能對換。如“A=B”“B=A”的含義運行結(jié)果是不同的。③不能利用賦值語句進(jìn)行代數(shù)式的演算。(如化簡、因式分解、解方程等)④賦值號“=”與數(shù)學(xué)中的等號意義不同。

1.2.2條件語句

1、條件語句的一般格式有兩種:(1)IF—THEN—ELSE語句;(2)IF—THEN語句。

2、IF—THEN—ELSE語句

IF—THEN—ELSE語句的一般格式為圖

1圖1圖

2分析:在IF—THEN—ELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時執(zhí)行的操作內(nèi)容;ENDIF表示條件語句的結(jié)束。計算機(jī)在執(zhí)行時,首先對IF后的條件進(jìn)行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2。

3、IF—THEN語句

IF—THEN語句的一般格式為圖3,對應(yīng)的程序框圖為圖

4注意:“條件”表示判斷的條件;“語句”表示滿足條件時

作內(nèi)容,條件不滿足時,結(jié)束程序;ENDIF表示條件語句的結(jié)束。計算機(jī)在執(zhí)行時首先對IF后的條件進(jìn)行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其它語句。

1.2.3循環(huán)語句

循環(huán)結(jié)構(gòu)是由循環(huán)語句來實現(xiàn)的。對應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計語言中也有當(dāng)型(WHILE型)和直到型(UNTIL型)兩種語句結(jié)構(gòu)。即WHILE語句和UNTIL語句。

1、WHILE語句

(1)WHILE語句的一般格式是

(2)當(dāng)計算機(jī)遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個過程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時,計算機(jī)將不執(zhí)行循環(huán)體,直接跳到WEND語句后,接著執(zhí)行WEND之后的語句。因此,當(dāng)型循環(huán)有時也稱為“前測試型”循環(huán)。

下載高一數(shù)學(xué)必修1知識點(最終定稿)word格式文檔
下載高一數(shù)學(xué)必修1知識點(最終定稿).doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    高一歷史必修1知識點總結(jié)

    第一單元:古代中國的政治制度第一課考點重點:西周的宗法制與分封制1、夏是我國歷史上第一個王朝,我國的早期國家政治制度始于:夏;2、王位世襲制的確立,是我國原始社會過渡到奴隸社......

    高一數(shù)學(xué)必修2知識點(人教版-新課標(biāo))

    高中數(shù)學(xué)必修2知識點一、直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾......

    高一數(shù)學(xué)必修1函數(shù)教案

    第二章 函數(shù)§2.1 函數(shù) 教學(xué)目的:(1)學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用; (2)了解構(gòu)成函數(shù)的要素; (3)會求一些簡單函數(shù)的定義域和值域; (4)能夠正......

    高一數(shù)學(xué)必修1教學(xué)反思

    高一數(shù)學(xué)必修1教學(xué)反思 富縣高級中學(xué) 王曉廣 數(shù)學(xué)必修1即將學(xué)習(xí)結(jié)束,我有以下幾點體會: 1、高一學(xué)生在初中養(yǎng)成的固定的學(xué)習(xí)習(xí)慣和學(xué)習(xí)方法。進(jìn)入高中以后,相當(dāng)一部分的同學(xué)滿......

    高一數(shù)學(xué)必修1教學(xué)反思

    高一數(shù)學(xué)必修1教學(xué)反思 高一數(shù)學(xué)必修1教學(xué)反思1 數(shù)學(xué)必修1即將學(xué)習(xí)結(jié)束,我有以下幾點體會:1、高一學(xué)生在初中養(yǎng)成的固定的學(xué)習(xí)習(xí)慣和學(xué)習(xí)方法。進(jìn)入高中以后,相當(dāng)一部分的同學(xué)......

    高一數(shù)學(xué)必修1說課稿《對數(shù)函數(shù)》

    一、教材的本質(zhì)、地位與作用對數(shù)函數(shù)(第二課時)是人教版高一數(shù)學(xué)(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識,分三個課時,這里是第二課時復(fù)習(xí)鞏固對數(shù)函數(shù)......

    高一數(shù)學(xué)必修1試卷分析

    高一數(shù)學(xué)中期考試試卷分析 試卷特點及評析: 本試卷考查的知識內(nèi)容為《必修1》,試題主要有以下幾方面的特點:注重基本知識、基本能力、基本方法,難度設(shè)計合理,起點低,覆蓋面廣,主題......

    高一必修二數(shù)學(xué)知識點(樣例5)

    知識是僅把書本和表象,攝入底片的照相機(jī);智慧是洞悉穿刺事物,本質(zhì)和內(nèi)核的透視儀。下面小編給大家分享一些高一必修二數(shù)學(xué)知識,希望能夠幫助大家,歡迎閱讀!高一必修二數(shù)學(xué)知識11......

主站蜘蛛池模板: 欧美3p两根一起进高清视频| 亚洲午夜免费福利视频| 色婷婷六月亚洲综合香蕉| 岛国片人妻三上悠亚| √天堂中文官网8在线| 亚洲欧美日韩国产精品一区| 亚洲综合无码久久精品综合| 免费萌白酱国产一区二区三区| 久久无码人妻一区二区三区午夜| 国产乱码一区二区三区爽爽爽| 无遮挡又爽又刺激的视频| 亚洲成av人影院| 无遮挡又爽又刺激的视频| 成人午夜亚洲精品无码区毛片| 国产特级毛片aaaaaaa高清| 久久久久国产精品人妻aⅴ四季| 国产精品成人av在线观看春天| 国产成人乱码一二三区18| 亚洲欧美国产另类视频| 国产乱妇乱子在线播视频播放网站| 日韩精品无码av中文无码版| 国精品人妻无码一区免费视频电影| 国产精品久久久久久久久久久免费看| 成人精品无码| 久久久亚洲精品一区二区三区| 欧美精品亚洲精品日韩已满十八| 黑人巨大精品欧美一区二区免费| 中文字幕无码免费久久99| 人禽交 欧美 网站| 国产好大好爽久久久久久久| 国产精品视频二区不卡| 久久午夜无码鲁丝片午夜精品| 亚洲精品一区二区三区在线| 免费看成人午夜福利专区| 亚洲中文字幕无码专区| 不卡无码人妻一区二区| 欧美粗大猛烈老熟妇| 国产情侣2020免费视频| 久久久久国色av免费观看性色| 日韩av爽爽爽久久久久久| 激情第一区仑乱|