《二面角的概念》說(shuō)課稿
一、說(shuō)教材
二面角的概念是普通高中課程標(biāo)準(zhǔn)人教A版數(shù)學(xué)必修2第2章第3節(jié)兩個(gè)平面垂直的判定中的內(nèi)容。它是在學(xué)生學(xué)習(xí)了異面直線所稱(chēng)的角、直線與平面所成的角之后,有一個(gè)要學(xué)習(xí)的空間角,而二面角的本質(zhì)特征時(shí)候從度量的角度,通過(guò)二面角的平面角揭示了平面與平面的位置關(guān)系(垂直關(guān)系是其中的一種特殊關(guān)系),它是為以后從度量角研究面與面的非垂直關(guān)系奠定了基礎(chǔ),因此二面角的內(nèi)容在教材中起到了一個(gè)承上啟下的作用,同時(shí),通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生的空間想象能力和邏輯思維能力進(jìn)一步得到提升。
二、說(shuō)學(xué)情
高一學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,針對(duì)學(xué)生主觀能動(dòng)性強(qiáng),思維活躍的特點(diǎn),我在授課中主要以問(wèn)題為紐帶引導(dǎo)學(xué)生發(fā)現(xiàn)問(wèn)題—類(lèi)比聯(lián)想—解決問(wèn)題。
三、說(shuō)教學(xué)目標(biāo)
(一)知識(shí)與技能
能正確概述“二面角”、“二面角的平面角”的概念,會(huì)做二面角的平面角。
(二)過(guò)程與方法
利用類(lèi)比的方法推理二面角的有關(guān)概念,提升知識(shí)遷移的能力。
(三)情感態(tài)度與價(jià)值觀
營(yíng)造和諧、輕松的學(xué)習(xí)氛圍,通過(guò)學(xué)生之間,師生之間的交流、合作和評(píng)價(jià)達(dá)成共識(shí)、共享、共進(jìn),實(shí)現(xiàn)教學(xué)相長(zhǎng)和共同發(fā)展。
四、說(shuō)教學(xué)重難點(diǎn)
(一)重點(diǎn)
“二面角”和“二面角的平面角”的概念。
(二)難點(diǎn)
“二面角的平面角”概念的形成過(guò)程。
五、說(shuō)教學(xué)方法
數(shù)學(xué)是一門(mén)培養(yǎng)人思維,發(fā)展人思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境—提出數(shù)學(xué)問(wèn)題—嘗試解決問(wèn)題—驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類(lèi)比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體與模型相結(jié)合,將抽象問(wèn)題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
六、說(shuō)教學(xué)過(guò)程
(一)新課導(dǎo)入
首先我會(huì)用多媒體課件展示生活中的一些模型,請(qǐng)學(xué)生觀察:
1、打開(kāi)書(shū)本的過(guò)程;
2、發(fā)射人造地球衛(wèi)星,要根據(jù)需要使衛(wèi)星的軌道平面與地球的赤道平面成一定的角度;
3、修筑水壩時(shí),為了使水壩堅(jiān)固耐久,須使水壩坡面與水平面成適當(dāng)?shù)慕嵌龋?/p>
引導(dǎo)學(xué)生說(shuō)出書(shū)本的兩個(gè)面、水壩面與底面,衛(wèi)星軌道面與地球赤道面均是呈一定的角度關(guān)系。
【設(shè)計(jì)意圖】通過(guò)一系列的模型與動(dòng)畫(huà)展示,從生活中提取模型,讓學(xué)生由感性認(rèn)識(shí)出發(fā),從多種模型中抽象出二面角的概念,這符合認(rèn)知的一般規(guī)律。同時(shí),也讓學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于生活,也服務(wù)于生活,增加學(xué)生學(xué)習(xí)本節(jié)內(nèi)容的興趣
(二)新課探究
1、二面角的概念
利用多媒體展示初中所學(xué)的平面角的形成過(guò)程,并向?qū)W生提問(wèn),可否根據(jù)平面內(nèi)角的定義給上述的這些圖形下一個(gè)定義。
在提問(wèn)過(guò)程中注意引導(dǎo)學(xué)生進(jìn)行類(lèi)比,大膽概括。同時(shí),對(duì)學(xué)生的表現(xiàn)加以肯定,注意規(guī)范學(xué)生的語(yǔ)言。最后引出二面角的概念。在此要注意講解半平面的概念,即平面內(nèi)的一條直線把平面分成兩部分,這兩部分通常稱(chēng)為半平面。并根據(jù)具體模型講解二面角的棱,面等相關(guān)概念。
(1)對(duì)比平面角得出二面角的概念
(2)二面角的表示
接下來(lái)注意講解二面角表示法:α—a—β或α—AB—β。在此要注意分析講解三個(gè)量的含義。
二面角的畫(huà)法
然后是師生同步,練習(xí)畫(huà)二面角。著重練習(xí)近平臥式和直立式,可請(qǐng)學(xué)生同桌之間互相點(diǎn)評(píng),強(qiáng)調(diào)平行關(guān)系。
2。二面角的平面角
一般地說(shuō),量角器只能測(cè)量“平面角”讓學(xué)生大膽猜想如何去測(cè)量二面角的大小。學(xué)生類(lèi)比平面角,會(huì)想到將空間角化為平面角。
(1)二面角的平面角的定義
教師給出二面角的平面交的定義:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
教師進(jìn)一步對(duì)定義進(jìn)行深化,請(qǐng)學(xué)生找出“二面角的平面角”的定義三個(gè)主要特征,即點(diǎn)在棱上、線在面內(nèi)、與棱垂直
并通過(guò)實(shí)物展示讓學(xué)生認(rèn)識(shí)直二面角。
(2)二面角的平面角的作法
接下來(lái),師生同步,共同作出某一二面角的平面角,注意點(diǎn)P的三種情況:
①點(diǎn)P在棱上—定義法
②點(diǎn)P在一個(gè)半平面上—三垂線定理法
③點(diǎn)P在二面角內(nèi)—垂面法
【設(shè)計(jì)意圖】培養(yǎng)學(xué)生的觀察能力,學(xué)生會(huì)發(fā)現(xiàn)身邊很多的圖形都和教師展示的模型一樣。同時(shí),這樣的教學(xué)也符合認(rèn)識(shí)事物的一般規(guī)律:由感性認(rèn)識(shí)到理性認(rèn)識(shí),再到感性認(rèn)識(shí),再到理性認(rèn)識(shí)。
(三)深化新知
提問(wèn)二面角的取值范圍,強(qiáng)調(diào)一般規(guī)定為[0,π]。重點(diǎn)要讓學(xué)生理解0和的區(qū)別。
(四)鞏固提高
為了讓學(xué)生切實(shí)掌握二面角的概念及其求法,設(shè)計(jì)兩個(gè)環(huán)節(jié):通過(guò)例題講解讓學(xué)生學(xué)會(huì)運(yùn)用。通過(guò)課堂作業(yè),讓學(xué)生鞏固新知。
首先是基礎(chǔ)題,利用概念判斷命題的真假,如:
(1)兩個(gè)相交平面組成的圖形叫做二面角。( )
(2)角的兩邊分別在二面角的兩個(gè)面內(nèi),則這個(gè)角是二面角的平面角。( )
(3)二面角的平面角所在平面垂直于二面角的棱。( )
【設(shè)計(jì)意圖】通過(guò)這幾道判斷題,鞏固學(xué)生對(duì)二面角概念的理解。
此外我會(huì)在添加兩道以正方體為模型,求解兩個(gè)平面的二面角的題目,抽取兩位同學(xué)在黑板上扮演,我將會(huì)在巡視過(guò)程中對(duì)部分學(xué)生加以指導(dǎo)。最后對(duì)黑板上的兩名學(xué)生的解題過(guò)程加以分析完善,規(guī)范的書(shū)寫(xiě)格式。
(五)小結(jié)作業(yè)
教師口頭提問(wèn):
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問(wèn)題的解決過(guò)程中運(yùn)用了哪些數(shù)學(xué)思想?
設(shè)計(jì)意圖:?jiǎn)l(fā)式的課堂小結(jié)方式能讓學(xué)生主動(dòng)回顧本節(jié)課所學(xué)的知識(shí)點(diǎn)。也促使學(xué)生對(duì)知識(shí)網(wǎng)絡(luò)進(jìn)行主動(dòng)建構(gòu)。
作業(yè):以正方體為模型請(qǐng)找出一個(gè)所成角度為四十五度的二面角,并證明。
設(shè)計(jì)意圖:利用正方體模型,激發(fā)學(xué)生的探索欲望,體現(xiàn)分層教學(xué)的思想,才能達(dá)到因材施教的目的。
七、說(shuō)板書(shū)設(shè)計(jì)
我的板書(shū)本著簡(jiǎn)介、直觀、清晰的原則,這就是我的板書(shū)設(shè)計(jì)。
高中數(shù)學(xué)說(shuō)課稿《二面角》
一、教材分析
1.教材地位和作用
二面角是我們?nèi)粘I钪薪?jīng)常見(jiàn)到的、很普通的一個(gè)空間圖形。“二面角”是人教版《數(shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過(guò)兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究?jī)蓚€(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過(guò)本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。2.教學(xué)目標(biāo) 知識(shí)目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問(wèn)題。(2)進(jìn)一步培養(yǎng)學(xué)生把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的化歸思想。
能力目標(biāo):(1)突出對(duì)類(lèi)比、直覺(jué)、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。
(2)通過(guò)對(duì)圖形的觀察、分析、比較和操作來(lái)強(qiáng)化學(xué)生的動(dòng)手操作能力。德育目標(biāo):(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來(lái)自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí);
(2)通過(guò)揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。
情感目標(biāo):在平等的教學(xué)氛圍中,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。3.重點(diǎn)、難點(diǎn) 重點(diǎn):“二面角”和“二面角的平面角”的概念; 難點(diǎn):“二面角的平面角”概念的形成過(guò)程。
二、教法分析
1.教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問(wèn)題啟導(dǎo)、活動(dòng)探究和類(lèi)比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。
2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3.教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來(lái)輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。
三、學(xué)法指導(dǎo) 1.樂(lè)學(xué):在整個(gè)學(xué)習(xí)過(guò)程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。2.學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類(lèi)比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。
3.會(huì)學(xué):通過(guò)自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類(lèi)比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問(wèn)題,更能發(fā)現(xiàn)問(wèn)題。
四、教學(xué)過(guò)程 心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問(wèn)題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營(yíng)造了創(chuàng)新思維的氛圍。
(一)二面角
1.揭示概念產(chǎn)生背景。
問(wèn)題情境1 在平面幾何中“角”是怎樣定義的? 問(wèn)題情境2 在立體幾何中我們還學(xué)習(xí)了哪些角?
問(wèn)題情境3 運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書(shū)課題)。
通過(guò)這三個(gè)問(wèn)題,打開(kāi)了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2.展現(xiàn)概念形成過(guò)程。
問(wèn)題情境 4 那么,應(yīng)該如何定義二面角呢?
創(chuàng)設(shè)這個(gè)問(wèn)題情境,為學(xué)生創(chuàng)新思維的展開(kāi)提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過(guò)程。教師應(yīng)注意多讓學(xué)生說(shuō),對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。
問(wèn)題情境5 同學(xué)們能舉出一些二面角的實(shí)例嗎?通過(guò)實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。
(二)二面角的平面角
1.揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說(shuō)明二面角不僅有大小,而且其大小是唯一確定的。平面與平面的位置關(guān)系,總的說(shuō)來(lái)只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來(lái)研究二面角的度量問(wèn)題。
問(wèn)題情境6 二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來(lái)處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。2.展現(xiàn)概念形成過(guò)程
(1)類(lèi)比。教師啟發(fā),尋找類(lèi)比聯(lián)想的對(duì)象。
問(wèn)題情境7 我們以前碰到過(guò)類(lèi)似的問(wèn)題嗎? 引導(dǎo)學(xué)生回憶前面所學(xué)過(guò)的兩種空間角的定義,電腦演示以提高效率。
問(wèn)題情境8 兩定義的共同點(diǎn)是什么? 生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。
問(wèn)題情境9 這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?
(2)提出猜想:二面角的大小也可通過(guò)平面的角來(lái)定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。問(wèn)題情境10 那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢? 生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺(jué)思維的結(jié)果。
(3)探索實(shí)驗(yàn)。通過(guò)實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。(4)繼續(xù)探索,得到定義。
問(wèn)題情境11 那么,怎樣使這個(gè)角的大小唯一確定呢? 師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過(guò)直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
(5)自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說(shuō)明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。
(三)二面角及其平面角的畫(huà)法
主要分為直立式和平臥式兩種,用電腦《幾何畫(huà)板》作圖。
(四)范例分析
為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來(lái)源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問(wèn)題和解決問(wèn)題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來(lái)自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。
0 例:一張邊長(zhǎng)為 10 厘米的正三角形紙片ABC,以它的高AD為折痕,折成一個(gè)120 二面角,求此時(shí)B、C兩點(diǎn)間的距離。
分析:涉及二面角的計(jì)算問(wèn)題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角。可讓學(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDC是二面角B—AD—C的平面角。變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。題后反思:(1)解題過(guò)程中必須證明∠BDC是二面角B—AD—C的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
(五)練習(xí)、小結(jié)與作業(yè) 練習(xí):習(xí)題9.7的第3題
小結(jié):在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類(lèi)比和深入研究這兩種知識(shí)創(chuàng)新的方法。作業(yè):習(xí)題9.7的第4題 思考題:見(jiàn)例題
五、板書(shū)設(shè)計(jì)(見(jiàn)課件)
以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!