人教版初中數(shù)學(xué)優(yōu)秀教案
人教版初中數(shù)學(xué)優(yōu)秀教案1
教學(xué)目標(biāo)
1、知識與技能:體會公式的發(fā)現(xiàn)和推導(dǎo)過程,了解公式的幾何背景,理解公式的本質(zhì),會應(yīng)用公式進(jìn)行簡單的計(jì)算.
2、過程與方法:通過讓學(xué)生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達(dá)能力.培養(yǎng)學(xué)生的數(shù)形結(jié)合能力.
3、情感態(tài)度價(jià)值觀:體驗(yàn)數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動中獲得成功的體驗(yàn)與喜悅,樹立學(xué)習(xí)自信心.
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):
1、對公式的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)、語言表述(學(xué)生自己的語言)、幾何解釋.
2、會運(yùn)用公式進(jìn)行簡單的計(jì)算.
教學(xué)難點(diǎn):
1、完全平方公式的推導(dǎo)及其幾何解釋.
2、完全平方公式的結(jié)構(gòu)特點(diǎn)及其應(yīng)用.
教學(xué)工具
課件
教學(xué)過程
一、復(fù)習(xí)舊知、引入新知
問題1:請說出平方差公式,說說它的結(jié)構(gòu)特點(diǎn).
問題2:平方差公式是如何推導(dǎo)出來的?
問題3:平方差公式可用來解決什么問題,舉例說明.
問題4:想一想、做一做,說出下列各式的結(jié)果.
(1)(a+b)2(2)(a-b)2
(此時,教師可讓學(xué)生分別說說理由,并且不直接給出正確評價(jià),還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣.)
二、創(chuàng)設(shè)問題情境、探究新知
一塊邊長為a米的正方形實(shí)驗(yàn)田,因需要將其邊長增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種.(如圖)
(1)四塊面積分別為:、、、;
(2)兩種形式表示實(shí)驗(yàn)田的總面積:
①整體看:邊長為的大正方形,S=;
②部分看:四塊面積的和,S=.
總結(jié):通過以上探索你發(fā)現(xiàn)了什么?
問題1:通過以上探索學(xué)習(xí),同學(xué)們應(yīng)該知道我們提出的問題4正確的結(jié)果是什么了吧?
問題2:如果還有同學(xué)不認(rèn)同這個結(jié)果,我們再看下面的問題,繼續(xù)探索.(a+b)2表示的意義是什么?請你用多項(xiàng)式的乘法法則加以驗(yàn)證.
(教學(xué)過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗(yàn)證才能得出真知,但還是要鼓勵學(xué)生大膽猜想,發(fā)表見解,但要驗(yàn)證)
問題3:你能說說(a+b)2=a2+2ab+b2
這個等式的結(jié)構(gòu)特點(diǎn)嗎?用自己的語言敘述.
(結(jié)構(gòu)特點(diǎn):右邊是二項(xiàng)式(兩數(shù)和)的平方,右邊有三項(xiàng),是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)
問題4:你能根據(jù)以上等式的結(jié)構(gòu)特點(diǎn)說出(a-b)2等于什么嗎?請你再用多項(xiàng)式的乘法法則加以驗(yàn)證.
總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.
問題:①這兩個公式有何相同點(diǎn)與不同點(diǎn)?②你能用自己的語言敘述這兩個公式嗎?
語言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.
強(qiáng)化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.
三、例題講解,鞏固新知
例1:利用完全平方公式計(jì)算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流總結(jié):運(yùn)用完全平方公式計(jì)算的一般步驟
(1)確定首、尾,分別平方;
(2)確定中間系數(shù)與符號,得到結(jié)果.
四、練習(xí)鞏固
練習(xí)1:利用完全平方公式計(jì)算
練習(xí)2:利用完全平方公式計(jì)算
練習(xí)3:
(練習(xí)可采用多種形式,學(xué)生上黑板板演,師生共同評價(jià).也可學(xué)生獨(dú)立完成后,學(xué)生互相批改,力求使學(xué)生對公式完全掌握,如有學(xué)生出現(xiàn)問題,學(xué)生、教師應(yīng)及時幫助.)
五、變式練習(xí)
六、暢談收獲,歸納總結(jié)
1、本節(jié)課我們學(xué)習(xí)了乘法的完全平方公式.
2、我們在運(yùn)用公式時,要注意以下幾點(diǎn):
(1)公式中的字母a、b可以是任意代數(shù)式;
(2)公式的結(jié)果有三項(xiàng),不要漏項(xiàng)和寫錯符號;
(3)可能出現(xiàn)①②這樣的錯誤.也不要與平方差公式混在一起.
七、作業(yè)設(shè)置
人教版初中數(shù)學(xué)優(yōu)秀教案2
一、內(nèi)容簡介
本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。
關(guān)鍵信息:
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項(xiàng)式和等號右邊得出的三項(xiàng)有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
二、學(xué)習(xí)者分析:
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:
①同類項(xiàng)的定義。
②合并同類項(xiàng)法則
③多項(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
三、教學(xué)/學(xué)習(xí)目標(biāo)及其對應(yīng)的課程標(biāo)準(zhǔn):
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。
2、會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。
(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理
數(shù)、實(shí)數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。
(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同
角度尋求解決問題的方法,并能有效地解決問題,嘗試評價(jià)不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。
(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨(dú)立克服困難
和運(yùn)用知識解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。
四、教育理念和教學(xué)方式:
1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
教學(xué)是師生交往、積極互動、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時
候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。
2、采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式
展開教學(xué)。
3、教學(xué)評價(jià)方式:
(1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動中的主
動參與程度與合作交流意識,及時給與鼓勵、強(qiáng)化、指導(dǎo)和矯正。
(2)通過判斷和舉例,給學(xué)生更多機(jī)會,在自然放松的狀態(tài)下,
揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學(xué)情,調(diào)查教學(xué)。
(3)通過課后訪談和作業(yè)分析,及時查漏補(bǔ)缺,確保達(dá)到預(yù)期的
教學(xué)效果。
五、教學(xué)媒體:
多媒體
六、教學(xué)和活動過程:
教學(xué)過程設(shè)計(jì)如下:
〈一〉、提出問題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個單項(xiàng)式的關(guān)系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特點(diǎn)。
(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號的特點(diǎn))。
(4)三項(xiàng)與原多項(xiàng)式中兩個單項(xiàng)式的關(guān)系。
2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運(yùn)用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判斷:
①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、小試牛刀
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?
(1)公式右邊共有3項(xiàng)。
(2)兩個平方項(xiàng)符號永遠(yuǎn)為正。
(3)中間項(xiàng)的符號由等號左邊的兩項(xiàng)符號是否相同決定。
(4)中間項(xiàng)是等號左邊兩項(xiàng)乘積的2倍。
〈五〉、冒險(xiǎn)島:
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
〈六〉、學(xué)生自我評價(jià)
[小結(jié)]通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?
本節(jié)課,我們自己通過計(jì)算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。
〈七〉[作業(yè)]P34隨堂練習(xí)P36習(xí)題
人教版初中數(shù)學(xué)優(yōu)秀教案3
一、學(xué)生學(xué)情分析
學(xué)生的技能基礎(chǔ):學(xué)生通過對本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運(yùn)算、整式的乘法、平方差公式,這些基礎(chǔ)知識的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ).
學(xué)生活動經(jīng)驗(yàn)基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過程,獲得了一些數(shù)學(xué)活動的經(jīng)驗(yàn),培養(yǎng)了一定的符號感和推理能力;同時在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過程,具有了一定的獨(dú)立探究意識以及與同伴合作交流的能力.
二、教學(xué)目標(biāo)
知識與技能:
(1)讓學(xué)生會推導(dǎo)完全平方公式,并能進(jìn)行簡單的應(yīng)用.
(2)了解完全平方公式的幾何背景.
數(shù)學(xué)能力:
(1)由學(xué)生經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展學(xué)生的符號感與推理能力.
(2)發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.
情感與態(tài)度:
將學(xué)生頭腦中的前概念暴露出來進(jìn)行分析,避免形成教學(xué)上的“相異構(gòu)想”.
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):1、完全平方公式的推導(dǎo);
2、完全平方公式的應(yīng)用;
教學(xué)難點(diǎn):1、消除學(xué)生頭腦中的前概念,避免形成“相異構(gòu)想”;
2、完全平方公式結(jié)構(gòu)的認(rèn)知及正確應(yīng)用.
四、教學(xué)設(shè)計(jì)分析
本節(jié)課設(shè)計(jì)了十一個教學(xué)環(huán)節(jié):學(xué)生練習(xí)、暴露問題——驗(yàn)證——推廣到一般情況,形成公式——數(shù)形結(jié)合——進(jìn)一步拓廣——總結(jié)口訣——公式應(yīng)用——學(xué)生反饋——學(xué)生PK——學(xué)生反思——鞏固練習(xí).
第一環(huán)節(jié):學(xué)生練習(xí)、暴露問題
活動內(nèi)容:計(jì)算:(a+2)2
設(shè)想學(xué)生的做法有以下幾種可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正確做法;
針對這幾種結(jié)果都將a=1代入計(jì)算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗(yàn)證?
活動目的:在很多學(xué)生的頭腦中,認(rèn)為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:
(a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個正確的概念;這一環(huán)節(jié)的目的就是讓學(xué)生的這種錯誤或其它錯誤充分暴露出來,并讓學(xué)生充分認(rèn)識到自己原有的定式思維是錯誤的,為下一步構(gòu)建新的思維模式埋下伏筆.
第二環(huán)節(jié):驗(yàn)證(a+2)2=a2–4a+22
活動內(nèi)容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22
活動目的':在前一環(huán)節(jié)已經(jīng)打破了學(xué)生的原有的思維定式的基礎(chǔ)上,給學(xué)生建立正確的思維方法,避免形成“相異構(gòu)想”.
第三環(huán)節(jié):推廣到一般情況,形成公式
活動內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活動目的:讓學(xué)生經(jīng)歷從特殊到一般的探究過程,體驗(yàn)到發(fā)現(xiàn)的快樂.
第四環(huán)節(jié):數(shù)形結(jié)合
活動內(nèi)容:設(shè)問:在多項(xiàng)式的乘法中,很多公式都都可以用幾何圖形進(jìn)行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?
展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.
學(xué)生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)
活動目的:讓學(xué)生進(jìn)一步認(rèn)識到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機(jī)地結(jié)合在一起,從而發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.
第五環(huán)節(jié):進(jìn)一步拓廣
活動內(nèi)容:推導(dǎo)兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活動目的:讓學(xué)生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會到符號差異帶來的結(jié)果差異,由第二種推導(dǎo)方法體會到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應(yīng)用.
第六環(huán)節(jié):總結(jié)口訣、認(rèn)識特征
活動內(nèi)容:比較兩個公式的共同點(diǎn)與不同點(diǎn):(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左邊都是一個二項(xiàng)式的完全平方,兩者僅有一個符號不同;右邊都是二次三項(xiàng)式,其中第一、三項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,中間一項(xiàng)是左邊二項(xiàng)式中兩項(xiàng)乘積的兩倍,兩者也僅一個符號不同;
②公式中的a、b可以是任意一個代數(shù)式(數(shù)、字母、單項(xiàng)式、多項(xiàng)式)
口訣:首平方,尾平方,首尾相乘的兩倍在中央.
活動目的:認(rèn)識完全平方公式的特征,總結(jié)出完全平方公式的口訣,便于學(xué)生理解與記憶,避免學(xué)生在應(yīng)用該公式中出現(xiàn)錯誤.
第七環(huán)節(jié):公式應(yīng)用
活動內(nèi)容:例:計(jì)算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9
②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+
活動目的:在前幾個環(huán)節(jié)中,學(xué)生對完全平方公式已經(jīng)有了感性認(rèn)識,通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習(xí),使學(xué)生逐步經(jīng)歷認(rèn)識——模仿——再認(rèn)識.從而上升到理性認(rèn)識的階段.
第八環(huán)節(jié):隨堂練習(xí)
活動內(nèi)容:計(jì)算:①;②;③(n+1)2–n2
活動目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對完全平方公式的理解是否到位,完全平方公式的應(yīng)用是否得當(dāng),以便教師能及時地進(jìn)行查缺補(bǔ)漏.
第九環(huán)節(jié):學(xué)生PK
活動內(nèi)容:每個學(xué)生各出五道完全平方公式的計(jì)算題給自己的同桌解答,比一比誰的準(zhǔn)確性率高,速度快.
活動目的:活躍課堂氣氛,激起學(xué)生的好勝心,進(jìn)一步鞏固學(xué)生對完全平方公式的理解與應(yīng)用.
第十環(huán)節(jié):學(xué)生反思
活動內(nèi)容:通過今天這堂課的學(xué)習(xí),你有哪些收獲?
收獲1:認(rèn)識了完全平方公式,并能簡單應(yīng)用;
收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異;
收獲3:感受到數(shù)形結(jié)合的數(shù)學(xué)思想在數(shù)學(xué)中的作用.
活動目的:通過對一堂課的歸納與總結(jié),鞏固學(xué)生對完全平方公式的認(rèn)識,體會數(shù)學(xué)思想的精妙.
第十一環(huán)節(jié):布置作業(yè):
課本P43習(xí)題1.13
人教版初中數(shù)學(xué)優(yōu)秀教案4
學(xué)習(xí)目標(biāo):
1、進(jìn)一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計(jì)量的統(tǒng)計(jì)意義。
2、會計(jì)算加權(quán)平均數(shù),理解“權(quán)”的意義,能選擇適當(dāng)?shù)慕y(tǒng)計(jì)量表示數(shù)據(jù)的集中趨勢。
3、會計(jì)算極差和方差,理解它們的統(tǒng)計(jì)意義,會用它們表示數(shù)據(jù)的波動情況。
4、會用樣本平均數(shù)、方差估計(jì)總體的平均數(shù)、方差,進(jìn)一步感受抽樣的必要性,體會用樣本估計(jì)總體的思想。
一、知識點(diǎn)回顧
1、數(shù)學(xué)期末總評成績由作業(yè)分?jǐn)?shù),課堂參與分?jǐn)?shù),期考分?jǐn)?shù)三部分組成,并按3:3:4的比例確定。已知小明的期考80分,作業(yè)90分,課堂參與85分,則他的總評成績?yōu)開_______。
2、樣本1、2、3、0、1的平均數(shù)與中位數(shù)之和等于___.
3、一組數(shù)據(jù)5,-2,3,x,3,-2,若每個數(shù)據(jù)都是這組數(shù)據(jù)的眾數(shù),則這組數(shù)據(jù)的平均數(shù)是.
4、數(shù)據(jù)1,6,3,9,8的極差是
5、已知一個樣本:1,3,5,x,2,它的平均數(shù)為3,則這個樣本的方差是。
二、專題練習(xí)
1、方程思想:
例:某次考試A、B、C、D、E這5名學(xué)生的平均分為62分,若學(xué)生A除外,其余學(xué)生的平均得分為60分,那么學(xué)生A的得分是_____________.
點(diǎn)撥:本題可以用統(tǒng)計(jì)學(xué)知識和方程組相結(jié)合來解決。
同類題連接:一班級組織一批學(xué)生去春游,預(yù)計(jì)共需費(fèi)用120元,后來又有2人參加進(jìn)來,總費(fèi)用不變,于是每人可以少分?jǐn)?元,設(shè)原來參加春游的學(xué)生x人。可列方程:
2、分類討論法:
例:汶川大地震牽動每個人的心,一方有難,八方支援,5位衢州籍在外打工人員也捐款獻(xiàn)愛心。已知5人平均捐款560元(每人捐款數(shù)額均為百元的整數(shù)倍),捐款數(shù)額最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款數(shù)額的中位數(shù),那么其余兩人的捐款數(shù)額分別是___________;
點(diǎn)撥:做題過程中要注意滿足的條件。
同類題連接:數(shù)據(jù)-1 , 3 , 0 , x的極差是5 ,則x =_____.
3、平均數(shù)、中位數(shù)、眾數(shù)在實(shí)際問題中的應(yīng)用
例:某班50人右眼視力檢查結(jié)果如下表所示:
視力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5
人數(shù)2 2 2 3 3 4 5 6 7 11 5
求該班學(xué)生右眼視力的平均數(shù)、眾數(shù)與中位數(shù).發(fā)表一下自己的看法。
4、方差在實(shí)際問題中的應(yīng)用
例:甲、乙兩名射擊運(yùn)動員在相同條件下各射靶5次,各次命中的環(huán)數(shù)如下:
甲:5 8 8 9 10
乙:9 6 10 5 10
(1)分別計(jì)算每人的平均成績;
(2)求出每組數(shù)據(jù)的方差;
(3)誰的射擊成績比較穩(wěn)定?
三、知識點(diǎn)回顧
1、平均數(shù):
練習(xí):在一次英語口試中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余為84分。已知該班平均成績?yōu)?0分,問該班有多少人?
2、中位數(shù)和眾數(shù)
練習(xí):1.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.
2.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.24、25 B.23、24 C.25、25 D.23、25
3.在一次環(huán)保知識競賽中,某班50名學(xué)生成績?nèi)缦卤硭荆?/p>
得分50 60 70 80 90 100 110 120
人數(shù)2 3 6 14 15 5 4 1
分別求出這些學(xué)生成績的眾數(shù)、中位數(shù)和平均數(shù).
3.極差和方差
練習(xí):1.一組數(shù)據(jù)X 、X …X的極差是8,則另一組數(shù)據(jù)2X +1、2X +1…,2X +1的極差是( )
A. 8 B.16 C.9 D.17
2.如果樣本方差,
那么這個樣本的平均數(shù)為.樣本容量為.
四、自主探究
1、已知:1、2、3、4、5、這五個數(shù)的平均數(shù)是3,方差是2.
則:101、102、103、104、105、的平均數(shù)是,方差是。
2、4、6、8、10、的平均數(shù)是,方差是。
你會發(fā)現(xiàn)什么規(guī)律?
2、應(yīng)用上面的規(guī)律填空:
若n個數(shù)據(jù)x1x2……xn的平均數(shù)為m,方差為w。
(1)n個新數(shù)據(jù)x1+100,x2+100, …… xn+100的平均數(shù)是,方差為。
(2)n個新數(shù)據(jù)5x1,5x2, ……5xn的平均數(shù),方差為。
五、學(xué)后反思:
xxx
初中數(shù)學(xué)優(yōu)秀教案
2.7有理數(shù)的加減混合運(yùn)算
一、教材內(nèi)容及設(shè)置依據(jù)
【教材內(nèi)容】本節(jié)教材的主要內(nèi)容是通過對有理數(shù)加法、減法的運(yùn)算的回顧,學(xué)習(xí)包括分?jǐn)?shù)和小數(shù)的有理數(shù)的加減混合運(yùn)算,理解其方法;應(yīng)用有理數(shù)的加減混合運(yùn)算,解決實(shí)際問題。
【設(shè)置依據(jù)】教材內(nèi)容的確定主要根據(jù)知識的社會作用性、教育性原則(對培養(yǎng)學(xué)生的數(shù)學(xué)思維、數(shù)學(xué)能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進(jìn)一步深造、參加實(shí)際工作和適應(yīng)日常生活準(zhǔn)備條件)、可接受性原則(即考慮學(xué)生的認(rèn)識水平、接受能力、生理心理特征,又要著眼于學(xué)生的不斷發(fā)展);還要與現(xiàn)實(shí)生活、科技發(fā)展相適應(yīng),逐步深透現(xiàn)代教學(xué)思想。
二、教材的地位和作用
本節(jié)內(nèi)容是在學(xué)習(xí)了有理數(shù)的加法、有理數(shù)的減法的基礎(chǔ)上學(xué)習(xí)的,是前面知識的延伸和加強(qiáng),同時又是后面所要學(xué)習(xí)的有理數(shù)的乘法、除法及有理數(shù)的混合運(yùn)算的基礎(chǔ),特別是減法可以轉(zhuǎn)化為加法為后面的除法可以轉(zhuǎn)化為乘法的學(xué)習(xí)提供了類比依據(jù)。也為后面學(xué)習(xí)代數(shù)式的合并同類項(xiàng)及有關(guān)的恒等變形奠定了基礎(chǔ),因此具有承上啟下的重要作用。
三、對重點(diǎn)、難點(diǎn)的處理
【對重點(diǎn)的處理】本節(jié)的重點(diǎn)是有理數(shù)加減混合運(yùn)算的方法及在實(shí)際生活中的應(yīng)用。為了突出重點(diǎn),教師應(yīng)盡量從實(shí)際問題引入、應(yīng)盡可能的在課堂上創(chuàng)設(shè)具體教學(xué)情境,注重使學(xué)生在具體情境中體會運(yùn)算的方法。同時我們也可以根據(jù)學(xué)生的接受情況和每節(jié)課的具體情況,盡可能的把每節(jié)課的“課堂練習(xí)”和“習(xí)題”的內(nèi)容劃分成不同的板塊,如:
1、知識鞏固型
2、實(shí)際應(yīng)用型
3、方法多變型
4、知識拓展型等。
【對難點(diǎn)的處理】對于難點(diǎn)的處理,因?yàn)樾陆滩摹皬?qiáng)調(diào)要給學(xué)生足夠的空間和時間”,因此教學(xué)時我們應(yīng)盡量從學(xué)生已有的生活經(jīng)驗(yàn)和已有的知識經(jīng)驗(yàn)出發(fā),或用“已知”去解決“未知”的思想引導(dǎo)學(xué)生,鼓勵學(xué)生大膽的猜測、交流,充分的探索。同時淡化形式,突出實(shí)質(zhì)(不出現(xiàn)代數(shù)和的定義,只是讓學(xué)生理解有理數(shù)的加減運(yùn)算可以統(tǒng)一成加法以及加
法運(yùn)算可以寫成省略括號及前面加號的形式,重點(diǎn)是讓學(xué)生通過具體情境對“代數(shù)和”加以體會)
四、關(guān)于教學(xué)方法的選用
根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,本節(jié)課可采用的方法:
1、情境體驗(yàn):通過教師創(chuàng)設(shè)貼近學(xué)生生活實(shí)際的教學(xué)情境,讓學(xué)生融會到課堂中去,產(chǎn)生共鳴,激發(fā)興趣,鼓勵學(xué)生觀察、分析、探索,加深其對本節(jié)內(nèi)容的理解,培養(yǎng)學(xué)生解決問題的能力。、引導(dǎo)發(fā)現(xiàn)法:它符合辯證唯物主義中內(nèi)因與外因相互作用的觀點(diǎn),符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則。引導(dǎo)發(fā)現(xiàn)法的關(guān)鍵是通過教師的引導(dǎo)啟發(fā),充分調(diào)動學(xué)生學(xué)習(xí)的主動性。
3、小組合作、探究討論:通過合作討論,使學(xué)生形成一個“學(xué)習(xí)共同體”,在這個共同體內(nèi)相互交流、相互溝通、相互啟發(fā)、相互補(bǔ)充,分享彼此的思考、經(jīng)驗(yàn)和知識,交流彼此的情感、體驗(yàn)和觀念,共同體驗(yàn)成功的喜悅,使學(xué)生體會到集體的力量,形成合作的意識,產(chǎn)生合作的愿望。
五、關(guān)于學(xué)法的指導(dǎo)
“授人以魚,不如授人以漁”,在教給學(xué)生知識的同時,要教給他們好的學(xué)習(xí)方法,讓他們“會學(xué)習(xí)”在本節(jié)課的教學(xué)中,在提出問題后,要鼓勵學(xué)生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養(yǎng)了思維能力。同時意識到:數(shù)學(xué)是生活實(shí)際中的數(shù)學(xué)、大自然中的數(shù)學(xué),萌生了用數(shù)學(xué)解決實(shí)際問題的意識、愿望。
六、課時安排:1課時 教學(xué)程序:
一、復(fù)習(xí)鋪墊:
首先利用多媒體出示一組有關(guān)有理數(shù)的加法、減法的題目,讓學(xué)生進(jìn)行速算比賽,看誰做的又對又快。1、45+(-23)2、9-(-5)
3、-28-(-37)
4、(-13)+0
5、(-29)+(-31)
6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.5
8、(-42)+57+(-84)+(-23)
從四排學(xué)生中個推選一名學(xué)生代表板演6、7、8、題。
通過比賽的方式,符合學(xué)生的心理特點(diǎn),迎合了學(xué)生好勝的心理,激起了學(xué)生學(xué)習(xí)的內(nèi)在動力,激發(fā)了學(xué)習(xí)的興趣。
然后教師與學(xué)生一起對題目進(jìn)行評判,對優(yōu)勝的學(xué)生進(jìn)行表揚(yáng),對其他學(xué)生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關(guān)鍵要有信心,要有高昂的斗志。通過練習(xí),學(xué)生已在不知不覺中復(fù)習(xí)了有理數(shù)的加法、減法法則,特別是減法法則,加深了印象,這符合教學(xué)論中的鞏固性原則,為后面學(xué)習(xí)有理數(shù)的加減混合運(yùn)算奠定了基礎(chǔ)。
二、新知探索:
1、出示引例1: 一架飛機(jī)作特技表演,起飛后的高度變化如下表: 高度變化 記作
上升4.5千米 +4.5千米 下降3.2千米 -3.2千米 上升1.1千米 +1.1千米 下降1.4千米 -1.4千米 此時飛機(jī)比起飛點(diǎn)高了多少米?
讓學(xué)生分組探究討論,讓學(xué)生發(fā)表自己的見解,不難得出兩種算法: ① 4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4 =1.3+1.1+(-1.4)=1.3+1.1-1.4 =2.4+(-1.4)=2.4-1.4 =1千米 =1千米
教師隨之提出問題:比較以上兩種算法,你發(fā)現(xiàn)了什么?通過學(xué)生的合作討論、教師的引導(dǎo)、規(guī)納、總結(jié)可得出:加減法混合運(yùn)算可以統(tǒng)一成加法;加法運(yùn)算可以寫成省略括號及前面加號的形式。使學(xué)生在解決問題的過程中體會到“代數(shù)和“的含義。這里不要求出現(xiàn)“代數(shù)和”的名稱。通過小組合作,探究討論,讓每一個學(xué)生充分參與到課堂中,對學(xué)生而言,體現(xiàn)了他們的主體性,使他們的個性得以表現(xiàn),使他們的創(chuàng)造性得以解放,使學(xué)生形成了創(chuàng)新、探索的意識,增強(qiáng)了主動學(xué)習(xí)的動機(jī)。
3、教師宣布游戲規(guī)則,組織學(xué)生作游戲:
①二人小組每人每次抽取4張卡片,如果抽到白色卡片,那么加上卡片上的數(shù)字;如果抽到紅色卡片,那么減去卡片上的數(shù)字
②比較兩人所抽4張卡片的計(jì)算結(jié)果,結(jié)果大的為勝
利用游戲訓(xùn)練有理數(shù)的加減混合運(yùn)算,可以寓學(xué)于樂,增加學(xué)生學(xué)習(xí)的趣味性,使學(xué)生在玩中體會到數(shù)學(xué)在現(xiàn)實(shí)生活中的無處不在,形成學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識和習(xí)慣。在學(xué)生作游戲的過程中,教師巡回指導(dǎo),既可指名學(xué)生上作游戲,也可以讓學(xué)生之間輪流交換作,以提高游戲的質(zhì)量,保持學(xué)生對游戲的新鮮感。對做的好的小組進(jìn)行各種形式的表揚(yáng)。
教師在巡視的過程中,如發(fā)現(xiàn)具有代表性的運(yùn)算,如: +(-5)+4-(-)- +(-)+5-(-3)等,可寫到黑板上作為例題,引導(dǎo)學(xué)生分析、交流其做法,通過學(xué)生的講解,明確可以按從左到右的方法依次運(yùn)算,又因?yàn)闇p法可以轉(zhuǎn)化為加法,所以也可以整數(shù)之間、分?jǐn)?shù)之間先分別相加,還可以正數(shù)之間、負(fù)數(shù)之間分別相加,最后得出結(jié)果,這樣可以簡化運(yùn)算,從而為下面例題的講解設(shè)下了伏筆,打下了解決問題的基礎(chǔ)。
4、在前面學(xué)習(xí)的基礎(chǔ)上出示例題: 計(jì)算 :(1)(+3)-(-9)+(-4)-(+2)(2)-1/3+3/4-5/6+1/2
(3)0.25+(-1/8)-(+7/8)-(+3/4)
鼓勵學(xué)生進(jìn)行講解,尋求方法多樣化。這樣解題的過程就是學(xué)生積極參加、動手動腦的過程,體現(xiàn)了學(xué)生的主體地位。最后由教師進(jìn)行規(guī)范化的板書,以培養(yǎng)學(xué)生良好的書寫習(xí)慣。在這個過程中體現(xiàn)了師生的平等關(guān)系,使學(xué)生成為教師式的學(xué)生,教師成為學(xué)生中的首席。體現(xiàn)出新課改的理念。
三、達(dá)標(biāo)練習(xí)
1、知識鞏固:p58 隨堂練習(xí)T1 由學(xué)生口答,熟練方法。
2、知識加強(qiáng):計(jì)算p58習(xí)題2.7 T1 可指名學(xué)生板演,教師及時講評,并鼓勵學(xué)生交流
不同看法,同時指出易出錯的的地方,以引起學(xué)生的高度重視。這符合教學(xué)論中“快反饋”的原則,起到事半功倍的作用。
3、P59T2,這是“知識應(yīng)用型”的練習(xí),讓學(xué)生合作交流,教師巡視。鼓勵學(xué)生先根據(jù)數(shù)據(jù)進(jìn)行估算,解釋估算的方法及過程,再進(jìn)行準(zhǔn)確計(jì)算。這符合新課改標(biāo)準(zhǔn)的要求:“在解決具體問題的過程中,能選擇合適的估算方法,解釋估算的方法,養(yǎng)成估算的習(xí)慣。”通過問題的解決提高了學(xué)生解決問題的能力和自信心,有利于學(xué)生用科學(xué)的觀點(diǎn)來認(rèn)識現(xiàn)實(shí)世界。
4、P59T3 這是“知識拓展型”的練習(xí)。教師可啟發(fā)、引導(dǎo),通過師生的共同努力,得出了最終結(jié)果,讓學(xué)生體驗(yàn)到成功的喜悅,培養(yǎng)了創(chuàng)新的意識與能力。
通過例題與練習(xí)題的配備,使學(xué)生將本節(jié)所學(xué)知識得以具體化,達(dá)到了應(yīng)用的目的,這是本節(jié)的重點(diǎn),而重點(diǎn)是在教師的引導(dǎo)下,通過師生的合作交流、探究被體現(xiàn)出來,這符合新課改的要求:師生交往、積極互動、共同發(fā)展。
四、課堂小結(jié)
可通過問題的方式進(jìn)行小結(jié),讓學(xué)生理清本節(jié)課的知識脈絡(luò): ① 本節(jié)課你學(xué)習(xí)了哪些知識? ② 在運(yùn)用這些知識時應(yīng)注意什么問題?
五、布置作業(yè)
所布置的作業(yè)要緊緊圍繞能運(yùn)用簡便方法的有理數(shù)的加減混合運(yùn)算及其應(yīng)用,通過作業(yè)進(jìn)一步反饋本節(jié)課知識掌握的效果。