久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

勾股定理的證明方法(全文5篇)

時間:2019-05-14 13:33:50下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《勾股定理的證明方法》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《勾股定理的證明方法》。

第一篇:勾股定理的證明方法

勾股定理的證明方法

勾股定理又叫畢氏定理:在一個直角三角形中,斜邊邊長的平方等于兩條直角邊邊長平方之和.據考證,人類對這條定理的認識,少說也超過 4000 年!又據記載,現時世上 一共有超過 300 個對這定理的證明!勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若鶩, 其中有著名的數學家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至 有國家總統.也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復被人 炒作,反復被人論證.1940 年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯, 其中收集了 367 種不同的證明方法.實際上還不止于此,有資料表明,關于勾股定理的證 明方法已有 500 余種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法

勾股定理是初等幾何中的一個基本定理。這個定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,因為這個定理太貼近人們的生活實際,以至于古往今來,下至平民百姓,上至帝王總統都愿意探討和研究它的證明.下面結合幾種圖形來進行證明。

一、傳說中畢達哥拉斯的證法(圖1)

左邊的正方形是由1個邊長為的正方形和1個邊長為的正方形以及4個直角邊分別為、,斜邊為的直角三角形拼成的。右邊的正方形是由1個邊長為的正方形和4個直角邊分別為、,斜邊為的直角三角形拼成的。因為這兩個正方形的面積相等(邊長都是),所以可以列出等式,化簡得。

在西方,人們認為是畢達哥拉斯最早發現并證明這一定理的,但遺憾的是,他的證明方法已經失傳,這是傳說中的證明方法,這種證明方法簡單、直觀、易懂。

二、趙爽弦圖的證法(圖2)

第一種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為 的直 角三角形圍在外面形成的。因為邊長為的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。

第二種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為 的

角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為

因為邊長為的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可的正方形“小洞”。

以列出等式,化簡得。

這種證明方法很簡明,很直觀,它表現了我國古代數學家趙爽高超的證題思想和對數學的鉆研精神,是我們中華民族的驕傲。

三、美國第20任總統茄菲爾德的證法(圖3)

這個直角梯形是由2個直角邊分別為、,斜邊為 的直角三角形和1個直角邊為 的等腰直角三角形拼成的。因為3個直角三角形的面積之和等于梯形的面積,所以可以列出等式,化簡得。

這種證明方法由于用了梯形面積公式和三角形面積公式,從而使證明更加簡潔,它在數學史上被傳為佳話。

第二篇:勾股定理證明方法

勾股定理證明方法

勾股定理的種證明方法(部分)

【證法1】(梅文鼎證明)

做四個全等的直角三角形,設它們的兩條直角邊長分別為a、b,斜邊長為c.把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上.過C作AC的延長線交DF于點p.∵D、E、F在一條直線上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180o―90o=90o.又∵AB=BE=EG=GA=c,∴ABEG是一個邊長為c的正方形.∴∠ABC+∠CBE=90o.∵RtΔABC≌RtΔEBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90o.即∠CBD=90o.又∵∠BDE=90o,∠BCp=90o,BC=BD=a.∴BDpC是一個邊長為a的正方形.同理,HpFG是一個邊長為b的正方形.設多邊形GHCBE的面積為S,則,∴.【證法2】(項明達證明)

做兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.過點Q作Qp‖BC,交AC于點p.過點B作BM⊥pQ,垂足為M;再過點

F作FN⊥pQ,垂足為N.∵∠BCA=90o,Qp‖BC,∴∠MpC=90o,∵BM⊥pQ,∴∠BMp=90o,∴BCpM是一個矩形,即∠MBC=90o.∵∠QBM+∠MBA=∠QBA=90o,∠ABC+∠MBA=∠MBC=90o,∴∠QBM=∠ABC,又∵∠BMp=90o,∠BCA=90o,BQ=BA=c,∴RtΔBMQ≌RtΔBCA.同理可證RtΔQNF≌RtΔAEF.【證法3】(趙浩杰證明)

做兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形.分別以CF,AE為邊長做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直線上,∵CJ=CF=a,CB=CD=c,∠CJB=∠CFD=90o,∴RtΔCJB≌RtΔCFD,同理,RtΔABG≌RtΔADE,∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE

∴∠ABG=∠BCJ,∵∠BCJ+∠CBJ=90o,∴∠ABG+∠CBJ=90o,∵∠ABC=90o,∴G,B,I,J在同一直線上,【證法4】(歐幾里得證明)

做三個邊長分別為a、b、c的正方形,把它們拼成如圖所示形狀,使H、C、B三點在一條直線上,連結

BF、CD.過C作CL⊥DE,交AB于點M,交DE于點

L.∵AF=AC,AB=AD,∠FAB=∠GAD,∴ΔFAB≌ΔGAD,∵ΔFAB的面積等于,ΔGAD的面積等于矩形ADLM的面積的一半,∴矩形ADLM的面積=.同理可證,矩形MLEB的面積=.∵正方形ADEB的面積

=矩形ADLM的面積+矩形MLEB的面積

∴,即.勾股定理的別名

勾股定理,是幾何學中一顆光彩奪目的明珠,被稱為“幾何學的基石”,而且在高等數學和其他學科中也有著極為廣泛的應用。正因為這樣,世界上幾個文明古國都已發現并且進行了廣泛深入的研究,因此有許多名稱。

我國是發現和研究勾股定理最古老的國家。我國古代數學家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據記載,商高(約公元前1120年)答周公曰“勾廣三,股修四,經隅五”,其意為,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我國又稱“商高定理”.在公元前7至6世紀一中國學者陳子,曾經給出過任意直角三角形的三邊關系即“以日下為勾,日高為股,勾、股各乘并開方除之得邪至日。

在法國和比利時,勾股定理又叫“驢橋定理”。還有的國家稱勾股定理為“平方定理”。

在陳子后一二百年,希臘的著名數學家畢達哥拉斯發現了這個定理,因此世界上許多國家都稱勾股定理為“畢達哥拉斯”定理.為了慶祝這一定理的發現,畢達哥拉斯學派殺了一百頭牛酬謝供奉神靈,因此這個定理又有人叫做“百牛定理”.前任美國第二十屆總統加菲爾德證明了勾股定理(1876年4月1日)。

證明

這個定理有許多證明的方法,其證明的方法可能是數學眾多定理中最多的。路明思(ElishaScottLoomis)的pythagoreanproposition一書中總共提到367種證明方式。

有人會嘗試以三角恒等式(例如:正弦和余弦函數的泰勒級數)來證明勾股定理,但是,因為所有的基本三角恒等式都是建基于勾股定理,所以不能作為勾股定理的證明(參見循環論證)。

第三篇:勾股定理證明方法(精選)

勾股定理證明方法

勾股定理是初等幾何中的一個基本定理。所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。這個定理有十分悠久的歷史,幾乎所有文明古國(希臘、中國、埃及、巴比倫、印度等)對此定理都有所研究。勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數學家兼哲學家畢達哥拉斯于公元前550年首先發現的。

中國古代對這一數學定理的發現和應用,遠比畢達哥拉斯早得多。中國最早的一部數學著作——《周髀算經》的開頭,記載著一段周公向商高請教數學知識的對話:周公問:“我聽說您對數學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關于天地得到數據呢?” 商高回答說:“數的產生來源于對方和圓這些形體的認識。其中有一條原理:當直角三角形‘矩'得到的一條直角邊‘勾'等于3,另一條直角邊’股'等于4的時候,那么它的斜邊'弦'就必定是5。這個原理是大禹在治水的時候就總結出來的呵。” 如果說大禹治水因年代久遠而無法確切考證的話,那么周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應用特例。所以現在數學界把它稱為勾股定理是非常恰當的。

在《九章算術》一書中,勾股定理得到了更加規范的一般性表達。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進行開方,便可以得到弦。”《九章算術》系統地總結了戰國、秦、漢以來的數學成就,共收集了246個數學的應用問題和各個問題的解法,列為九章,可能是所有中國數學著作中影響最大的一部。

中國古代的數學家們最早對勾股定理進行證明的,是三國時期吳國的數學家趙爽。趙爽創制了一幅“勾股圓方圖”,用形數結合得到方法,給出了勾股定理的詳細證明。

上中間的那個小正方形組成的。

每個直角三角形的面積為ab/2;

中間的小正方形邊長為b-a,則面積為(b-a)2。

于是便可得如下的式子:

4×(ab/2)+(b-a)2=c

2化簡后便可得: a2+b2=c2

在這幅“勾股圓方圖”中,以弦為邊長得到正方形ABDE是由4個相等的直角三角形再加

劉徽在證明勾股定理時也是用以形證數的方法,劉徽用了“出入相補法”即剪貼證明法,他把勾股為邊的正方形上的某些區域剪下來(出),移到以弦為邊的正方形的空白區域內(入),結果剛好填滿,完全用圖解法就解決了問題。

1876年4月1日,伽菲爾德在《新英格蘭教育日志》上發表了他對勾股定理的證法。1881年,伽菲爾德就任美國第二十任總統后來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為“總統”證法

古代數學家們對于勾股定理的發現和證明,在世界數學史上具有獨特的貢獻和地位。尤其是其中體現出來的“形數統一”的思想方法,更具有科學創新的重大意義。

第四篇:勾股定理五種證明方法

勾股定理五種證明方法

【證法1】

做8

個全等的直角三角形,設它們的兩條直角邊長分別為a、b,斜邊長為c,再做三個邊長分別為a、b、c的正方形,把它們像上圖那樣拼成兩個正方形.從圖上可以看到,這兩個正方形的邊長都是a + b,所以面積相等.即

11a2?b2?4?ab?c2?4?ab22,整理得a2?b2?c2.【

證法2】(鄒元治證明)

以a、b 為直角邊,以c為斜邊做四個全等的直角三角形,則每個直角三角

1ab2形的面積等于.把這四個直角三角形拼成如圖所示形狀,使A、E、B三點在一條直線上,B、F、C三點在一條直線上,C、G、D三點在一條直線上.∵ RtΔHAE ≌ RtΔEBF,∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o.∴ ∠HEF = 180o―90o= 90o.∴ 四邊形EFGH是一個邊長為c的正方形.它的面積等于c2.∵ RtΔGDH ≌ RtΔHAE,∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90o,∴ ∠EHA + ∠GHD = 90o.又∵ ∠GHE = 90o,∴ ∠DHA = 90o+ 90o= 180o.2??a?b∴ ABCD是一個邊長為a + b的正方形,它的面積等于.∴ ?a?b?21?4?ab?c

22222.∴ a?b?c.【證法3】(梅文鼎證明)

做四個全等的直角三角形,設它們的兩條直角邊長分別為a、b,斜邊長為

c.把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上.過C作AC的延長線交DF于點P.∵ D、E、F在一條直線上, 且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180o―90o= 90o.又∵ AB = BE = EG = GA = c,∴ ABEG是一個邊長為c的正方形.∴ ∠ABC + ∠CBE = 90o.∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90o.即∠CBD= 90o.又∵ ∠BDE = 90o,∠BCP = 90o,ABC = BD = a.∴ BDPC是一個邊長為a的正方形.同理,HPFG是一個邊長為b的正方形.設多邊形GHCBE的面積為S,則

11a2?b2?S?2?ab,c2?S?2?ab22,222∴a?b?c.【證法4】(1876年美國總統Garfield證明)

以a、b 為直角邊,以c為斜邊作兩個全等的直角三角形,則每個直角三角1ab2形的面積等于.把這兩個直角三角形拼成如圖所示形狀,使A、E、B三點在一條直線上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o.∴ ΔDEC是一個等腰直角三角形,12c2它的面積等于.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD∥BC.1?a?b?

2∴ ABCD是一個直角梯形,它的面積等于2.1?a?b?2?2?1ab?1c2

22.∴ 2

222∴ a?b?c.【證法5】(辛卜松證明)

DD

設直角三角形兩直角邊的長分別為a、b,斜邊的長為c.作邊長是a+b的正方形ABCD.把正方形ABCD劃分成上方左圖所示的幾個部分,則正方形ABCD

222??a?b?a?b?2ab;把正方形ABCD劃分成上方右圖所示的幾個的面積為

部分,則正方形ABCD的面積為

222∴a?b?2ab?2ab?c,222∴a?b?c.?a?b?21?4?ab?c222 =2ab?c.初二(1)

第五篇:勾股定理的證明方法

這個直角梯形是由2個直角邊分別為、,斜邊為 的直角

三角形和1個直角邊為的等腰直角三角形拼成的。因為3個直角三角形的面積之和等于梯形的面積,所以可以列出等式

化簡得。

下載勾股定理的證明方法(全文5篇)word格式文檔
下載勾股定理的證明方法(全文5篇).doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    勾股定理的證明方法

    勾股定理的證明方法緒論勾股定理是世界上應用最廣泛,歷史最悠久,研究最深入的定理之一,是數學、幾何中的重要且基本的工具。而數千年來,許多民族、許多個人對于這個定理之證......

    幾種簡單證明勾股定理的方法

    幾種簡單證明勾股定理的方法——拼圖法、定理法 江蘇省泗陽縣李口中學沈正中據說對社會有重大影響的10大科學發現,勾股定理就是其中之一。早在4000多年前,中國的大禹曾在治理......

    勾股定理的8種證明方法

    勾股定理的8種證明方法這個定理有許多證明的方法,其證明的方法可能是數學眾多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《畢達哥拉斯命題》)一書......

    初二上勾股定理證明方法

    勾股定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,因為這個定理太貼近人們的生活實際,以至于古往今來,下至平民百姓,上至帝王總統都愿意探討和研究它的證明.下面......

    勾股定理的證明方法探究

    《勾股定理的證明方法探究》勾股定理又叫畢氏定理:在一個直角三角形中,斜邊邊長的平方等于兩條直角邊邊長平方之和。據考證,人類對這條定理的認識,少說也超過 4000 年!又據記載,現......

    勾股定理的證明方法探究

    勾股定理的證明方法 勾股定理是初等幾何中的一個基本定理。這個定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,因為這個定理太貼近人們的生活實際,以至于古往......

    如何證明勾股定理

    如何證明勾股定理勾股定理是初等幾何中的一個基本定理。這個定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,因為這個定理太貼近人們的生活實際,以至于古往今來......

    勾股定理 專題證明

    勾股定理 專題證明1.我們給出如下定義:若一個四邊形中存在一組相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊。(1)......

主站蜘蛛池模板: 丰满女人又爽又紧又丰满| 免费99精品国产自在现线| 成片免费观看视频大全| 亚洲国产果冻传媒av在线观看| 国产精品视频白浆免费视频| 青青草国产精品人人爱| 久久国产乱子伦免费精品| 久久久久亚洲av成人网人人软件| 狠狠综合久久久久综合网址| 久久人人做人人妻人人玩精品va| 日韩人妻无码精品免费shipin| 国产妇女馒头高清泬20p多| 少妇夜夜春夜夜爽试看视频| 美女张开腿给男人桶爽久久| 日韩在线永久免费播放| 夜夜高潮夜夜爽国产伦精品| 亚洲av鲁丝一区二区三区黄| 欧美午夜精品久久久久久浪潮| 老司机午夜福利试看体验区| 亚洲av无码专区在线观看下载| 插鸡网站在线播放免费观看| 麻豆av传媒蜜桃天美传媒| 国产色秀视频在线播放| 精品性影院一区二区三区内射| 成人免费毛片内射美女-百度| 天堂国产一区二区三区四区不卡| 55夜色66夜色国产精品视频| 激情av无码后入| 美女裸体网站| a级毛片无码久久精品免费| av国産精品毛片一区二区网站| 精品国产午夜福利精品推荐| 男女啪啪免费观看无遮挡| 免费国产在线精品一区二区三区| 亚洲国产一二三精品无码| 亚洲女人天堂| 成人亚洲欧美日韩在线观看| 永久黄网站色视频免费看| 国产精品第一区揄拍| 久久久婷婷五月亚洲97色| 国产成人精品一区二区不卡|