第一篇:勾股定理證明方法的分類介紹
勾股定理證明方法的分類介紹
勾股定理,又稱畢達哥拉斯定理或畢氏定理。是一個基本的幾何定理,傳統上認為是由古希臘的畢達哥拉斯所證明。據說畢達哥拉斯證明了這個定理后,即斬了百頭牛作慶祝,因此又稱“百牛定理”。在中國,《周髀算經》記載了勾股定理的公式與證明,相傳是在商代由商高發現,故又有稱之為商高定理;三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋,又給出了另外一個證明1。法國和比利時稱為驢橋定理,埃及稱為埃及三角形。2中國古代把直角三角形中較短的直角邊叫做勾,較長的直角邊叫做股,斜邊叫做弦。(/view/366.htm勾股定理_百度百科)
五、古人的方法如圖,將圖中的四個直角三角形涂上綠色,把中間小正方形涂上白色,以弦為邊的正方形稱為弦實,然后經過拼補搭配,“令出入相補,各從其類”,他肯定了勾股弦三者的關系是符合勾股定理的。即“勾股各自誠,并之為弦實,開方除之,即弦也”。趙爽對勾股定理的證明,顯示了我國數學家高超的證題思想,較為簡明、直觀。
(/view/08cfca80d4d8d15abe234ec8.html勾股定理的證明方法探究_百度文庫)
圖
1六、鄒元治的證明以a、b為直角邊,以c為斜邊做四個全等的直角三角形,則每個直角三角形的面積等于1ab.把這四個直角三角形拼成如圖所示的形狀,使A、E、B三點在一條直線上,B、F、C三點在一條直2線上,C、G、D三點再一條直線上。
七、梅文鼎的證明做四個全等的直角三角形,設它們的兩條直角邊長分別為a、b,斜邊長為c,把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上。過C作AC的延長線交DF于點P。
八、利用切割線定理證明
九、利用多列米定理證明
十、作直角三角形的內切圓證明
十一、辛卜松證明(/static/html/20090310/13821.html勾股定理的十六種證明方法—清華同方學堂)
以下是總結出的證明勾股定理的方法以及分類:
勾股定理的證明:分三種類型:
1.第一種類型:以趙爽的“弦圖”為代表,用幾何圖形的截、割、拼、補,來證明代數式之間的恒等關系。
2.第二種類型:以歐幾里得的證明方法為代表,運用歐氏幾何的基本定理進行證明。
3.第三種類型:以劉徽的“青朱出入圖”為代表,“無字證明”。
第一種類型:以趙爽的“弦圖”為代表,用幾何圖形的截、割、拼、補,來證明代數式之間的恒等關系。體現了以形證數、形數統一、代數和幾何的緊密結合。
1.方法一:三國時期吳國數學家趙爽在為《周髀算經》作注解時,創制了一幅“勾股圓方圖”,也稱為“弦圖”,這是我國對勾股定理最早的證明。
2002年世界數學家大會在北京召開,這屆大會會標的中央圖案正是經過藝術處理的“弦a圖”,標志著中國古代數學成就。
bcca2.方法二:美國第二十任總統伽菲爾德的證法,被稱為“總統證法”。如圖,梯形由三個直角三角形組合而成,利用面積公式,列出代數關系式得: 1abba21ab1c2222化簡為:
a2b2c23.方法三:據傳是當年畢達哥拉斯發現勾股定理時做出的證明。
將4個全等的直角三角形拼成邊長為a+b的正方形ABCD,使中間留下邊長c的一個正方形洞。畫出正方形ABCD.移動三角形至圖2所示的位置中,于是留下了邊長分別為a與b的兩個正方形洞。則圖1和圖2中的白色部分面積必定相等,所以c2a2b2圖1圖2說明:以趙爽的“弦圖”為代表第一種類型證明方法利用幾何圖形的截、割、拼、補,來證明代數式之間的恒等關系.它們的基本方法在前面兩節課中已經給予了一定介紹。
第二種類型:以歐幾里得的證明方法為代表,運用歐氏幾何的基本定理進行證明,反映了勾股定理的幾何意義。
希臘數學家歐幾里得(Euclid,公元前330~公元前275)
在巨著《幾何原本》給出一個公理化的證明。1955年希臘為了紀念二千五百年前古希臘在勾股定理上的貢獻,發行了一張郵票,圖案是由三個棋盤排列而成。
如圖,過A點畫一直線AL使其垂直于DE,并交DE于L,交BC于M。通過證明△BCF≌△BDA,利用三角形面積與長方形面積的關系,得到正方形ABFG與矩形BDLM等積,同理正方形ACKH與矩形MLEC也等積,于是推得AB2AC2BC2。
第三種類型:以劉徽的“青朱出入圖”為代表,證明不需用任何數學符號和文字,更不需進行運算,隱含在圖中的勾股定理便清晰地呈現,整個證明單靠移動幾塊圖形而得出,被稱為“無字證明”。
1.約公元263年,三國時代魏國的數學家劉徽為古籍《九章算術》作注釋時,用“出入相補法”證明了勾股定理。
教師利用課件介紹“青朱出入圖”。
說明:教學中可以利用多媒體動態地展示出圖形的移動變化讓學生很清楚地發現圖中:小正方形與較大正方形的面積和與最大正方形的面積之間的等量關系從而不用運算單靠移動幾塊圖形就直觀地證出了勾股定理真是“無字的證明”。
2.在印度、在阿拉伯世界和歐洲出現的一種拼圖證明(如圖)。
3.意大利著名畫家達芬奇的證法:
步驟:
(1)在一張長方形的紙板上畫兩個邊長分別為a,b的正方形,并連接BC,FE。
沿(2)
ABCDEF剪下,得兩個大小相同的紙板Ⅰ、Ⅱ。請動手做一做。
(3)將紙板Ⅱ翻轉后與Ⅰ拼成其他的圖形。
(4)比較兩個多邊形ABCDEF和A’B’C’D’E’F’的面積,你能驗證勾股定理嗎?
說明:意大利著名畫家達芬奇的證法,方法新穎,可以開闊學生的視野、豐富學生的想像;具有一定的操作性,但可能又一定難度,可以在課堂上稍作介紹而留給學生在課后利用充足的時間進行研究。
第二篇:勾股定理證明方法
勾股定理證明方法
勾股定理的種證明方法(部分)
【證法1】(梅文鼎證明)
做四個全等的直角三角形,設它們的兩條直角邊長分別為a、b,斜邊長為c.把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上.過C作AC的延長線交DF于點p.∵D、E、F在一條直線上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180o―90o=90o.又∵AB=BE=EG=GA=c,∴ABEG是一個邊長為c的正方形.∴∠ABC+∠CBE=90o.∵RtΔABC≌RtΔEBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90o.即∠CBD=90o.又∵∠BDE=90o,∠BCp=90o,BC=BD=a.∴BDpC是一個邊長為a的正方形.同理,HpFG是一個邊長為b的正方形.設多邊形GHCBE的面積為S,則,∴.【證法2】(項明達證明)
做兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.過點Q作Qp‖BC,交AC于點p.過點B作BM⊥pQ,垂足為M;再過點
F作FN⊥pQ,垂足為N.∵∠BCA=90o,Qp‖BC,∴∠MpC=90o,∵BM⊥pQ,∴∠BMp=90o,∴BCpM是一個矩形,即∠MBC=90o.∵∠QBM+∠MBA=∠QBA=90o,∠ABC+∠MBA=∠MBC=90o,∴∠QBM=∠ABC,又∵∠BMp=90o,∠BCA=90o,BQ=BA=c,∴RtΔBMQ≌RtΔBCA.同理可證RtΔQNF≌RtΔAEF.【證法3】(趙浩杰證明)
做兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形.分別以CF,AE為邊長做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直線上,∵CJ=CF=a,CB=CD=c,∠CJB=∠CFD=90o,∴RtΔCJB≌RtΔCFD,同理,RtΔABG≌RtΔADE,∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE
∴∠ABG=∠BCJ,∵∠BCJ+∠CBJ=90o,∴∠ABG+∠CBJ=90o,∵∠ABC=90o,∴G,B,I,J在同一直線上,【證法4】(歐幾里得證明)
做三個邊長分別為a、b、c的正方形,把它們拼成如圖所示形狀,使H、C、B三點在一條直線上,連結
BF、CD.過C作CL⊥DE,交AB于點M,交DE于點
L.∵AF=AC,AB=AD,∠FAB=∠GAD,∴ΔFAB≌ΔGAD,∵ΔFAB的面積等于,ΔGAD的面積等于矩形ADLM的面積的一半,∴矩形ADLM的面積=.同理可證,矩形MLEB的面積=.∵正方形ADEB的面積
=矩形ADLM的面積+矩形MLEB的面積
∴,即.勾股定理的別名
勾股定理,是幾何學中一顆光彩奪目的明珠,被稱為“幾何學的基石”,而且在高等數學和其他學科中也有著極為廣泛的應用。正因為這樣,世界上幾個文明古國都已發現并且進行了廣泛深入的研究,因此有許多名稱。
我國是發現和研究勾股定理最古老的國家。我國古代數學家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據記載,商高(約公元前1120年)答周公曰“勾廣三,股修四,經隅五”,其意為,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我國又稱“商高定理”.在公元前7至6世紀一中國學者陳子,曾經給出過任意直角三角形的三邊關系即“以日下為勾,日高為股,勾、股各乘并開方除之得邪至日。
在法國和比利時,勾股定理又叫“驢橋定理”。還有的國家稱勾股定理為“平方定理”。
在陳子后一二百年,希臘的著名數學家畢達哥拉斯發現了這個定理,因此世界上許多國家都稱勾股定理為“畢達哥拉斯”定理.為了慶祝這一定理的發現,畢達哥拉斯學派殺了一百頭牛酬謝供奉神靈,因此這個定理又有人叫做“百牛定理”.前任美國第二十屆總統加菲爾德證明了勾股定理(1876年4月1日)。
證明
這個定理有許多證明的方法,其證明的方法可能是數學眾多定理中最多的。路明思(ElishaScottLoomis)的pythagoreanproposition一書中總共提到367種證明方式。
有人會嘗試以三角恒等式(例如:正弦和余弦函數的泰勒級數)來證明勾股定理,但是,因為所有的基本三角恒等式都是建基于勾股定理,所以不能作為勾股定理的證明(參見循環論證)。
第三篇:勾股定理證明方法(精選)
勾股定理證明方法
勾股定理是初等幾何中的一個基本定理。所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。這個定理有十分悠久的歷史,幾乎所有文明古國(希臘、中國、埃及、巴比倫、印度等)對此定理都有所研究。勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數學家兼哲學家畢達哥拉斯于公元前550年首先發現的。
中國古代對這一數學定理的發現和應用,遠比畢達哥拉斯早得多。中國最早的一部數學著作——《周髀算經》的開頭,記載著一段周公向商高請教數學知識的對話:周公問:“我聽說您對數學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關于天地得到數據呢?” 商高回答說:“數的產生來源于對方和圓這些形體的認識。其中有一條原理:當直角三角形‘矩'得到的一條直角邊‘勾'等于3,另一條直角邊’股'等于4的時候,那么它的斜邊'弦'就必定是5。這個原理是大禹在治水的時候就總結出來的呵。” 如果說大禹治水因年代久遠而無法確切考證的話,那么周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應用特例。所以現在數學界把它稱為勾股定理是非常恰當的。
在《九章算術》一書中,勾股定理得到了更加規范的一般性表達。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進行開方,便可以得到弦。”《九章算術》系統地總結了戰國、秦、漢以來的數學成就,共收集了246個數學的應用問題和各個問題的解法,列為九章,可能是所有中國數學著作中影響最大的一部。
中國古代的數學家們最早對勾股定理進行證明的,是三國時期吳國的數學家趙爽。趙爽創制了一幅“勾股圓方圖”,用形數結合得到方法,給出了勾股定理的詳細證明。
上中間的那個小正方形組成的。
每個直角三角形的面積為ab/2;
中間的小正方形邊長為b-a,則面積為(b-a)2。
于是便可得如下的式子:
4×(ab/2)+(b-a)2=c
2化簡后便可得: a2+b2=c2
在這幅“勾股圓方圖”中,以弦為邊長得到正方形ABDE是由4個相等的直角三角形再加
劉徽在證明勾股定理時也是用以形證數的方法,劉徽用了“出入相補法”即剪貼證明法,他把勾股為邊的正方形上的某些區域剪下來(出),移到以弦為邊的正方形的空白區域內(入),結果剛好填滿,完全用圖解法就解決了問題。
1876年4月1日,伽菲爾德在《新英格蘭教育日志》上發表了他對勾股定理的證法。1881年,伽菲爾德就任美國第二十任總統后來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為“總統”證法
古代數學家們對于勾股定理的發現和證明,在世界數學史上具有獨特的貢獻和地位。尤其是其中體現出來的“形數統一”的思想方法,更具有科學創新的重大意義。
第四篇:勾股定理五種證明方法
勾股定理五種證明方法
【證法1】
做8
個全等的直角三角形,設它們的兩條直角邊長分別為a、b,斜邊長為c,再做三個邊長分別為a、b、c的正方形,把它們像上圖那樣拼成兩個正方形.從圖上可以看到,這兩個正方形的邊長都是a + b,所以面積相等.即
11a2?b2?4?ab?c2?4?ab22,整理得a2?b2?c2.【
證法2】(鄒元治證明)
以a、b 為直角邊,以c為斜邊做四個全等的直角三角形,則每個直角三角
1ab2形的面積等于.把這四個直角三角形拼成如圖所示形狀,使A、E、B三點在一條直線上,B、F、C三點在一條直線上,C、G、D三點在一條直線上.∵ RtΔHAE ≌ RtΔEBF,∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o.∴ ∠HEF = 180o―90o= 90o.∴ 四邊形EFGH是一個邊長為c的正方形.它的面積等于c2.∵ RtΔGDH ≌ RtΔHAE,∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90o,∴ ∠EHA + ∠GHD = 90o.又∵ ∠GHE = 90o,∴ ∠DHA = 90o+ 90o= 180o.2??a?b∴ ABCD是一個邊長為a + b的正方形,它的面積等于.∴ ?a?b?21?4?ab?c
22222.∴ a?b?c.【證法3】(梅文鼎證明)
做四個全等的直角三角形,設它們的兩條直角邊長分別為a、b,斜邊長為
c.把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上.過C作AC的延長線交DF于點P.∵ D、E、F在一條直線上, 且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180o―90o= 90o.又∵ AB = BE = EG = GA = c,∴ ABEG是一個邊長為c的正方形.∴ ∠ABC + ∠CBE = 90o.∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90o.即∠CBD= 90o.又∵ ∠BDE = 90o,∠BCP = 90o,ABC = BD = a.∴ BDPC是一個邊長為a的正方形.同理,HPFG是一個邊長為b的正方形.設多邊形GHCBE的面積為S,則
11a2?b2?S?2?ab,c2?S?2?ab22,222∴a?b?c.【證法4】(1876年美國總統Garfield證明)
以a、b 為直角邊,以c為斜邊作兩個全等的直角三角形,則每個直角三角1ab2形的面積等于.把這兩個直角三角形拼成如圖所示形狀,使A、E、B三點在一條直線上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o.∴ ΔDEC是一個等腰直角三角形,12c2它的面積等于.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD∥BC.1?a?b?
2∴ ABCD是一個直角梯形,它的面積等于2.1?a?b?2?2?1ab?1c2
22.∴ 2
222∴ a?b?c.【證法5】(辛卜松證明)
DD
設直角三角形兩直角邊的長分別為a、b,斜邊的長為c.作邊長是a+b的正方形ABCD.把正方形ABCD劃分成上方左圖所示的幾個部分,則正方形ABCD
222??a?b?a?b?2ab;把正方形ABCD劃分成上方右圖所示的幾個的面積為
部分,則正方形ABCD的面積為
222∴a?b?2ab?2ab?c,222∴a?b?c.?a?b?21?4?ab?c222 =2ab?c.初二(1)
第五篇:勾股定理的證明方法
這個直角梯形是由2個直角邊分別為、,斜邊為 的直角
三角形和1個直角邊為的等腰直角三角形拼成的。因為3個直角三角形的面積之和等于梯形的面積,所以可以列出等式
化簡得。