第一篇:初一數學教案
1.平方差公式是由多項式乘法直接計算得出的:
與一般式多項式的乘法一樣,積的項數是多項式項數的積,即四項.合并同類項后僅得兩項.
2.這一公式的結構特征:左邊是兩個二項式相乘,這兩個二項式中有一項完全相同,另一項互為相反數;右邊是乘式中兩項的平方差,即相同項的平方與相反項的平方差.公式中的字母可以表示具體的數(正數和負數),也可以表示單項式或多項式等代數式.只要符合公式的結構特征,就可運用這一公式.例如
在運用公式的過程中,有時需要變形,例如,變形為,兩個數就可以看清楚了.
3.關于平方差公式的特征,在學習時應注意:
(1)左邊是兩個二項式相乘,并且這兩上二項式中有一項完全相同,另一項互為相反數.
(2)右邊是乘式中兩項的平方差(相同項的平方減去相反項的平方).
(3)公式中的和可以是具體數,也可以是單項式或多項式.
(4)對于形如兩數和與這兩數差相乘,就可以運用上述公式來計算.
三、教法建議
1.可以將“兩個二項式相乘,積可能有幾項”的問題作為課題引入,目的是激發學生的學習興趣,使學生能在兩個二項式相乘其積可能為四項、三項、兩項中找出積為兩項的特征,上升到一定的理論認識,加以實踐檢驗,從而培養學生觀察、概括的能力.
2.通過學生自己的試算、觀察、發現、總結、歸納,得出為什么有的兩個二項式相乘,其積為兩項,因為其中兩項是兩個數的平方差,而另兩項恰是互為相反數,合并同類項時為零,即
(a+b)(a-b)=a2+ab-ab-b2=a2-b2.
這樣得出平方差公式,并且把這類乘法的實質講清楚了.
3.通過例題、練習與小結,教會學生如何正確應用平方差公式.這里特別要求學生注意公式的結構,教師可以用對應思想來加強對公式結構的理解和訓練,如計算(1+2x)(1-2x),(1+2x)(1-2x)=12-(2x)2=1-4x2
↓ ↓ ↓ ↓ ↑ ↑
(a + b)(a-b)=a2-b2.
這樣,學生就能正確應用公式進行計算,不容易出差錯.
另外,在計算中不一定用一種模式刻板地應用公式,可以結合以前學過的運算法則,經過變形后靈活應用公式,培養學生解題的靈活性.
教學目標
1.使學生理解和掌握平方差公式,并會用公式進行計算;
2.注意培養學生分析、綜合和抽象、概括以及運算能力.
教學重點和難點
重點:平方差公式的應用.
難點:用公式的結構特征判斷題目能否使用公式.
教學過程設計
一、師生共同研究平方差公式
我們已經學過了多項式的乘法,兩個二項式相乘,在合并同類項前應該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
讓學生動腦、動筆進行探討,并發表自己的見解.教師根據學生的回答,引導學生進一步思考:
兩個二項式相乘,乘式具備什么特征時,積才會是二項式?為什么具備這些特點的兩個二項式相乘,積會是兩項呢?而它們的積又有什么特征?
(當乘式是兩個數之和以及這兩個數之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現互為相反數的兩項,合并這兩項的結果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數的平方差)
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式. 本文章共2頁,當前在第1頁12
第二篇:初一數學教案
初一數學教案
.1.1正數和負數
教學目的:
(一)知識目標:
1.了解正數和負數是怎樣產生的。
2.知道什么是正數和負數。
3.理解數0表示的量的意義。
(二)能力目標:
1.體會數學符號與對應的思想,用正、負數表示具有相反意義的量化方法。
2.會用正、負數表示具有相反意義的量。
(三)情感態度與價值觀:
通過師生合作,聯系實際,激發學生學好數學的熱情。教學重點:知道什么是正數和負數,理解數0表示的量的意義。教學難點:理解負數,數0表示的量的意義。
教學方法:師生互動
教學過程:
一、創設情境:
1.活動:請兩名同學分別記錄一周的每天的最高氣溫,老師念,學生寫:-5℃、3℃、2℃、-1℃、-6℃、7℃、4℃、比一比,怎樣記錄又快又簡便!
[師]其實,在我們的生活中,運用這樣的符號的地方很多,這節課,我們就來學習這種帶有特殊符號、表示具有實際意義的數-----正數和負數。
二、新課:
1.自然數的產生、分數的產生。
2.章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數與排名順序、±0.5、-9的意義。
3、正數、負數的定義:我們把以前學過的0以外的數叫做正數,在這些數的前面帶有“一”時叫做負數。根據需要有時在正數前面也加上“十”(正號)表示正數。舉例說明:3、2、0.5、等是正數(也可加上“十”)
-
3、-
2、-0.5、- 等是負數。
4、數0既不是正,也不是負數,0是正數和負數的分界。
0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。
5、讓學生舉例說明正、負數在實際中的應用。展示圖片(又見教材P5圖
1.1-2-3)讓學生觀察地形圖上的標注和記錄支出、存入信息的本地某銀行的存折,說出你知道的信息。
三、鞏固提高:練習:課本P5練習
課時小結:談談這節課的收獲
課后作業:課本P7習題1.1的第1、2、4、5題。
四、能力提升:在一次數學測驗中,某班的平均分為85分,把高于平均分的高出部分記為正數。
(1)美美得95分,應記為多少?
(2)多多被記作一12分,他實際得分是多少?
五、課后反思
第三篇:初一數學教案
初一數學教案
· 多項式除以單項式 · 單項式除以單項式
· 同底數冪的除法 第二課時 · 同底數冪的除法 · 完全平方公式
·平方差公式 · 多項式的乘法 · 單項式與多項式相乘 · 單項式的乘法
· 冪的乘方與積的乘方(二)
· 冪的乘方與積的乘方 · 同底數冪的乘法(二)· 同底數冪的乘法
· 一元一次不等式組和它的解法 · 一元一次不等式和它的解法
· 不等式的解集 教學設計方案(二)· 不等式的解集
· 不等式和它的基本性質 教學設計方案(二)· 不等式和它的基本性質 · 一次方程組的應用 第三課時
· 一次方程組的應用 第二課時 2005/12/9 2005/11/17 2005/3/2 2005/1/21 2005/12/1
2005/4/13 2005/8/9 2005/12/20 2005/9/12 2005/2/18
2005/6/3 2005/5/11 2005/2/3 2005/6/14 2005/6/22
2005/6/9 2005/1/18 2005/12/2 2005/8/15 2005/8/2
2005/12/14
· 一次方程組的應用
· 三元一次方程組的解法舉例 · 用加減法解二元一次方程組 · 用代入法解二元一次方程組
· 二元一次方程組 · 定理與證明(二)· 定理與證明(一)
· 命題 教學設計方案(二)· 命題
· 空間里的平行關系
·平行線的性質 教學設計方案(二)·平行線的性質 ·平行線的判定 ·平行線的判定
2005/8/24 2005/5/16 2005/8/21 2005/12/6
2005/4/18 2005/5/7 2005/6/21 2005/10/6 2005/2/18
2005/6/3 2005/11/13 2005/3/25 2005/4/17
第四篇:初一數學教案(推薦8篇)
篇1:初一數學教案
【教學內容】
第二章 2.1 正數與負數 2.2 數軸
【教學目標】
1、會判斷一個數是正數還是負數,理解負數的意義。
2、會把已知數在數軸上表示,能說出已知點所表示的數。
3、了解數軸的原點、正方向、單位長度,能畫出數軸。
4、會比較數軸上數的大小。
【知識講解】
一、本講主要學習內容
1、負數的意義及表示 2、零的位置和地位
3、有理數的分類 4、數軸概念及三要素
5、數軸上數與點的對應關系 6、數軸上數的比較大小
其中,負數的概念,數軸的概念及其三要素以及數軸上數的比較大小是重點。負數的意義是難點。
下面概述一下這六點的主要內容
1、負數的意義及表示
把大于0的數叫正數如5,3,+3等。在正數前加上“-”號的數叫做負數如-5,-3,- 等。負數是表示相反意義的量,如:低于海平面-155米表示為-155m,虧損50元表示-50元。
2、零的位置和地位
零既不是正數,也不是負數,但它是自然數。它可以表示沒有,也可以在數軸上分隔正數和分數,甚至可以表示始點,表示缺位,這將在下面詳細介紹。
3、有理數的分類
正整數、零、負整數統稱為整數,正分數、負分數統稱為分數,整數和分數統稱為有理數。
正整數
整數 零 正有理數
有理數 負整數 或 有理數 零
分數 正分數 負有理數
負分數
篇2:初一數學教案
一、教學目標
(一)知識教學點
1.了解;方程算術解法與代數解法的區別。
2.掌握:代數解法解簡易方程。
(二)能力訓練點
1.通過代數解法解簡易方程的學習使學生認識問題頭腦不僵化,培養其創造性思維的能力。
2.通過代數法解簡易方程進一步培養學生運算能力和邏輯思維能力。
(三)德育滲透點
1.培養學生實事求是的科學態度,用發展的眼光看問題的辯證唯物主義思想。
2.滲透化“未知”為“已知”的化歸思想。
(四)美育滲透點
通過用新的方法解簡易方程,使學生初步領略數學中的方法美。
二、學法引導
1.教學方法:引導發現法。注意教學中民主意識和學生的主體作用的體現。
2.學生學法:識記→練習反饋
三、重點、難點、疑點及解決辦法
1.重點:代數解法解簡易方程。
2.難點:解方程時準確把握兩邊都加上(或減去)、乘以(或除以)同一適當的數。
3.疑點:代數解法解簡易方程的依據。
四、課時安排
1課時
五、教具學具準備
投影儀或電腦、自制膠片。
六、師生互動活動設計
教師創設情境,學生解決問題。教師介紹新的方法,學生反復練習。
七、教學步驟
(一)創設情境,復習導入
(出示投影1)
引例:班上有37名同學,分成人數相等的兩隊進行拔河比賽,恰好余3人當裁判員,每個隊有多少人?
師:該問題如何解決呢?請同學們考慮好后寫在練習本上.
學生活動:解答問題,一個學生板演.
師生共同訂正,對照板演學生的做法,師問:有無不同解法?
學生活動:回答問題,一個學生板演,其他學生比較兩種解法.
問;這兩種解法有什么不同呢?
學生活動:積極思索,回答問題.(一是列算式的解法,二是列方程的解法).
師:很好.為了敘述問題方便,我們分別把這兩種解法叫做算術解法和代數解法.小學學過的應用題可用算術方法也可用代數方法解.有時算術方法簡便,有時代數方法簡便,但是隨著學習的逐步展開,遇到的問題越來越復雜,使用代數解法的優越性將會體現的越來越充分,因此,在初中代數課上,將把方程的知識作為一個重要的內容來學習.當然,在開始學習方程時,還是要從簡單的方程入手,即簡易方程.引出課題.
[板書]1.5簡易方程
(二)探索新知,講授新課
師:談到方程,同學們并不陌生,你能說明什么叫方程嗎?
學生活動:踴躍舉手,回答問題。
[板書] 含有未知數的等式叫方程
接問:你還知道關于方程的其他概念嗎?
學生活動:積極思考并回答。
[板書] 方程的解;解方程
追問:能再具體些嗎?即什么叫方程的解?什么叫解方程?并舉例說明.學生活動:互相討論后回答.(使方程左右兩邊相等的未知數的值叫做方程的解;求方程的解的過程叫解方程,
師:好!這是小學學的解方程的方法。在初中代數課上,我們要從另一角度來解,還以上邊這個方程為例。
[板書]
學生活動:相互討論達成共識(合理。因把x=5 代入方程3x+9=24 ,左邊=右邊,所以x=5是方程的解)
【教法說明】先復習小學有關方程的幾個概念和解法,再提代數解法,形成對比,使學生認識到同一問題可從不同角度去考慮,即培養了發散思維。正是因為認識問題的不同側面,導致學生感到疑惑,這時讓學生自己去檢驗新方法的合理性,不但可消除疑慮,而且還有助于發展學生的創造能力。
師:以前的方法只能解很簡單的方程,而后者則可以解較復雜的方程,因此更為重要。為了更好的理解和熟悉這種解法,我們共同做例1。
(三)嘗試反饋,鞏固練習
例1 解方程(x/2)-5=11
問:你認為第一步方程兩邊應加上(或減去)什么數最合適?為什么?
學生活動:思考并回答.(師板書)
問:你認為第二步方程兩邊應乘以(或除以)什么數最合適?為什么?
學生活動:思考并回答(師板書)
解:方程兩邊都加上5,得
(x/2)-5+5=11+5
x/2=16
(x/2)*2=16*2
x=32
問:這個結果正確嗎?請同學們自己檢驗.
學生活動:練習本上檢驗并回答問題.(正確)
師:這種新方法解方程時,第一步目的是什么?第二步目的是什么?從而確定出該加上(或減去)怎樣的數,該乘以(或除以)怎樣的數更合適.
學生活動:回答這兩個問題.
篇3:初一數學教案
學習目標:
理解多項式乘法法則,會利用法則進行簡單的多項式乘法運算。
學習重點:
多項式乘法法則及其應用。
學習難點:
理解運算法則及其探索過程。
一、課前訓練:
(1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;
(3)3a2b2 ab3 = , (4) = ;
(5)- = ,(6) = 。
二、探索練習:
(1)如圖1大長方形,其面積用四個小長方形面積
表示為: ;
(2)大長方形的長為 ,寬為 ,要
計算其面積就是 ,其中包含的
運算為 。
由上面的問題可發現:( )( )=
多項式乘以多項式法則:多項式與多項式相乘,先用一個多項式的 以另一個多項式的每一項,再把所得的積 。
三.運用法則規范解題。
四.鞏固練習:
3.計算:① ,
4.計算:
五.提高拓展練習:
5.若 求m,n的值.
6.已知 的結果中不含 項和 項,求m,n的值.
7.計算(a+b+c)(c+d+e),你有什么發現?
六.晚間訓練:
(7) 2a2(-a)4 + 2a45a2 (8)
3、(1)觀察:4×6=24
14×16=224
24×26=624
34×36=1224
你發現其中的規律嗎?你能用代數式表示這一規律嗎?
(2)利用(1)中的規律計算124×126。
4、如圖,AB= ,P是線段AB上一點,分別以AP,BP為邊作正方形。
(1)設AP= ,求兩個正方形的面積之和S;
(2)當AP分別 時,比較S的大小。
篇4:初一數學教案
教學目標:了解總體、個體、樣本及樣本容的概念以及抽樣調查的意義,明確在什么情況下采用抽樣調查或全面調查,進一步熟悉對數據的收集、整理、描述和分析。
教學重點:對概念的理解及對數據收集整理。
教學難點:總體概念的理解和隨機抽樣的合理性。
教學過程:
一、情景創設,引入新課
上節課我們對全班同學對自己所喜愛的學科進行了調查,那么如果要對某校20xx名學生對新聞、體育、動畫、娛樂、戲曲五類電視節目的喜愛情況,怎樣進行調查?
二、新課
1.抽樣調查的意義
在上述問題中,由于學生人數比較多,全面調查花費的時間長,消耗的人力、物力大,因此需要尋求既省時又省力又能解決問題的方法,這就是抽樣調查。
抽樣調查:抽取一部分對象進行調查的方法,叫抽樣調查。
2.總體、個體、樣本、樣本容量的意義
總體:所要考察對象的全體。
個體:總體的每一個考察對象叫個體。
樣本:抽取的部分個體叫做一個樣本。
樣本容量:樣本中個體的數目。
3.抽樣的注意事項
①抽樣調查要具有廣泛性和代表性,即樣本容量要恰當.樣本容量過少,那么不能很好地反映總體的情況,比如要調查20xx名學生對電視節目的喜愛情況,若抽取的樣本容量為幾名學生就不能反映20xx名學生的喜愛情況;如果抽取的學生人數過多,必然花費大量的時間、精力,達不到省時省力的目的.再如要調查60歲以上的老人的生病情況,在醫院去抽取一些60歲以上的住院病人,它又不具有代表性,則應從60歲以上的老人冊中任意抽取部分老人的生病情況來反映總體的60歲老人的生病情況,才能達到目的.
②抽取的樣本要有隨機性.為了使樣本能較好地反映總體的情況,除了有合適的樣本容量外,抽取時還要盡量使每一個個體都有相等的機會被抽到,所謂隨機就是機會相等.例如在20xx名學生的注冊學號中,隨意抽取100個學號,調查這些學號對應的100名學生.當然還可以在上學或放學時,在學校門口隨機進行調查;或則每隔10個人調查一個,直到調查滿確定的樣本容量.
總體說來抽樣調查最大的優點就是在抽樣過程中避免了人為的干擾和偏差,因此隨機抽樣是最科學、應用最廣泛的抽樣方法,一般情況下,樣本容量越大,估計精確度就越高.
下面是某同學抽取樣本數量為100的調查節目統計表:
表中的數據信息也可以用條形統計圖或扇形統計圖來描述。
篇5:初一數學教案
一、學習與導學目標:
知識與技能:借助數軸理解相反數的意義,懂得數軸上表示相反數的兩個點關于原點對稱,會求有理數的相反數;
過程與方法:經歷概念的生成、應用,體會相反數的意義,簡化數的符號,學習觀察、歸納、概括的策略與方法;
情感態度:通過師生、生生合作學習,促進交流,激發興趣。
二、學程與導程活動:
A、準備活動:
1、師生游戲“唱反調”:我們知道在小學學過的0以外的數前面加上負號“-”的數就是負數。現在我說一個正數,你們給它添上“-”號說出來,我如果說一個負數,你們反過來說出對應的正數。+3、+1、-1/2、-18.4、0.75,學生很快說出-3、-1、1/2、18.4、-0.175。
2、上述“唱反調”的兩個數3與-3,1與-1,-1/2與1/2……,在數軸上對應的點的位置如何?可建議生擇兩組在數軸上表示以后作答(在原點兩側到原點的`距離相等,真可謂從原點背道而馳“唱反調”)。
提問:數軸上與原點距離是4的點有幾個?這些點表示的數是多少?
歸納:設a是一個正數,數軸上與原點距離是a的點有兩個,分別在原點左右表示-a和a,我們說這兩點關于原點對稱。
B、學習概念:
1、像3和-3,1和-1,-1/2和1/2這樣,只有負號不同的兩個數給它一個什么樣的關系名稱合適呢?生:互為相反數,師:很好,我們把上述只有負號不同的兩個數叫做互為相反數(oppositenumber)。也就是說3的相反數是-3,-3的相反數是3。可見:相反數是成對出現的,不能單獨存在。
一般地,a和-a互為相反數。“-a”可讀成“a的相反數”。
2、在數軸上看,表示相反數的兩個點和原點有什么關系?(關于原點對稱)
3、從上述意義上看,你看如何規定0的相反數更為合理?
商討得:0的相反數仍是0,即0的相反數等于它本身。
C、應用舉例:
1、兩人一組,一人任說一個有理數,請同伴說出它的相反數。
2、如果a=-a,那么表示數a的點在數軸上的什么位置?a=?(a=0)。
3、在正數前面添上“-”號,就得到這個數的相反數,同樣地,在任意一個數前面添上“-”號,新的數就表示原數的相反數,如:-(+5)=-5,-(-5)=5,-0=0。
結合前面相反數意義的量的學習,還可賦予-(-5)怎樣的意義,從而幫助自己理解-(-5)=5嗎?
4、化簡下列各數P124練習,你愿意繼續嘗試化簡下列各式嗎?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)
你能試著總結規律嗎?(括號內外同號結果為正,括號內外異號結果為負)。
5、若a=-5,則-a=;若-x=7,則x=。
三、筆記與板書提綱:
課題應用舉例中的2
活動引例應用舉例中的4(學生練習)
概念
四、練習與拓展選題:
1、教科書P18/3;
2、如圖是正方形紙盒的側面展示圖,請你在正方形內分別填上6個不同的數,使折成正方體后相對的面上的兩個數互為相反數(寫出滿足條件的一種情形即可)。
篇6:初一數學教案
初一數學教案
2.5有理數的乘法與除法(2)?? 太谷三中 白美清 【學習目標】 1.知道除法是乘法的逆運算 2.理解有理數除法的法則,會進行有理數的除法運算 3.會求有理數的倒數 【重點】用乘法運算律簡化運算。 【難點】熟練運用乘法運算律簡化運算。 【學習過程】 一、溫故互查 1、有理數的`乘法法則是什么? 2、填空:2×3 3×2? ?(依據: ) (7×2)×5 7×(2×5)? (依據: ) ( ?+)×6 ×6+×6? (依據: ) 以上運算律在有理數范圍內還成立嗎?(學生猜想) 二、設問導讀 探索練習??? 5×[(-2)+(- )]= 5×(-2)+5×(- )= 3×[(-8)+(- )]= 3×(-8)+3×(- )= ? ? ? 有理數乘法運算律 交換律:a×b=? 結合律:(a×b)×c= ? 分配律:a×(b+c)= ? 2.思考討論 從上面的計算中,你發現了什么? 3.結論猜想? 小組討論歸納 三、例題剖析,鞏固運算律 例2:(1)( ?+ -)×(-36) (2)8×(- )×(-0.125) ? 課內練習1、P39 練一練 2、計算 例3:計算 (1)8× ? (2)(-4)×(-) (3)(-)×(-) ? ? 像上面的8與 、(-4)與(-)、(-)與(-)這樣 的兩個數叫做互為倒數。 ? ? 課內練習2、隨堂做P39練一練 1 四、鞏固訓練: 1、計算 (1) (- )×(- ) ?(2)(-12)×( ) (3) (-0.75)×(-8)? ??(4) 12×( + )? ? (5) 20×( - )? ?(6) (0.25- )×(-36) ? (7) 0.125×(-7)×8 ??(8) (-3)× × ? ? (9) [8×(-9)]×(-)? (10) 1000×(-4)×(-11)×0.001 ? ?(11) ( + - )×(-28) 五、師生小結: 通過本節課的學習你有哪些收獲?還有哪些疑問? ?篇7:初一數學教案
【教學目標】
1、理解同類項、合并同類項的概念。
2、掌握合并同類項法則,會應用該法則及運算律合并多項式的同類項,會應用同類項及合并同類項解決實際問題。
3、感受其中的“數式通性”和類比的數學思想。
【教學重點】
理解同類項的概念;掌握合并同類項法則。
【教學難點】
正確運用法則及運算律合并同類項。
【教學過程】
一、知識鏈接
1、運用運算律計算下列各題。
①6×20+3×20=②6×(-20)+3×(-20)=
2、口答。
8個人+5個人=8只羊+5只羊=
8個人+5只羊=
[意圖:①復習乘法分配律;②感受“同類”。操作流程:幻燈片出示→學生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解釋]
二、探究新知
探究一:一只蝸牛在爬一根豎立的竹竿,每節竹竿是a厘米,第1小時向上爬了6節,第2小時向上爬了2節,問這個蝸牛在竹竿上向上爬了多少厘米?
(1)請列式表示:,你能對上式進行化簡計算嗎?
(2)說說化簡計算的依據。
[意圖:聯系生活情境,探究新知。操作流程:幻燈片出示→學生獨立思考并回答→師生小結方法]
探究二:根據以上式子的運算,化簡下列式子。
①100t-252t
②3x2+2x2
②3ab2-4ab2
④2m2n3-5m2n3
(1)上述各多項式的項有什么共同特點?
(2)上述多項式的運算有什么共同特點,有何規律?
[意圖:讓學生經歷動手、觀察、猜想、歸納的學習過程,從而探究出新知。操作流程:幻燈片出示→動手計算→回答并解釋→觀察(交流)→猜想→引導學生歸納新知]
三、例題精煉
例1、合并同類項。
4x2+2x+7+3x-8x2-2
例2、求多項式-x2+4x+5x2-3x-4x2+3的值,其中x=。
[意圖:運用知識解決問題,突出重點。操作流程:完成例1(3~4人演排)→學生質疑→師點評并規范格式、注意事項(例2處理方式同上)]
四、課堂小結
這節課你學到了哪些知識?
[意圖:養成總結反思的好習慣。操作流程:交流→小組代表發言→師補充]
五、課堂檢測(略)
篇8:初一數學教案
教學內容分析
教育不只是一種簡單的“告訴”。學生擁有自己的獨立思考水平和認知系統。當他們遇到一個新的待解決的問題情境時,他們會自覺而主動地從自己已有的知識架構和認知經驗中摸索、收集、調動處理問題的方法和策略。三角形邊的關系這一內容是新教材新增加的內容,并安排在第二學段。通過這一內容的學習,使學生在已經建立三角形概念的基礎上,進一步深化理解三角形的組成特征,加深學生對三角形的認識,同時,也為以后學習三角形與四邊形及其他多邊形的聯系與區別打下基礎。
根據新課標的精神,要改變學生學習的方式,讓學生經歷“數學化”、“做數學”等過程,并注重與生活實際緊密聯系,學有價值的數學。根據這一教學內容在教材中所處的地位與作用,以及新課標的要求,我認為設計這節課的理念是:活動參與、自主建構,聯系生活、應用數學。
教學目標
知識目標
知道和理解“三角形任意兩邊的和大于第三邊”,能用它解釋一些生活現象,解決一些簡單的生活問題。
能力目標
通過動手操作、小組驗證,體驗探索三角形邊的關系的過程,培養猜測意識和自主探索、合作交流的能力。
情感目標
經歷探究、發現、驗證“三角形任意兩邊的和大于第三邊”的過程,體驗合作學習和數學學習的快樂。
教學重點
三角形三邊關系的實驗與探究
教學難點
三角形三邊關系的探究過程。
教學關鍵
使學生理解三角形邊的關系
教學準備
課件、三根小棒、三邊關系試驗報告單每組四根小棒
教學方法
自主探究小組討論
課程類型
學科課程
教學過程
活動的組織與實施(含教師活動和學生活動)
設計意圖
時間分配
一、復習舊知,導入新課
我手上拿的是什么?(三角板)它是什么圖形呢?(三角形)誰來說說什么是三角形?怎樣理解這個“圍”字(端點首尾相連)。同學們還知道三角形的哪些知識?關于三角形的知識還有很多,我們繼續往下看。
復習舊的知識,使新舊知識之間有很好的連接
2分鐘
二、動手操作,發現問題
師:老師這里有三根小棒,分別長3、5、10厘米,這3根小棒能圍成一個什么圖形?
生:三角形。
師:誰愿意上來圍一圍?圍的時候要注意小棒首尾相連。
師:這三根小棒為什么圍不成三角形呢?三角形的三條邊之間到底有什么關系呢?今天,我們就一起來研究三角形的三邊關系(板書課題)
三、猜想驗證,發現規律
師:我們發現這三根小棒不能圍成三角形,怎樣做才能圍成三角形呢?
生:換一根小棒
師:怎樣換?同學們說的都是你們的猜想(課件演示猜想1)
1、學法指導師:你們的這些猜想是否正確,三角形的三條邊到底有什么關系?我們可以通過做實驗來驗證一下,現在老師給同學們準備了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起試著圍一圍三角形。同學們親自動手擺一擺,拼一拼,看看有什么結果。先看要求(大屏幕)操作要求:(1)、2人一組合作完成四種拼法(2)、圍三角形時要注意首尾相連。(3)、完成后,填寫好活動記錄表準備交流
2、動手操作,尋找規律(師巡視,并指導)
3、交流匯報,探究規律。
師:哪個小組愿意來匯報。小組上臺展示,
3厘米、8厘米、10厘米能
3厘米、5厘米、10厘米不能3厘米、5厘米、8厘米不能5厘米、8厘米、10厘米能師:其它組有不同意見嗎?
師:仔細觀察四種結果,有的圍不成,而有的卻能圍成。這是為什么呢?先看不能圍成三角形的每組小棒的長度之間有什么關系?說說你能發現些什么?同桌討論一下。能圍成三角形的這幾組小棒長度之間又有什么聯系?
三根小棒要圍成三角形,必須滿足什么條件?
通過剛才的實驗和分析,你發現三角形三條邊長度之間有什么關系嗎?先看不能圍成三角形的這組情況,誰愿意說說3、5、10這三根小棒為什么不能圍成三角形?
生:
師:其他同學贊同嗎?誰再來說一說。
師:我明白了,3厘米的邊是不能和5厘米、10厘米的邊圍成三角形的,因為這兩條邊之和小于第三條邊。(板書3+4〈 8)你很會觀察。
(課件演示)師:再說3、5、8這三根,同學們有些爭議,到底它們能不能圍成三角形呢?不能,為什么?有誰愿意談談?
生:3+5=8重合了不能
師:是這樣嗎?(課件演示)請看大屏幕。
師:真的是這樣,通過演示現在明白這個同學的意思了嗎?誰愿意再來說一說。
師:通過以上的動手操作和探究分析,我們發現了當兩邊之和小于、等于第三條邊時,這3條邊是圍不成三角形的。
師:那么怎樣才能圍成三角形呢?
生:兩條邊加起來要大于第三邊就行了。
師(板書):兩邊之和大于第三邊
師:我們來看看能圍成三角形的這兩組是不是這樣的呢,3+8>10、8+5>10看起來是這樣的。
3)師:回頭看不能圍成的情況,也有3+8>4、4+8>3、3+8>5、5+8>3(兩邊之和大于第三邊)的情況,怎么就不能圍成三角形呢?
生:有一種不符合就不行了
師:看來只是其中的兩條邊之和大于第3條邊是不完整的
生1:加“任何”、“任意”
生2:其他兩邊之和都大于第三條邊。
生3:無論哪兩條邊之和都要大于第三邊。
4、歸納小結
師:看來只是其中的兩條邊之和大于第3條邊是不完整的,
師:這句話概括說就是:任意兩邊之和大于第三邊(板書:任意)師:是這樣嗎?再挑選一組能圍成三角形的三條邊,來驗證:生:3+4>5、3+5>4、4+5>3,師:這個例子證明了你的想法是對的,這兩個三角形的三邊關系都是:任意兩邊之和大于第三邊(齊讀)
四、運用結論,加深理解
師:我們已經知道三角形的三邊關系,下面讓我們來判斷幾道題目
1、快速判斷。
3cm、5cm、() 4cm
7cm、4cm、() 2cm
6cm、3cm、() 1cm
2cm、3cm、() 3cm
師:為什么圍不成?你是怎么判斷的?
2、出示P82例3圖
這是小明上學的路線圖,同學們仔細看一看,他可以怎樣走?
3、這幾條路中,哪條最近?這是為什么呢?
老師在生活中還看到了這么一種現象:(課件演示)公園里有一條這樣的路,路的兩旁是草坪,為什么很多人都往草坪中間走?師:今天你有什么收獲?
其實數學就在我們身邊,只要你平時多觀察、多動腦,你一定能成為數學的好朋友。
開發學生的動手能力和觀察能力,在實踐中發現問題并嘗試找出問題的原因反復試驗,加深同學的理解,猜想驗證,發現其內在規律增強小組合作意識以及動手操作能力鍛煉同學發言及表達能力
通過小組討論,發現問題,嘗試找出原因,激發學生自主學習的精神在教學過程中不斷引導,自主發現問題,加深對知識的理解和鞏固運用練習,鞏固學習的知識,加深印象
3分鐘5分鐘7分鐘3分鐘5分鐘10分鐘5分鐘
板書設計
三角形邊的關系兩邊之和大于第三邊
教學反思
本節課鞏固應用部分的三個環節,是從學生的學習認知規律出發,遵循從易到難的原則,分鞏固性練習、應用性練習、拓展性練習三個層次。并與學生身邊的生活例子相結合,既能體現數學教學生活化的新理念,又能有效地激發學生的學習興趣,拓展學生的思維,提高學生的數學學習能力。
以上教學設計,以學生的學習心理為基礎,通過簡單的動手操作,創設有效的“數學問題情境”,激發學生強烈的探究欲望。通過引導學生大膽的猜想,積極的驗證和合理的歸納,使學生學到新知識的同時,經歷數學知識的形成過程,這樣的教學將會有效地激活了學生的數學思維,使學生在知識、能力,以及情感態度等方面都將得到較好的發展。又通過擺圖形,尋找數據間的關系;又通過數據的整理和分析,確定圖形的存在性和圖形具有的性質,使數形緊密結合,滲透了數形結合的思想方法;同時對不同類型三角形都具有的共性歸納總結,滲透了數學的歸納思想。教學中始終以這一核心的思想為教學靈魂,時時滲透,處處體現。
第五篇:初一數學教案
1.1 正數和負數
(第一課時)
一、教學的目的和要求:
1.了解負數產生的背景。
2.掌握負數的讀法和表示方法。
3.會判斷一個數是負數還是正數。
4.掌握用正負數表示生活和生產中意義相反的量。
二、教學的重點和難點:
1.重點:能夠準確的理解在生活和生產中用負數表示的量的意義,并能夠說出它的相反的量。
2.難點:能夠舉出學生生活中很熟悉的關于負數的典型例子,使學生更快更準確的理解負數的含義。
三、教學設計:
(一)創設情境,引入主題
1.在冬天,天氣預報員經常說到某地區的溫度在零下幾攝氏度。例如:北京的最低氣溫是零下3度到3度。但是在電視上顯示的是-3℃~3℃。請同學們思考這里的-3是什么意思?像這樣一個數前面加一個“-”的數在生活中是否見過?
2.這里請問同學們零下中的“下”對應反義詞是什么?(上)這是一組反義詞,還能舉出意思相反的詞嗎?例如上升與下降等。
3.同理這里的前面帶負號的數字與以前我們見過的沒有帶負號的正數是相反,稱為負數。生活中存在許多的相反的詞,所以在數學中就引入了正數與負數來表示它們。例如,如果用正來表示上升,那么下降就應該用負數來表示,用正數來表示增加,那么減少就是用負數表示。
(二)運用新知
1.規定盈利為正,某公司去年虧了1.5萬元,記做_____萬元,今年盈利了3萬元,記做____萬元。
2.規定海平面以上的海拔高度為正,新疆烏魯木齊市高于海平面918米,記做海拔__________米;吐魯番盆地最低處低于海平面155米,記做海拔__________米。
3.汽車在一條南北走向的高速公路上行駛,規定向北行駛的路程為正。汽車向北行駛75km,記做________km,汽車向南行駛100km,記做________km。
4.如果向銀行存入50元記為50元,那么-30.50元表示__________。
5.規定增加的百分比為正,增加25%記做__________,-12%表示__________.(先由老師講解第1題,后幾題請同學們獨立完成,然后同同桌相互評價,最后由老師逐一講解。)
(三)師生互動,拓展探究
1.和學生一起完成p4的例題。
2.思考:“負”與“正”是相對的。增長-1,就是減少1;請同學們思考一下增長-6.4%是什么意思?什么情況下增長率是0?
3.判斷一下“不是正數的數一定是負數,不是負數的數一定是正數”的說法對嗎?(這里要強調的知識點是0既不是正數也不是負數)
4.某地一天中午12時的氣溫是7℃,過5小時后氣溫下降4℃,又過了7小時氣溫又下降了4℃,第二天的0時的氣溫是多少?
四、課后練習(至少準備兩個專門的數學練習本)
1.書本P3的練習
2.習題1.1復習鞏固的第1、2題
3.思考一下綜合運用中的第4題和拓廣探索的第8題。