久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

二元一次方程組教案

時間:2019-05-15 05:50:24下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《二元一次方程組教案》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《二元一次方程組教案》。

第一篇:二元一次方程組教案

《4.2二元一次方程組》教學設(shè)計

一、教學目標:

1.認知目標:1)了解二元一次方程組的概念。

2)理解二元一次方程組的解的概念。

3)會用列表嘗試的方法找二元一次方程組的解。2.能力目標:1)滲透把實際問題抽象成數(shù)學模型的思想。

2)通過嘗試求解,培養(yǎng)學生的探索能力。

3.情感目標:1)培養(yǎng)學生細致,認真的學習習慣。

2)在積極的教學評價中,促進師生的情感交流。

二.教學重難點

重點:二元一次方程組及其解的概念

難點:用列表嘗試的方法求出方程組的解。三.教學過程

(一)創(chuàng)設(shè)情景,引入課題

1.本班共有40人,請問能確定男女生各幾人嗎?為什么?

(1)如果設(shè)本班男生x人,女生y人,用方程如何表示?(x+y=40)(2)這是什么方程?根據(jù)什么?

2.男生比女生多了2人。設(shè)男生x人,女生y人.方程如何表示? x,y的值是多少? 3.本班男生比女生多2人且男女生共40人.設(shè)該班男生x人,女生y人。方程如何表示? 兩個方程中的x表示什么?類似的兩個方程中的y都表示? 像這樣,同一個未知數(shù)表示相同的量,我們就應(yīng)用大括號把它們連起來組成一個方程組。4.點明課題:二元一次方程組。

[設(shè)計意圖:從學生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學]

(二)探究新知,練習鞏固

1.二元一次方程組的概念

(1)請同學們看課本,了解二元一次方程組的的概念,并找出關(guān)鍵詞由教師板書。[讓學生看書,引起他們對教材重視。找關(guān)鍵詞,加深他們對概念的了解.](2)練習:判斷下列是不是二元一次方程組:

學生作出判斷并要說明理由。2.二元一次方程組的解的概念

(1)由學生給出引例的答案,教師指出這就是此方程組的解。(2)練習:把下列各組數(shù)的題序填入圖中適當?shù)奈恢茫?/p>

方程x+y=0的解,方程2x+3y=2的解,方程組的解。

(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。

(4)練習:已知

是方程組的解,求a,b的值。

(三)合作探索,嘗試求解

現(xiàn)在我們一起來探索如何尋找方程組的解呢?

1.已知兩個整數(shù)x,y,試找出方程組 的解.學生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學生利用實物投影,講明自己的解題思路。

提煉方法:列表嘗試法。

一般思路:由一個方程取適當?shù)膞y的值,代到另一個方程嘗試.[把課堂還給學生,讓他們探索并解答問題,在獲取新知識的同時也積累數(shù)學活動的經(jīng)驗.] 2.據(jù)了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。

(1)設(shè)該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據(jù)問題中的條件列出關(guān)于x、y的方程組。

(2)用列表嘗試的方法解出這個方程組的解。由學生獨立完成,并分析講解。(四)課堂小結(jié),布置作業(yè)

1.這節(jié)課學哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)2.你還有什么問題或想法需要和大家交流? 3.作業(yè)本。

教學設(shè)計說明:

1.本課設(shè)計主線有兩條。其一是知識線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。

2.“讓學生成為課堂的真正主體”是本課設(shè)計的主要理念。由學生給出數(shù)據(jù),得出結(jié)果,再讓他們在積極嘗試后進行講解,實現(xiàn)生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。

3.本課在設(shè)計時對教材也進行了適當改動。例題方面考慮到數(shù)碼時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎(chǔ),為學生今后的進一步學習做好鋪墊

第二篇:二元一次方程組教案

二元一次方程組教案

二元一次方程組教案1

教學建議

一、重點、難點分析

本節(jié)的教學重點是使學生學會用代入法.教學難點在于靈活運用代入法,這要通過一定數(shù)量的練習來解決;另一個難點在于用代入法求出一個未知數(shù)的值后,不知道應(yīng)把它代入哪一個方程求另一個未知數(shù)的值比較簡便.

解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.

二、知識結(jié)構(gòu)

三、教法建議

1.關(guān)于檢驗方程組的解的問題.教材指出:“檢驗時,需將所求得的一對未知數(shù)的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是不是相等.”教學時要強調(diào)“原方程組”和“每一個”這兩點.檢驗的作用,一是使學生進一步明確代入法是求方程組的解的一種基本方法,通過代入消元的確可以求得方程組的解二是進一步鞏固二元一次方程組的解的概念,強調(diào)

這一對數(shù)值才是原方程組的解,并且它們必須使兩個方程左、右兩邊的值都相等;三是因為我們沒有用方程組的同解原理而是用代換(等式的傳遞)來解方程組的,所以有必要檢驗求出來的這一對數(shù)值是不是原方程組的解;四是為了杜絕變形和計算時發(fā)生的錯誤.檢驗可以口算或在草稿紙上演算,教科書中沒有寫出.

2.教學時,應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學生就能有較強的目的性.

3.教師講解例題時要注意由簡到繁,由易到難,逐步加深.隨著例題由簡到繁,由易到難,要特別強調(diào)解方程組時應(yīng)努力使變形后的方程比較簡單和代入后化簡比較容易.這樣不僅可以求解迅速,而且可以減少錯誤.

一、素質(zhì)教育目標

(一)知識教學點

1.掌握用代入法解二元一次方程組的步驟.

2.熟練運用代入法解簡單的二元一次方程組.

(二)能力訓練點

1.培養(yǎng)學生的分析能力,能迅速在所給的二元一次方程組中,選擇一個系數(shù)較簡單的方程進行變形.

2.訓練學生的運算技巧,養(yǎng)成檢驗的習慣.

(三)德育滲透點

消元,化未知為已知的數(shù)學思想.

(四)美育滲透點

通過本節(jié)課的學習,滲透化歸的數(shù)學美,以及方程組的解所體現(xiàn)出來的奇異的數(shù)學美.

二、學法引導

1.教學方法:引導發(fā)現(xiàn)法、練習法,嘗試指導法.

2.學生學法:在前面已經(jīng)學過一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過程當中始終應(yīng)抓住消元的思想方法.

三、重點、難點、疑點及解決辦法

(-)重點

使學生會用代入法解二元一次方程組.

(二)難點

靈活運用代入法的技巧.

(三)疑點

如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

(四)解決辦法

一方面復習用一個未知量表示另一個未知量的方法,另一方面學會選擇用一個系數(shù)較簡單的方程進行變形:

四、課時安排

一課時.

五、教具學具準備

電腦或投影儀、自制膠片.

六、師生互動活動設(shè)計

1.教師設(shè)問怎樣用一個未知量表示另一個未知量,并比較哪種表示形式更簡單,如 等.

2.通過課本中香蕉、蘋果的應(yīng)用問題,引導學生列出一元一次方程或二元一次方程組,并通過比較、嘗試,探索出化二元為一元的解方程組的方法.

3.再通過比較、嘗試,探索出選一個系數(shù)較簡單的方程變形,通過代入法求方程組解的辦法更簡便,并尋找出求解的規(guī)律.

七、教學步驟

(-)明確目標

本節(jié)課我們將學習用代入法求二元一次方程組的解.

(二)整體感知

從復習用一個未知量表達另一個未知量的方法,從而導入運用代入法化二元為一元方程的求解過程,即利用代入消元法求二元一次方程組的解的辦法.

(三)教學步驟

1.創(chuàng)設(shè)情境,復習導入

(1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡單.

(2)選擇題:

二元一次方程組 的解是

A. B. C. D.

第(1)題為用代入法解二元一次方程組打下基礎(chǔ);第(2)題既復習了上節(jié)課的重點,又成為導入新課的材料.

通過上節(jié)課的學習,我們會檢驗一對數(shù)值是否為某個二元一次方程組的解.那么,已知一個二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來學習.

這樣導入,可以激發(fā)學生的求知欲.

2.探索新知,講授新課

香蕉的售價為5元/千克,蘋果的售價為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?

學生活動:分別列出一元一次方程和二元一次方程組,兩個學生板演.

設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得

設(shè)買了香蕉 千克,買了蘋果 千克,得

上面的一元一次方程我們會解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到 ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個方程就可以求出 了.

解:由①得: ③

把③代入②,得:

把 代入③,得:

解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識的發(fā)生過程,這對于學生知識的形成十分重要.

上面解二元一次方程組的方法,就是代入消元法.你能簡單說說用代入法解二元一次方程組的基本思路嗎?

學生活動:小組討論,選代表發(fā)言,教師進行指導.糾正后歸納:設(shè)法消去一個未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.

例1 解方程組

(1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)

(2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .

(3)求出 后代入哪個方程中求 比較簡單?(①)

學生活動:依次回答問題后,教師板書

解:把①代入②,得

把 代入①,得

如何檢驗得到的結(jié)果是否正確?

學生活動:口答檢驗.

教師:要把所得結(jié)果分別代入原方程組的每一個方程中.

給出例1后提出的三個問題,恰好是學生的思維過程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過檢驗,可使學生養(yǎng)成嚴謹認真的學習習慣.

例2 解方程組

要把某個方程化成如例1中方程①的形式后,代入另一個方程中才能消元.方程②中 的系數(shù)是1,比較簡單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.

學生活動:嘗試完成例2.

教師巡視指導,發(fā)現(xiàn)并糾正學生的問題,把書寫過程規(guī)范化.

解:由②,得 ③

把③代入①,得

把 代入③,得

檢驗后,師生共同討論:

(1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)

(2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運算簡便)

學生活動:根據(jù)例1、例2的解題過程,嘗試總結(jié)用代入法解二元一次方程組的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁,用幾個字概括每個步驟.

教師板書:

(1)變形( )

(2)代入消元( )

(3)解一元一次方程得( )

(4)把 代入 求解

練習:P13 1.(1)(2);P14 2.(1)(2).

3.變式訓練,培養(yǎng)能力

①由 可以得到用 表示 .

②在 中,當 時, ;當 時, ,則 ; .

③選擇:若 是方程組 的解,則( )

A. B. C. D.

(四)總結(jié)、擴展

1.解二元一次方程組的思想:

2.用代入法解二元一次方程組的步驟.

3.用代入法解二元一次方程組的技巧:①變形的技巧②代入的技巧.

通過這節(jié)課的學習,我們要熟練運用代入法解二元一次方程組,并能檢驗結(jié)果是否正確.

八、布置作業(yè)

(一)必做題:P15 1.(2)(4),2.(1)(2)(3)(4).

(二)選做題:P15 B組1.

二元一次方程組教案2

教學目標

1、弄懂二元一次方程、二元一次方程組和它們的解的含義,并會檢驗一對數(shù)是不是某個二元一次方程組的解;

2、學會用類比的方法遷移知識;體驗二元一次方程組在處理實際問題中的優(yōu)越性,感受數(shù)學的樂趣.

教學難點弄懂二元一次方程組解的含義。

知識重點二元一次方程、二元一次方程組及其解的含義。

教學過程(師生活動)

設(shè)計理念

創(chuàng)設(shè)情境

導入課題幻燈:古老的“雞兔同籠問題”

“今有雞兔同籠,上有三十五頭,下有九十四足.問雞、兔各幾何?”

師:這是我國古代數(shù)學著作《孫子算經(jīng)》中記載的數(shù)學名題.它曾在好幾個世紀里引起過人們的興趣,這個問題也一定會使在座的各位同學感興趣.怎樣來解答這個問題呢?

學生思考自行解答,教師巡視.最后,在學生動手動腦的基礎(chǔ)上,班級集體討論給出各種解決方案.

方案一:算術(shù)方法

把兔子都看成雞,則多出94-35×2=24只腳,每只兔子比雞多出兩只腳,故,由此可先求出兔子有24÷2=12只,

進而雞有35-12=23只.

或類似的也可以先求雞的數(shù)量.

35×4-94=46,46÷2=23

方案二:列一元一次方程解

設(shè)有x只雞,則有(35-x)只兔.根據(jù)題意,得

2x十4(35-x)=94.

(解方程略)

教師不失時機地復習一元一次方程的有關(guān)概念,“元”是指什么?“次”是指什么?以古老的數(shù)學名題引入,可以增強學生的民族自豪感,激發(fā)學好數(shù)學的感情

能用方案本來解的學生算術(shù)功底比較好,應(yīng)給予高度贊賞.

方案二既是對一元一次方程的復習與鞏固,又為二元一次方程組的引出做好鋪墊在。

分析問題(一)討論二元一次方程、二元一次方程組的概念

師:上面的問題可以用一元一次方程來解,還有其他方法嗎?(若學生想不到,教師要引導學生,要求的是兩個未知數(shù),能否設(shè)兩個未知數(shù)列方程求解呢?讓學生自己設(shè)未知數(shù),列方程)

方案三:設(shè)有x只雞,y只兔,依題意得

x+y=35,①

2x+4y=94.②

針對學生列出的這兩個方程,提出如下問題:

(1)、你能給這兩個方程起個名字嗎?

(2)為什么叫二元一次方程呢?

(3)什么樣的方程叫二元一次方程呢?

結(jié)合學生的回答,教師板書定義1:含有兩個未知數(shù),并且未知數(shù)的指數(shù)都是1的方程,叫做二元一次方程.

師:在上面的問題中,雞、兔的只數(shù)必須同時滿足①②兩個方程.把①②兩個二元一次方程結(jié)合在一起,用花括號來連接.我們也給它起個名字,叫什么好呢?

定義2:把兩個二元一次方程合在一起,就組成了一個二元一次方程組.

(二)討論二元一次方程、二元一次方程組的解的概念

探究活動:滿足x+y=35的值有哪些?請?zhí)钊氡碇校?/p>

教師啟發(fā):

(1)若不考慮此方程與上面實際問題的聯(lián)系,還可以取哪些值?

(2)你能模仿一元一次方程的解給二元一次方程的解下定義嗎?

(3)它與一元一次方程的解有什么區(qū)別?

定義3:使二元一次方程兩邊相等的兩個未知數(shù)的值,叫二元一次方程的解,記為

師:那么什么是二元一次方程組的解呢?

學生討論達成共識:二元一次方程組的解必須同時滿足方程組中的兩個方程.即:既是方程①又是方程②的解.

定義4:二元一次方程組的兩個方程的公共解叫做二元一次方程組的解.

比如:從方案一,我們知道,x=23,y=12使方程組中每一個方程成立.所以我們把x=23,y=12叫做

的解記為:

注意:二元一次方程組的解是成對出現(xiàn)的,用花括號來連接,表示“且”.

議一議:將上述“雞兔同籠”問題的三種方案進行優(yōu)劣對比,你有哪些想法呢?

引導學生利用一元一次方程進行知識的遷移與奚比,讓學生用原有的認知結(jié)構(gòu)去同化新知識,符合建構(gòu)主義理念

通過探究活動得出結(jié)論:

1、二元一次方程的解是成對出現(xiàn)的;2、二元一次方程的解有無

數(shù)多個.這與一元一次方程有顯

著的區(qū)別.

通過對比,讓學生體臉到從算術(shù)方法到代數(shù)方法是一種進步.而當我們遇到求多個未知量,而且數(shù)量關(guān)系較復雜時,列二元一次方程組比列一元一次方程容易,它大大減輕了我們的思維負擔.

鞏固新知例1下列各對數(shù)值中是二元一次方程x+2y=2的解是

ABCD

解法分析:

將A、B,C,D中各對數(shù)值逐一代人方程檢驗是否滿足方程,選A,B,C.

變式:其中是二元一次方程組解是()

解法分析:

在例1的基礎(chǔ)上,進一步檢驗A、B、C中各對值是否滿足方程2x+y=-2,使學生明確認識到二元一次方程組的解必須同時滿足兩個方程.

例2(教材102頁練習)

解答過程略

本例先檢驗二元一次方程的解,再檢臉二元一次方程組的解,符合從簡單到復雜的認知規(guī)律.使學生更深刻地理解二元一次方程組的解的概念.

目的在于培養(yǎng)分析等量關(guān)系并列方程組的能力;培養(yǎng)觀察估算能力;使學生進一步熟悉二元一次方程組及其解的概

小結(jié)提高在學生暢所欲言話收獲的基礎(chǔ)上,通過老師進行補充的方式進行.

本節(jié)課學習了哪些內(nèi)容?你有哪些收獲?

(什么叫二元一次方程?什么叫二元一次方程組?什么叫二元一次方程組的解?)發(fā)揮學生主體意識,培養(yǎng)學生歸納小結(jié)的能力。

布置作業(yè)1、必做題:教科書102頁習題8.1第1、2題.

2、選做題:教科書102頁習題8.1第3題.

3、備選題:

(1)根據(jù)下列語句,列出二元一次方程:

①甲數(shù)的一半與乙數(shù)的的和為11

②甲數(shù)和乙數(shù)的2倍的差為17

(2)方程x+2y=7在自然數(shù)范圍內(nèi)的解()

A有無數(shù)個B有一個C有兩個D有三個

(3)若mx+y=1是關(guān)于x,y的二元一次方程,那么m

的值應(yīng)是()

A.m≠OB.m=0C.m是正有理數(shù)D.m是負有理數(shù)

(4)李平和張力從學校同時出發(fā)到郊區(qū)某公園游玩,兩人從出發(fā)到回來所用的時間相同,但是,李平游玩的時間是張力騎車時間的4倍,而張力游玩的時間是李平騎車時間的5倍,請問他倆人中誰騎車的速度快?

不同層次的學生根據(jù)自身的需要選擇不同的備用題,實現(xiàn)不同的人在數(shù)學上獲得不同的發(fā)展的教學理念.

本課教育評注(課堂設(shè)計理念,實際教學效果及改進設(shè)想)

本課的設(shè)計是從提出“雞兔同籠”的求解問題人手,激發(fā)學生的學習興趣與民族自豪感,讓學生經(jīng)歷從不同角度尋求不同的解決方法的過程,體現(xiàn)出解決問題策略的多樣性,激發(fā)了學生的學習興趣.以算術(shù)的方法襯托出方程解法的優(yōu)越性,以列一元一次方程解法襯托出列二元一次方程組解法的優(yōu)越性,更使學生感到二元一次方程組的引人順理成章.

本課內(nèi)容是在學生已經(jīng)掌握了一元一次方程的基礎(chǔ)知識,初步具有提取數(shù)學信息、解決實際問題的能力后展開的.根據(jù)建構(gòu)主義理念,學生完全有能力利用自己原有的知識去同化新知識,主動地將其納人自己的知識體系中.所以本課的通篇整體設(shè)計,突出了一元一次方程的樣板作用,讓學生在類比中,主動遷移知識,建立起新的概念.使得基礎(chǔ)知識和基本技能在學生頭腦中留下較深刻的印象是很有必要的。

二元一次方程組教案3

教學目標:

1.會用加減消元法解二元一次方程組.

2.能根據(jù)方程組的特點,適當選用代入消元法和加減消元法解二元一次方程組.

3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過程,體會解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.

教學重點:

加減消元法的理解與掌握

教學難點:

加減消元法的靈活運用

教學方法:

引導探索法,學生討論交流

教學過程:

一、情境創(chuàng)設(shè)

買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價各是多少?

設(shè)蘋果汁、橙汁單價為x元,y元.

我們可以列出方程3x+2y=23

5x+2y=33

問:如何解這個方程組?

二、探索活動

活動一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?

2、這些方法與代入消元法有何異同?

3、這個方程組有何特點?

解法一:3x+2y=23①

5x+2y=33②

由①式得③

把③式代入②式

33

解這個方程得:y=4

把y=4代入③式

所以原方程組的解是x=5

y=4

解法二:3x+2y=23①

5x+2y=33②

由①—②式:

3x+2y-(5x+2y)=23-33

3x-5x=-10

解這個方程得:x=5

把x=5代入①式,

3×5+2y=23

解這個方程得y=4

所以原方程組的解是x=5

y=4

把方程組的兩個方程(或先作適當變形)相加或相減,消去其中一個未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法(eliminationbyadditionorsubtraction),簡稱加減法.

三、例題教學:

例1.解方程組x+2y=1①

3x-2y=5②

解:①+②得,4x=6

將代入①,得

解這個方程得:

所以原方程組的解是

鞏固練習(一):練一練1.(1)

例2.解方程組5x-2y=4①

2x-3y=-5②

解:①×3,得

15x-6y=12③

②×3,得

4x-6y=-10④

③—④,得:

11x=22

解這個方程得x=2

將x=2代入①,得

5×2-2y=4

解這個方程得:y=3

所以原方程組的解是x=2

y=3

鞏固練習(二):練一練1.(2)(3)(4)2.

四、思維拓展

解方程組:

五、小結(jié):

1、掌握加減消元法解二元一次方程組

2、靈活選用代入消元法和加減消元法解二元一次方程組

六、作業(yè)

習題10.31.(3)(4)2.

二元一次方程組教案4

教學目標:

1、會用代入法解二元一次方程組

2、會闡述用代入法解二元一次方程組的基本思路——通過“代入”達到“消元”的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程。

此外,在用代入法解二元一次方程組的知識發(fā)生過程中,讓學生從中體會“化未知為已知”的重要的數(shù)學思想方法。

引導性材料:

本節(jié)課,我們以上節(jié)課討論的求甲、乙騎自行車速度的問題為例,探求二元一次方程組的解法。前面我們根據(jù)問題“甲、乙騎自行車從相距60千米的兩地相向而行,經(jīng)過兩小時相遇。已知乙的速度是甲的速度的2倍,求甲、乙兩人的速度。”設(shè)甲的速度為X千米/小時,由題意可得一元一次方程2(X+2X)=60;設(shè)甲的速度為X千米/小時,乙的速度為Y千米/小時,由題意可得二元一次方程組 2(X+Y)=60

Y=2X 觀察

2(X+2X)=60與 2(X+Y)=60 ①

Y=2X ② 有沒有內(nèi)在聯(lián)系?有什么內(nèi)在聯(lián)系?

(通過較短時間的觀察,學生通常都能說出上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系——把方程①中的“Y”用“2X”去替換就可得到一元一次方程。)

知識產(chǎn)生和發(fā)展過程的教學設(shè)計

問題1:從上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系的研究中,我們可以得到什么啟發(fā)?把方程①中的“Y”用“2X”去替換,就是把方程②代入方程①,于是我們就把一個新問題(解二元一次方程組)轉(zhuǎn)化為熟悉的問題(解一元一次方程)。

解方程組 2(X+Y)=60 ①

Y=2X ②

解:把②代入①得:

2(X+2X)=60,

6X=60,

X=10

把X=10代入②,得

Y=20

因此: X=10

Y=20

問題2:你認為解方程組 2(X+Y)=60 ①

Y=2X ② 的關(guān)鍵是什么?那么解方程組

X=2Y+1

2X—3Y=4 的關(guān)鍵是什么?求出這個方程組的解。

上面兩個二元一次方程組求解的基本思路是:通過“代入”,達到消去一個未知數(shù)(即消元)的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解二元一次方程組的方法叫“代入消元法”,簡稱“代入法”。

問題3:對于方程組 2X+5Y=-21 ①

X+3Y=8 ② 能否像上述兩個二元一次方程組一樣,把方程組中的一個方程直接代入另一個方程從而消去一個未知數(shù)呢?

(說明:從學生熟悉的列一元一次方程求解兩個未知數(shù)的問題入手來研究二元一次方程組的解法,有利于學生建立新舊知識的聯(lián)系和培養(yǎng)良好的學習習慣,使學生逐步學會把一個還不會解決的問題轉(zhuǎn)化為一個已經(jīng)會解決的問題的思想方法,對后續(xù)的解三無一次方程組、一元二次方程、分式方程等,學生就有了求解的策略。)

例題解析

例:用代入法將下列解二元一次方程組轉(zhuǎn)化為解一元一次方程:

(1)X=1-Y ①

3X+2Y=5 ②

將①代入②(消去X)得:

3(1-Y)+2Y=5

(2)5X+2Y-25.2=0 ①

3X-5=Y(jié) ②

將②代入①(消去Y)得:

5X+2(3X-5)-25.2=0

(3)2X+Y=5 ①

3X+4Y=2 ②

由①得Y=5-2X,將Y=5-2X代入②消去Y得:

3X+4(5-2X)=2

(4)2S-T=3 ①

3S+2T=8 ②

由①得T=2S-3,將T=2S-3代入②消去T得:

3S+2(2S-3)=8

課內(nèi)練習:

解下列方程組。

(1)2X+5Y=-21 (2)3X-Y=2

X+3Y=8 3X=11-2Y

小結(jié):

1、用代入法解二元一次方程組的關(guān)鍵是“消元”,把新問題(解二元一次方程組)轉(zhuǎn)化為舊知識(解一元一次方程)來解決。

2、用代入法解二元一次方程組,常常選用系數(shù)較簡單的方程變形,這用利于正確、簡捷的消元。

3、用代入法解二元一次方程組,實質(zhì)是數(shù)學中常用的重要的“換元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替換,使方程②中只含有一個未知數(shù)Y。

課后作業(yè):

教科書第14頁練習題2(1)、(2)題,第15頁習題5.2A組2(1)、(2)、(4)題。

二元一次方程組教案5

教學目標:

1、使學生會借助二元一次方程組解決簡單的實際問題,讓學生再次體會二元一次方程組與現(xiàn)實生活的聯(lián)系和作用2、通過應(yīng)用題教學使學生進一步使用代數(shù)中的方程去反映現(xiàn)實世界中等量關(guān)系,體會代數(shù)方法的優(yōu)越性。

重點:能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;

難點:正確發(fā)找出問題中的兩個等量關(guān)系

教學過程:

一、復習

列方程解應(yīng)用題的步驟是什么?

審題、設(shè)未知數(shù)、列方程、解方程、檢驗并答

新課:

看一看課本99頁探究1

問題:

1題中有哪些已知量?哪些未知量?

2題中等量關(guān)系有哪些?

3如何解這個應(yīng)用題?

本題的等量關(guān)系是(1)30只母牛和15只小牛一天需用飼料為675kg

(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940

練一練:

1、某所中學現(xiàn)在有學生4200人,計劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學生將增加10%,這所學校現(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?

2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運貨多少噸?

3、某工廠第一車間比第二車間人數(shù)的少30人,如果從第二車間調(diào)出10人到第一車間,則第一車間的人數(shù)是第二車間的,問這兩車間原有多少人?

4、某運輸隊送一批貨物,計劃20天完成,實際每天多運送5噸,結(jié)果不但提前2天完成任務(wù)并多運了10噸,求這批貨物有多少噸?原計劃每天運輸多少噸?

二元一次方程組教案6

教學目標:

1使學生會借助二元一次方程組解決簡單的實際問題,讓學生再次體會二元一次方程組與現(xiàn)實生活的聯(lián)系和作用

2通過應(yīng)用題教學使學生進一步使用代數(shù)中的方程去反映現(xiàn)實世界中等量關(guān)系,體會代數(shù)方法的優(yōu)越性

3體會列方程組比列一元一次方程容易

4進一步培養(yǎng)學生化實際問題為數(shù)學問題的能力和分析問題,解決問題的能力

重點與難點:

重點:能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;

難點:正確發(fā)找出問題中的兩個等量關(guān)系

課前自主學習

1.列方程組解應(yīng)用題是把“未知”轉(zhuǎn)化為“已知”的重要方法,它的關(guān)鍵是把已知量和未知量聯(lián)系起來,找出題目中的

2.一般來說,有幾個未知量就必須列幾個方程,所列方程必須滿足:

(1)方程兩邊表示的是()量

(2)同類量的單位要()

(3)方程兩邊的數(shù)值要相符。

3.列方程組解應(yīng)用題要注意檢驗和作答,檢驗不僅要求所得的解是否( ),更重要的是要檢驗所求得的結(jié)果是否( )

4.一個籠中裝有雞兔若干只,從上面看共42個頭,從下面看共有132只腳,則雞有( ),兔有( )

新課探究

看一看

問題:

1題中有哪些已知量?哪些未知量?

2題中等量關(guān)系有哪些?

3如何解這個應(yīng)用題?

本題的等量關(guān)系是(1)()

(2)()

解:設(shè)平均每只母牛和每只小牛1天各需用飼料為xkg和ykg

根據(jù)題意列方程,得

解這個方程組得

答:每只母牛和每只小牛1天各需用飼料為( )和( ),飼料員李大叔估計每天母牛需用飼料18—20千克,每只小牛一天需用7到8千克與計算()出入。(“有”或“沒有”)

練一練:

1、某所中學現(xiàn)在有學生4200人,計劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學生將增加10%,這所學校現(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?

2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運貨多少噸?

3、某工廠第一車間比第二車間人數(shù)的少30人,如果從第二車間調(diào)出10人到第一車間,則第一車間的人數(shù)是第二車間的,問這兩車間原有多少人?

4、某運輸隊送一批貨物,計劃20天完成,實際每天多運送5噸,結(jié)果不但提前2天完成任務(wù)并多運了10噸,求這批貨物有多少噸?原計劃每天運輸多少噸?

小結(jié)

用方程組解應(yīng)用題的一般步驟是什么?

8.3實際問題與二元一次方程組(2)

教學目標:

1、經(jīng)歷用方程組解決實際問題的過程,體會方程組是刻畫現(xiàn)實世界的有效數(shù)學模型;

2、能夠找出實際問題中的已知數(shù)和未知數(shù),分析它們之間的數(shù)量關(guān)系,列出方程組;

3、學會開放性地尋求設(shè)計方案,培養(yǎng)分析問題,解決問題的能力

重點與難點:

重點:能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;

難點:正確發(fā)找出問題中的兩個等量關(guān)系

課前自主學習

1.甲乙兩人的年收入之比為4:3,支出之比為8:5,一年間兩人各存了5000元(兩人剩余的錢都存入了銀行),則甲乙兩人的年收入分別為()元和()元。

2.在一堆球中,籃球與排球之比為贊助單位又送來籃球隊10個排球10個,這時籃球與排球的數(shù)量之比為27:40,則原有籃球()個,排球()個。

3.現(xiàn)在長為18米的鋼材,要據(jù)成10段,每段長只能為1米或2米,則這個問題中的等量關(guān)系是(1)1米的段數(shù)+()=10(2)1米的鋼材總長+()=18

二元一次方程組教案7

教學目的

1.使學生了解二元一次方程,二元一次方程組的概念。

2.使學生了解二元一次方程;二元一次方程組的解的含義,會檢驗一對數(shù)是不是它們的解。

3.通過引例的教學,使學生進一步使用代數(shù)中的方程去反映現(xiàn)實世界中的等量關(guān)系,體會代數(shù)方法的優(yōu)越性。

重點:了解二元一次方程、二元一次方程組以及二元一次方程組的解的含

難點;了解二元一次方程組的解的含義。

導學提綱:

1.什么叫一元一次方程?什么叫一元一次方程的解?怎樣檢驗一個數(shù)是否是這個方程的解?

2.閱讀教材問題1思考下列問題

⑴.能否用我們已經(jīng)學過的知識來解決這個問題?

用算術(shù)法解答

用一元一次方程解答

解后反思:既然是求兩個未知量,那么能不能同時設(shè)兩個未知數(shù)?

⑵.此問題中有兩個問題如果分別設(shè)為x、y,怎樣列式呢?(完成教材中的表格)

⑶.對于方程x十y=73x+y=17請思考下列問題

①它們是一元一次方程嗎?

②這兩個方程有沒有共同特點/若有,有河共同特點?

③類比一元一次方程的概念,總結(jié)二元一次方程的概念

3.從教材中找出二元一次方程和二元一次方程組的概念(結(jié)合一元一次方程,二元一次方程對“元”和“次”作進一步的解釋)

注意二元一次方程組的書寫方式,方程組中的各方程中,同一個字母必須代表同一個量

4.與是否滿足方程①與是否滿足方程②類比一元一次方程的解總結(jié)二元一次方程組的解的概念

注意:(1)未知數(shù)的值必須同時滿足兩個方程時,才是方程組的解.若取,時,它們能滿足方程①,但不滿足方程②,所以它們不是方程組的解.

(2)二元一次方程組的解是一對數(shù),而不是一個數(shù),所以必須把與合起來,才是方程組的解.

5.思考討論在方程組①②③④

⑤⑥中,屬于二元一次方程組的有

達標檢測:

1.根據(jù)下列語句,分別設(shè)適當?shù)奈粗獢?shù),列出二元一次方程或方程組:

(1)甲數(shù)的比乙數(shù)的2倍少7:_____________________________;

(2)摩托車的時速是貨車的倍,它們的速度之和是200千米/時:________;

(3)某種時裝的價格是某種皮裝的價格的1.4倍,5件皮裝比3件時裝貴700元:______________________________.

2.下列方程是二元一次方程的是()

A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2

3.下列不是二元一次方程組的是()

x+3y=5m+3m=152x+3x=0m+n=5

A、B、C、D、

2x-3x=3+=3-5y=02m+n=6

x=2

4.在方程3x-ky=0中,如果是它的一個解,則k的值為_______.

y=-3

5.若mxy+9x+3y=-9是關(guān)于x、y的二元一次方程,則m=_______n=_______.

二元一次方程組教案8

一、教材分析

1.教材的地位和作用

本節(jié)課是華東師大版七年級數(shù)學下冊第七章《二元一次方程組》中第二節(jié)的第四課時,它是在學習了代入消元法和加減消元法的基礎(chǔ)上進行學習的。能夠靈活熟練地掌握加減消元法,在解方程組時會更簡便準確,也是為以后學習用待定系數(shù)法求一次函數(shù)、二次函數(shù)關(guān)系式打下了基礎(chǔ),特別是在聯(lián)系實際,應(yīng)用方程組解決問題方面,它會起到事半功倍的效果。

2.教學目標

(1)知識目標:進一步了解加減消元法,并能夠熟練地運用這種方法解較為復雜的二元一次方程組。

(2)能力目標:經(jīng)歷探索用“加減消元法”解二元一次方程組的過程,培養(yǎng)學生分析問題、解決問題的能力和創(chuàng)新意識。

(3)情感目標:在自由探索與合作交流的過程中,不斷讓學生體驗獲得成功的喜悅,培養(yǎng)學生的合作精神,激發(fā)學生的學習熱情,增強學生的自信心。

3.教學重點難點

教學重點:利用加減法解二元一次方程組。

教學難點:二元一次方程組加減消元法的靈活應(yīng)用。

4.教學準備:多媒體、課件。

二、學情分析

我所任教的初一(2)班學生基礎(chǔ)比較好,他們已經(jīng)具備了一定的探索能力,也初步養(yǎng)成了合作交流的習慣。大多數(shù)學生的好勝心比較強,性格比較活潑,他們希望有展現(xiàn)自我才華的機會,但是對于七年級的鄉(xiāng)鎮(zhèn)中學的學生來說,他們獨立分析問題的能力和靈活應(yīng)用的能力還有待提高,很多時候還需要教師的點撥和引導。因此,我遵循學生的認識規(guī)律,由淺入深,適時引導,調(diào)動學生的積極性,并適當?shù)亟o予表揚和鼓勵,借此增強他們的自信心。

三、教法與學法分析

說教法:啟發(fā)引導法,任務(wù)驅(qū)動法,情境教學法,演示法。

說學法:合作探究法,觀察比較法。

四.教學設(shè)計

(一)復習舊知

1、解二元一次方程組的基本思想是什么?(消元)

2、前面我們學過了哪些消元方法?(“單身”代入法、“朋友”加減法)

下列兩題可以用什么方法來求解?

2x3y=16①

X-y=3②3

學生:觀察、思考、討論和交流,然后口述解題方法。

教師:肯定、鼓勵、板書。

[設(shè)計意圖:通過復習,讓學生鞏固了相關(guān)的舊知識,同時也為本節(jié)課做了鋪墊]

(二)探究新知

1、情境導入

師:我們用代入法來解題第一步是找“單身”,用加減法來解題第一步是找“朋友”,再用同減異加的法則進行解答,那么我們一起來看一下這道題目:

問:這題能否用“單身”代入法或“朋友”加減法來求解?為什么?導入課題,板書課題。[設(shè)計意圖:利用富有挑戰(zhàn)性的問題,激發(fā)學生的好奇心和求知欲,可引發(fā)學生對問題的思考,并促進學生運用已有的知識去發(fā)現(xiàn)和獲取新的知識]

2、合作探究

(讓學生分組討論交流,主動探索出解法,教師巡視指導并肯定和鼓勵他們。)

總結(jié)解題方法:如果一個方程組中x或y的系

數(shù)不相同時,也就是說它們不是“朋友”時,先要想辦法把“陌生人”變成“朋友”。

方法一:將方程①變形后消去x。

方法二:將方程②變形后消去y。

讓學生嘗試著寫出解題過程,請兩位同學上臺展示結(jié)果,集體訂正。請做對的同學舉手,全班同學都為自己鼓鼓掌,做對的表示給自己一次祝賀,暫時還沒做對的表示給自己一次鼓勵。[設(shè)計意圖:讓學生探索這道過渡性的題目,是遵循了學生的認識規(guī)律,由淺入深,為學習下面這道例題做好準備,同時通過變“陌生人”為“朋友”這一設(shè)想過程,也培養(yǎng)了學生的創(chuàng)新意識。]

3、例題探索例5、解方程組:3x-4y=10①

5x6y=42②

師:這道題的x與y的系數(shù)有何特點?如何變成“朋友”?

(讓學生思考、分組討論、交流,教師引導并板書解題過程。)

[設(shè)計意圖:讓學生通過探討,逐步發(fā)現(xiàn)可以用加減消元法去解較為復雜的二元一次方程組,也讓他們再次體會了消元化歸的數(shù)學思想,同時也培養(yǎng)了學生分析問題和解決問題的能力。在整個探討的過程中也增強了學生的信心,學生有了發(fā)現(xiàn)的樂趣和成功的喜悅后,會產(chǎn)生一種想表現(xiàn)自己的欲望。]

4、試一試

學生完成課本第30頁的試一試,讓學生用本節(jié)課的加減消元法和前面例2的代入消元法進行比較,看一看哪種方法更簡便?

(小組之間互相交流,寫出解答過程,并請一些同學談?wù)勛约旱目捶ǎ處熣故緝煞N解題方法讓學生們進行比較。)

[設(shè)計意圖:通過對比兩種方法,使學生更清晰地掌握知識,當學生發(fā)現(xiàn)本節(jié)課的方法比例2的方法更簡便時,學生會產(chǎn)生一種用本節(jié)課的知識去解題的沖動。]

(三)反饋矯正

解方程組:

(給學生提供展現(xiàn)自我才華的機會,以前后兩桌為一個小組進行討論交流,此時可輕聲播放一首鋼琴曲,為學生創(chuàng)造一種輕松和諧的學習氛圍)

讓兩個同學上臺解題,教師巡視,并每一個組選兩名代表檢查本組同學的完成情況和及時幫助有困難的同學,待全班同學完成后,讓臺上這兩位同學試著當一下小老師,為全班同學講解自己所做的題目,教師為評委,進行點評并總結(jié),全班同學為他們鼓掌。

[設(shè)計意圖:由于學生人數(shù)較多,教師不能兼顧每個學生,所以讓學生自做自講,培養(yǎng)了學生綜合能力的同時,也活躍了課堂氣氛。選代表巡視并幫助有困難的同學,會讓學生感受到老師對他們的重視,這樣就能讓他們主動參與到課堂中來。同時也培養(yǎng)了學生的合作精神和激發(fā)了學生的學習熱情。]

(四)課堂小結(jié):學完這節(jié)課,大家有什么收獲?請同學們談?wù)剬@節(jié)課的體會。

[設(shè)計意圖:加深對本節(jié)知識的理解和記憶,培養(yǎng)學生歸納、概括能力。]

(五)布置作業(yè):

必做題:課本第31頁的練習。

選做題:

(2)

[設(shè)計意圖:進一步鞏固本節(jié)課知識的同時,也給學生留下思考的余地和空間,學生是帶著問題走進課堂,現(xiàn)在又帶著新的問題走出課堂。]

五、板書設(shè)計:二元一次方程組的解法(四)

找“朋友”——變“陌生人”為“朋友”——同減異加

例題分析習題分析

[設(shè)計意圖:為了更好地突出本節(jié)課的教學重點和讓學生更明確本節(jié)課的教學目標。]

二元一次方程組教案9

一 內(nèi)容和內(nèi)容解析

1.內(nèi)容

二元一次方程, 二元一次方程組概念

2.內(nèi)容解析

二元一次方程組是解決含有兩個提供運算未知數(shù)的問題的有力工具,也是解決后續(xù)一些數(shù)學問題的基礎(chǔ)。直接設(shè)兩個未知數(shù),列方程,方程組更加直觀,本章就從這個想法出發(fā)引入新內(nèi)容.

本節(jié)課一以引言中的問題開始,引導學生思考“問題中包含的等量關(guān)系”以及“設(shè)兩個未知數(shù)后如何用方程表示等量關(guān)系”.繼而深入探究二元一次方程, 二元一次方程組的解.

本節(jié)課的教學重點是:二元一次方程, 二元一次方程組的概念

二、目標和目標解析

1.教學目標

(1)會設(shè)兩個未知數(shù)后用方程表示等量關(guān)系列二元一次方程, 二元一次方程組.

(2)理解解二元一次方程, 二元一次方程組的解的概念.

2. 教學目標解析

(1)學生能掌握設(shè)兩個未知數(shù)后,分析問題中包含的等量關(guān)系”以及“用方程表示等量關(guān)系”.

(2)要讓學生經(jīng)歷探究的過程.體會二元一次方程組的解, 二元一次方程組的解是實際意義.

三、教學問題診斷分斷

1.學生過去已遇到二元問題,但只設(shè)一個未知數(shù),再表示出另一個未知數(shù),用一元一次方程解決. 現(xiàn)在如何引導學生設(shè)兩個未知數(shù)。需要結(jié)合實際問題進行分析。由于方程組的兩個方程中同一個未知數(shù)表示的是同一數(shù)量,通過觀察對照,可以發(fā)現(xiàn)一元一次方程向二元一次方程組轉(zhuǎn)化的思路

2.結(jié)合一元一次方程的解向二元一次方程, 二元一次方程組的解轉(zhuǎn)化,學習知識的遷移.

本節(jié)教學難點:

1.把一元向二元的轉(zhuǎn)化,設(shè)兩個未知數(shù).結(jié)合實際問題進行分析,列二元一次方程, 二元一次方程組.

2.二元一次方程組的解的意義

四、教學過程設(shè)計

1.創(chuàng)設(shè)情境,提出問題

問題1 籃球聯(lián)賽中,每場都要分出勝負,每隊勝1場得2分,負1場得1分,某隊10場比賽中得到16分,那么這個隊勝負場數(shù)分別是多少?你能用一元一次方程解決這個問題嗎?

師生活動:學生回答:能。設(shè)勝x場,負(10-x)場。根據(jù)題意,得2x+(10-x)=16

x=6,則勝6場,負4場

教師追問:你能根據(jù)兩個問題中的等量關(guān)系設(shè)兩個未知數(shù)列出二個反映題意的方程嗎?

師生活動:學生回答:能。設(shè)勝x場,負場。根據(jù)題意,得x+=10 , 2x+=16.

教師歸納:像這樣,每個方程都含有兩個未知數(shù)(x和)并且含有未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。

設(shè)計意圖:用引言的問題引人本節(jié)課內(nèi)容,先列一元一次方程解決這個問題,轉(zhuǎn)變思路,再列二元一次方程,為后面教學做好了鋪墊.

問題2:對比兩個方程,你能發(fā)現(xiàn)它們之間的關(guān)系嗎?

師生活動:通過對實際問題的分析,認識方程組中的兩個x,都是這個隊的勝,負場

數(shù),它們必須同時滿足這兩個方程,這樣,連在一起寫成

就組成了一個方程組 。這個方程組中每個方程都含有兩個未知數(shù)(x和)并且含有未知數(shù)的項的次數(shù)都是1,像這樣的方程組叫做二元一次方程組 。

設(shè)計意圖:從實際出發(fā),引入方程組的概念,切合學生的認知過程。

問題3 : 探究

滿足了方程①,且符合問題的實際意義的x,的值有哪些?把它們填入表中

x

(3) 當 =12時,x的值

師生活動:小組討論,然后每組各派一名代表上黑板完成.

設(shè)計意圖:借助本題,充分發(fā)揮學生的合作探究精神通過比較,進一步體會二元一次方程及二元一次方程的解的意義.

3加深認識,鞏固提高

練習: 一條船順流航行,每小時行20 ,逆流航行,每小時行16 .求船在靜水中的速度和水的流速。

師生活動:分兩小組討論.一組用一元一次方程解決,另一組嘗試列方程組(不要求求解),為解二元一次方程組埋下伏筆。然后每組各派一名代表上黑板完成。

設(shè)計意圖:提醒并指導學生要先分析問題的兩個未知數(shù)關(guān)系,嘗試結(jié)合題意,尋找到兩個等量關(guān)系,列方程組。體會直接設(shè)兩個未知數(shù),列方程,方程組更加直觀,

4歸納總結(jié)

師生活動:共同回顧本節(jié)課的學習過程,并回答以下問題

1.二元一次方程, 二元一次方程組的概念

2.二元一次方程, 二元一次方程組的解的概念.

3.在探究的過程中用到了哪些思想方法?

4.你還有哪些收獲?

設(shè)計意圖:通過這一活動的設(shè)計,提高學生對所學知識的遷移能力和應(yīng)用意識;培養(yǎng)學生自我歸納概括的能力.

5. 布置作業(yè)

教科書第90頁第3,4題

五、目標檢測設(shè)計

1.填表,使上下每對x,的值是方程3x+=5的解

x

2.選擇題

二元一次方程組的解為( )

A. B. C. D.

設(shè)計意圖:考查學生二元一次方程組的解的掌握情況.

二元一次方程組教案10

教學目標知識技能

1、會根據(jù)問題情境及條件列出分段計費及盈不足等問題的二元一次方程組,并能檢驗解的合理性;

2.通過解決實際問題進一步體會方程建模的過程和作用.

數(shù)學思考經(jīng)歷和體驗列方程組解決實際問題的過程,體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型.

問題解決讓學生進一步經(jīng)歷和體驗列方程組解決實際問題的過程,培養(yǎng)學生的數(shù)學應(yīng)用能力.

情感態(tài)度通過對問題的解決,進一步認識數(shù)學與現(xiàn)實世界的密切聯(lián)系,培養(yǎng)學生必要的經(jīng)濟意識,增強他們節(jié)約成本、有效合理利用資源的意識,培養(yǎng)學生的數(shù)學應(yīng)用意識,提高學習數(shù)學的趣味性、現(xiàn)實性、科學性.

教學重點抽象出數(shù)學模型,引導學生參與討論和探究問題.

教學難點將實際問題轉(zhuǎn)化成二元一次方程組的數(shù)學模型.

授課類型新授課課時

教具多媒體課件

教學活動

教學步驟師生活動設(shè)計意圖

活動一:創(chuàng)設(shè)情境導入新課

【課堂引入】1.某旅行社在黃金旅游期間為一個旅游團安排住宿,若每間宿舍住5人,則有4人住不下;若每間宿舍住6人,則有一間只住了4人,且空兩間宿舍,那么該旅游團有多少人?有多少間宿舍?圖1-3-72.上節(jié)課我們學習了列二元一次方程組解應(yīng)用題的一般步驟,并學習了行程問題,百分比問題的解決思路,這節(jié)課我們一起來學習分段計費、盈不足問題的解決方法.利用同學們熟悉的生活中的問題去激發(fā)學生學習本節(jié)課的興趣,導入課題.

活動二:實踐探究交流新知

【探究1】分段計費問題某城市規(guī)定:出租車起步價所包含的路程為0~3 km,超過3 km的部分按每千米另收費.甲說“我乘這種出租車走了11 km,付了17元.”乙說:“我乘這種出租車走了23 km,付了35元.”請你算一算:出租車的起步價是多少元?超過3 km后,每千米的車費是多少元?閱讀后思考回答:問題1:由甲乘車付費可以得到一個什么樣的等量關(guān)系?由乙乘車付費又可以得到一個什么樣的等量關(guān)系?問題2:在這兩個等量關(guān)系中,未知量有幾個?各小組成員共同討論,探討已知與未知,并探討設(shè)元的方法.問題3:你能通過設(shè)元列出二元一次方程組嗎?試試看.解:設(shè)出租車的起步價是x元,超過3 km后每千米收費y元.根據(jù)等量關(guān)系,得解得答:這種出租車的起步價是5元,超過3 km后每千米收費1.5元.歸納總結(jié):分段計費的常見等量關(guān)系是:總費用=各分段費用之和.

【探究2】盈不足問題把一些圖書分給某班學生閱讀,若每人分3本,則剩余20本;若每人分4本,則還缺25本.這個班有多少名學生?問題1:“若每人分3本,則剩余20本”,你怎樣理解這句話?如果設(shè)這個班有x名學生,根據(jù)這句話,你能用含x的代數(shù)式表示書本數(shù)嗎?同樣地,“若每人分4本,則還缺25本”又如何理解?你能用含x的代數(shù)式表示書本數(shù)嗎?問題2:你能用列一元一次方程求解這道題嗎?試試看.問題3:如果需要列二元一次方程組求解本題,你認為應(yīng)該如何設(shè)元?如何列方程組?小組內(nèi)合作,共同交流,提出各自的解法,然后討論.歸納總結(jié):盈不足問題常見的處理方法是:用一個未知數(shù)的代數(shù)式表示另一個量,再根據(jù)同一個量的兩種不同表示方法,列一元一次方程求解;也可直接列二元一次方程組求解.解法一:設(shè)這個班有x名學生.根據(jù)題意,得3x+20=4x-25.解得x=45.答:這個班共有45名學生.解法二:設(shè)這個班有x名學生,圖書一共有y本.根據(jù)題意,得解得答:這個班共有45名學生.通過合作探究,使學生初步學會設(shè)計適當?shù)膱D表,幫助理清題目中的數(shù)量關(guān)系,從而提高學生分析問題和解決問題的能力.在實際問題的解決過程中,進一步提高學生解方程組的技能.

活動三:開放訓練體現(xiàn)應(yīng)用

【應(yīng)用舉例】例1用一根繩子環(huán)繞一個圓柱形油桶,若環(huán)繞油桶3周,則繩子還多4尺;若環(huán)繞油桶4周,則繩子又少了3尺.這根繩子有多長?環(huán)繞油桶一周需要多少尺?解:設(shè)這根繩子長為x尺,環(huán)繞油桶一周需y尺.由題意,得解得答:這根繩子長為25尺,環(huán)繞油桶一周需7尺.變式訓練1.湖園中學學生志愿服務(wù)小組在“三月學雷鋒”活動中,購買了一批牛奶到敬老院慰問老人.如果送給每位老人2盒牛奶,那么剩下16盒;如果送給每位老人3盒牛奶,則正好送完.則敬老院有多少位老人?2.朵朵幼兒園的阿姨給小朋友分蘋果,如果每人3個還少3個,如果每人2個又多2個,請問共有多少個小朋友?( )A.4個B.5個C.10個D.12個3.為建設(shè)節(jié)約型、環(huán)境友好型社會,克服因干旱而造成的電力緊張困難,切實做好節(jié)能減排工作.某地決定對居民家庭用電實行“階梯電價”.電力公司規(guī)定:居民家庭每戶每月用電量在80千瓦時以下(含80千瓦時,1千瓦時俗稱1度)時,實行“基本電價”;當居民家庭每戶每月用電量超過80千瓦時時,超過部分實行“提高電價”.(1)小張家20xx年4月份用電100千瓦時,上繳電費68元;5月份用電120千瓦時,上繳電費88元.求“基本電價”和“提高電價”分別為多少元/千瓦時.(2)若6月份小張家預(yù)計用電130千瓦時,請預(yù)計小張家6月份應(yīng)上繳的電費.解:(1)設(shè)“基本電價”為x元/千瓦時,“提高電價”為y元/千瓦時.根據(jù)題意,得解得答:“基本電價”為0.6元/千瓦時,“提高電價”為1元/千瓦時.(2)80×0.6+(130-80)×1=98(元).答:預(yù)計小張家6月份上繳的電費為98元.通過應(yīng)用舉例,及時反饋學生的學習情況,并及時地查缺補漏,進一步提升教學效果.進一步體會此類問題的解決方法,并能靈活解題.

解:(2)由(1)可列方程組解得3+6=9(千米).答:他家到海濱9千米.除鞏固課堂所學知識外,也給學生創(chuàng)造了一個知識遷移及拔高的機會,使學生各抒己見,并培養(yǎng)學生分析問題、解決問題的能力.

活動四:課堂總結(jié)反思

【當堂訓練】七年級學生在會議室開會,每排座位坐12人,則有11人無處坐;每排座位坐14人,則余1人獨坐一排.這間會議室共有座位多少排(C)A.14 B.13 C.12 D.152.若某班購買一筐桃,每人分6個,則少6個,每人分5個,則多5個,則班級人數(shù)與桃數(shù)各是(B)A.22,120 B.11,60 C.10,54 D.8,423.請你閱讀下面的詩句:“棲樹一群鴉,鴉樹不知數(shù),三只棲一樹,五只沒去處,五只棲一樹,閑了一棵樹,請你仔細數(shù),鴉樹各幾何”.詩句中談到的鴉為__20__只,樹為__5__棵.練習題的設(shè)置一方面加強學生對知識的掌握,從而提高對知識的運用能力;另一方面可以查缺補漏,為以后教師的教和學生的學指明方向.

【課堂總結(jié)】布置作業(yè):1.教材P18練習T1,T2.2.教材P18習題1.3A組T3,B組T7. 布置作業(yè),專題突破.

活動四:課堂總結(jié)反思

【教學反思】

①[授課流程反思]從生活中常見的事例入手,引起學生的注意,同時也為學生今后的學習做鋪墊.

②[講授效果反思]通過設(shè)問的形式,引導學生理解題意,幫助學生分清已知和未知,掌握本課時內(nèi)容,突破難點.

③[師生互動反思]課堂上教師真正發(fā)揮學生的主體地位,特別是遇到較難解決的問題時,可讓同學們分組探究、歸納總結(jié),同時,加強學生之間的相互評價.

④[習題反思]好題題號____________________________________________錯題題號____________________________________________

二元一次方程組教案11

教學目標

知識與技能

掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。

過程與方法

能根據(jù)方程組的特點選擇合適的方法解方程組;并能把相應(yīng)問題轉(zhuǎn)化為解方程組

情感、態(tài)度與價值觀

培養(yǎng)學生分析問題,解決問題的能力,體驗學習數(shù)學的快樂。

重點:

掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。

難點:

選擇合適的方法解方程組;并能把相應(yīng)問題轉(zhuǎn)化為解方程組。

教學手段

多媒體,小組評比。

教學過程

一、知識梳理

以小組為單位討論二元一次方程組已經(jīng)學了哪些知識?

1、什么是二元一次方程?什么是二元一次方程的解?

2、什么是二元一次方程組?什么是二元一次方程組的解?

3、解二元一次方程組的基本思想是什么?消元的方法有哪些?

設(shè)計意圖:知識回顧,掌握知識要點,為順利完成練習打下基礎(chǔ)

二、基礎(chǔ)訓練

教學手段與方法:每小組必答題,答對為小組的一分,調(diào)動學習的積極性。

設(shè)計意圖:

基礎(chǔ)知識達標訓練。

教學手段與方法:

毎小組選代表講解為小組加分,充分調(diào)動學生的積極性。學生講解不到位的老師補充。

設(shè)計意圖:

對二元一次方程組解法的靈活應(yīng)用。

二元一次方程組教案12

學習目標 :會運用代入消元法解二元一次方程組.

學習重難點:

1、會用代入法解二元一次方程組。

2、靈活運用代入法的技巧.

學習過程:

一、基本概念

1、二元一次方程組中有兩個未知數(shù),如果消去其中一個未知數(shù),那么就把二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程。我們可以先求出一個未知數(shù),然后再求另一個未知數(shù),。這種將未知數(shù)的個數(shù)由多化少、逐一解決的思想,叫做____________。

2、把二元一次方程組中一個方程的一個未知數(shù)用含另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解,這種方法叫做________,簡稱_____。

3、代入消元法的步驟:

二、自學、合作、探究

1、將方程5x-6y=12變形:若用y的式子表示x,則x=______,當y=-2時,x=_______;若用含x的式子表示y,則y=______,當x=0時,y=________ 。

2、在方程2x+6y-5=0中,當3y=-4時,2x= ____________。

3、若 的解,則a=______,b=_______。

4、若方程y=1-x的解也是方程3x+2y=5的解,則x=____,y=____。

5、用代人法解方程組 ①②,把____代人____,可以消去未知數(shù)______。

6、已知方程組 的解也是方程組 的解,則a=_______,b=________ ,3a+2b=___________。

7、已知x=1和x=2都滿足關(guān)于x的方程x2+px+q=0,則p=_____,q=________ 。

8、當k=______時,方程組 的解中x與y的值相等。

9、用代入法解下列方程組:

⑴ ⑵ ⑶

二、訓練

1、方程組 的解是( )

A. B. C. D.

2、已知二元一次方程3x+4y=6,當x、y互為相反數(shù)時,x=_____,y=______;當x、y相等時,x=______,y= _______ 。

3、若2ay+5b3x與-4a2xb2-4y是同類項,則a=______,b=_______。

4、對于關(guān)于x、y的方程y=kx+b,k比b大1,且當x= 時,y= ,則k、b的值分別是( )

A. B.2,1 C.-2,1 D.-1,0

5、用代入法解下列方程組

⑴ ⑵

6、如果(5a-7b+3)2+ =0,求a與b的值。

7、已知2x2m-3n-7-3ym+3n+6=8是關(guān)于x,y的二元一次方程,求n2m

8、若方程組 與 有公共的解,求a,b.

二元一次方程組教案13

教學目標知識技能

會根據(jù)行程問題、百分比問題情境及條件,列出方程組,解行程問題及百分比問題;2.使學生掌握運用方程組解決實際問題的一般步驟.

數(shù)學思考

讓學生經(jīng)歷和體驗列方程組解決實際問題的過程,進一步體會方程組是刻畫現(xiàn)實世界的有效數(shù)學模型.

問題解決

通過列方程組解應(yīng)用題,培養(yǎng)學生的數(shù)學應(yīng)用能力,增強列方程解決實際問題的能力,進一步提高學生解二元一次方程組的技能.

情感態(tài)度

進一步豐富學生學習數(shù)學的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.

教學重點

列二元一次方程組解行程問題和百分比問題.

教學難點

根據(jù)題意找出等量關(guān)系,列出方程.

授課類型新授課課時

教具多媒體課件

(續(xù)表)

教學活動

教學步驟師生活動設(shè)計意圖

回顧問題1:解二元一次方程組的基本思想是________,解法有________.問題2:七年級上冊我們學習了列一元一次方程解應(yīng)用題,那么你還記得它的一般步驟嗎?通過復習舊知,為本節(jié)課的學習做好鋪墊,掃除知識障礙.

活動一:創(chuàng)設(shè)情境導入新課

【課堂引入】圖1-3-3《孫子算經(jīng)》大約產(chǎn)生于一千五百年前,現(xiàn)在傳本的《孫子算經(jīng)》共三卷,其中卷下第31題,可謂是后世“雞兔同籠”題的始祖,書中是這樣敘述的:“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?”問題1:“上有三十五頭”的意思是什么?“下有九十四足”呢?問題2:你能解決這個有趣的問題嗎?以數(shù)學歷史故事為背景,激發(fā)學生的愛國熱情,感受數(shù)學在生活中的應(yīng)用,吸引學生的注意力,激發(fā)學生的學習興趣,同時為本課的學習做好鋪墊.

活動二:實踐探究交流新知

【探究1】雞免同籠問題①一元一次方程解法(實物投影).解:設(shè)有雞x只,則有兔(35-x)只.根據(jù)題意,得2x+4(35-x)=94.2x+140-4x=94.-2x=-46.x=23.35-x=12.答:有雞23只,兔12只.②二元一次方程組解法(實物投影).解:設(shè)有雞x只,兔y只.根據(jù)題意,得①×2,得2x+2y=70,③②-③,得2y=24,y=12.把y=12代入①,得x=23.答:有雞23只,兔12只.你能比較兩種解法的優(yōu)劣嗎?

【探究2】行程問題情境:小琴去縣城要經(jīng)過外祖母家,第一天下午她從家走到外祖母家,第二天上午,她從外祖母家出發(fā),勻速前進,走了2小時和5小時后,離她自己家的距離分別為13千米、25千米.你能算出她的速度嗎?能算出她家與外祖母家相距多遠嗎?問題1:你能畫線段表示本題的數(shù)量關(guān)系嗎?問題2:填空:(用含s,v的代數(shù)式表示)設(shè)小琴的速度是v千米/時,她家與外祖母家相距s千米,第二天她走2小時的路程是________千米,此時她離家距離是________千米;她走5小時的路程是________千米,此時她離家的距離是________千米.

【探究3】百分比問題情境:兩塊合金,一塊含金95%,另一塊含金80%,將它們與2克純金熔合得到含金90.6%的新合金25克,計算原來兩塊合金的重量.問題1:設(shè)原來含金95%的合金為x克,含金80%的合金為y克.熔合后新合金中的含金量為25×90.6%,熔合前的總含金量為95%x+80%y+2,因此可以列出方程95%x+80%y+2=25×90.6%.問題2:兩塊合金的重量,加上2克純金的重量等于新合金的重量,據(jù)此你能列出什么樣的方程呢?引導學生體會兩種解法的優(yōu)點和不足,為學生建立方程組模型做鋪墊.對于二元一次方程組的解法,如果學生學習存在困難,可以借助微視頻講解,或者教師設(shè)計表格,幫助學生分析等量關(guān)系.

活動三:開放訓練體現(xiàn)應(yīng)用

【應(yīng)用舉例】例1甲、乙兩人都從A地到B地,甲步行,乙騎自行車,如果甲先走6千米乙再動身,則乙走0.75小時后恰好與甲同時到達B地;如果甲先走1小時,那么乙用0.5小時可追上甲,求兩人的速度及AB兩地的距離.變式訓練1.兩碼頭相距280千米,一船順流航行需14小時,逆流航行需20小時,求船在靜水中的速度和水流的速度.2.從小華家到姥姥家有一段上坡路和一段下坡路.星期天,小華騎自行車去姥姥家,如果保持上坡每小時行3 km,下坡每小時行5 km,她到姥姥家需要行66分鐘,從姥姥家回來時需要行78分鐘才能到家.那么,從小華家到姥姥家上坡路和下坡路各有多少千米,姥姥家離小華家有多遠?例2革命老區(qū)百色某芒果種植基地,去年結(jié)余500萬元,估計今年可結(jié)余960萬元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入與支出各是多少萬元.鞏固用列二元一次方程組解應(yīng)用題的思想,掌握列二元一次方程組解應(yīng)用題的方法和步驟.

【拓展提升】例3某鐵路橋長1000 m,現(xiàn)有一列火車從橋上通過,測得該火車從開始上橋到完全過橋共用了1 min,整列火車完全在橋上的時間共40 s.求火車的速度和長度.例4從甲地到乙地的路有一段上坡與一段平路,如果保持上坡每小時走3千米,平路每小時走4千米,下坡每小時走5千米.那么從甲地到乙地需54分,從乙地到甲地需42分,從甲地到乙地全程是多少千米?通過練習,使學生熟練掌握解決問題的方法,提升解決問題的能力.

活動四:課堂總結(jié)反思

【當堂訓練】1.甲、乙二人練習跑步,如果甲讓乙先跑10米,甲跑5秒鐘就可追上乙,如果甲讓乙先跑2秒鐘,那么甲跑4秒鐘就追上乙.若設(shè)甲、乙每秒鐘分別跑x米,y米,則列出方程組應(yīng)為( )A. B.C. D.2.一輪船順流航行的速度為a千米/時,逆流航行的速度為b千米/時,那么船在靜水中的速度為多少千米/時( )A.a(chǎn)+b B.(a-b) C.(a+b) D.a(chǎn)-b3.甲、乙兩人從相距36千米的兩地相向而行,如果甲比乙先走2小時,那么他們在乙出發(fā)后2.5小時相遇;如果乙比甲先走2小時,那么他們在甲出發(fā)后3小時相遇.設(shè)甲每小時走x千米,乙每小時走y千米,可列出方程組________________.通過設(shè)置當堂訓練,進一步鞏固所學新知,同時檢測學習效果,做到堂堂清.框架圖式總結(jié),更容易形成知識網(wǎng)絡(luò).

【教學反思】①[授課流程反思]通過古代的“雞兔同籠”問題,進行列二元一次方程組解決實際問題的訓練,這樣,一方面在列方程組的建模過程中,強化了方程思想,培養(yǎng)了學生列方程(組)解決實際問題的意識和應(yīng)用能力.另一方面,將解方程組的技能訓練與實際問題的解決融為一體,在實際問題的解決過程中,進一步提高學生解方程組的技能.

②[講授效果反思]通過師生互動,讓學生體會數(shù)學的實用性,掌握列方程組解應(yīng)用題的思考方法及解題步驟.

③[師生互動反思]在建立方程思想的過程中采用了循序漸進的思路,由算術(shù)方法到一元一次方程再到二元一次方程組,遵循了學生的思維梯度,逐步建立起學生用二元一次方程組解應(yīng)用題的思想,充分感受它的優(yōu)點和思維的簡化.

④[習題反思]好題題號__________________________________________錯題題號__________________________________________ 反思,更進一步提升.

活動四:課堂總結(jié)反思

二元一次方程組教案14

知識與技能

(1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;

(2) 掌握二元一 次方程組和對應(yīng)的兩條直線之間的 關(guān)系;

(3) 掌握二元一次方程組的圖像解法.

過程與方法

(1) 教材以“問題串”的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學生在自主探索中學會不同數(shù)學知識間可以互相轉(zhuǎn)化的數(shù)學思想和方法;

(2) 通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結(jié)合的意識和能力.

情感與態(tài)度

(1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.

(2) 在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.

教學重點

(1)二元一次方程和一次函數(shù)的關(guān)系;

(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.

教學難點

數(shù)形結(jié)合和數(shù)學轉(zhuǎn)化的思想意識.

教學準備

教具:多媒體課件、三角板.

學具:鉛筆、直尺、練習本、坐標紙.

教學過程

第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)

內(nèi)容:

1.方程x+y=5的解有多少個? 是這個方程的解嗎?

2.點(0,5),(5,0),(2,3)在一次函數(shù)y= 的圖像上嗎?

3.在一次函數(shù)y= 的圖像上任取一點,它的坐標適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y= 的圖像相同嗎?

由此得到本節(jié)課的第一個知識點:

二元一次方程和一次函數(shù)的圖像有如下關(guān)系:

(1) 以二元一次方程的解為坐標的點都在相應(yīng)的函數(shù)圖像上;

(2) 一次函數(shù)圖像上的點的坐標都適合相應(yīng)的二元一次方程 .

第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導學 生解決)

內(nèi)容:

1.解方程組

2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y= 和y=2x ,在同一直角坐標系內(nèi)分別作出這兩個函數(shù) 的圖像.

3.方程組的解和這兩個函數(shù)的圖像的交點坐標有什么關(guān)系?由此得到本節(jié)課的第2個知識點:二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;

(1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;

(2) 求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達式聯(lián)立的二元一次方程組的解.

(3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.

注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.

第三環(huán)節(jié) 典型例題 (10分鐘,學生獨立解決)

探究方程與函數(shù)的相互轉(zhuǎn)化

內(nèi)容:

例1 用作圖像的方法解方程組

例2 如圖,直線 與 的交點坐標是 .

第四環(huán)節(jié) 反饋練習(10分鐘,學生解決全班交流)

內(nèi)容:

1.已知一次函數(shù) 與 的圖像的交點為 ,則 .

2.已知一次函數(shù) 與 的圖像都經(jīng)過點A(—2, 0),且與 軸分別交于B,C兩點,則 的面積為.

(A)4 (B)5 (C)6 (D)7

3.求兩條直線 與 和 軸所圍成的三角形面積.

4.如圖,兩條直線 與 的交點坐標可以看作哪個方程組的解?

第五環(huán)節(jié) 課堂小結(jié)(5分鐘,師生共同總結(jié))

內(nèi)容:以“問題串”的形式,要求學生自主總結(jié)有關(guān)知識、方法:

1.二元一次方程和一 次函數(shù)的圖像的關(guān)系;

(1) 以二元一次方程的解為坐標的點都在相應(yīng)的函數(shù)圖像上;

(2) 一次函數(shù)圖像上 的點的坐標都適合相應(yīng)的二元一次方程.

2.方程組和對應(yīng)的兩條直線的關(guān)系:

(1) 方程組的解是對應(yīng)的兩條直線的交點坐標;

(2) 兩條直線的交 點坐標是對應(yīng)的方程組的解;

3.解二元一次 方程組的方法有3種:

(1)代入消元法;

(2)加減消元法;

(3)圖像法. 要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解.

第六環(huán)節(jié) 作業(yè)布置

習題7.7A組(優(yōu)等生)1、 2、3 B組(中等生)1、2 C組1、2

二元一次方程組教案15

【教學目標】

知識目標:

①使學生初步理解二元一次方程與一次函數(shù)的關(guān)系。

②能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

能力目標:

通過學生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組圖象解法,同時培養(yǎng)學生初步的數(shù)形結(jié)合的意識和能力。

情感目標:

通過學生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強新舊知識的聯(lián)系,培養(yǎng)學生的創(chuàng)新意識,激發(fā)學生學習數(shù)學的興趣。

重點要求:

1、二元一次方程和一次函數(shù)的關(guān)系。

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

難點突破:

經(jīng)歷觀察、思考、操作、探究、交流等數(shù)學活動,培養(yǎng)學生抽象思維能力,并體會方程和函數(shù)之間的對應(yīng)關(guān)系,即數(shù)形結(jié)合思想。

【教學過程】

一、學前先思

師:請同學們思考,我們已經(jīng)學過的二元一次方程組的解法有哪些?

生:代入消元法、加減消元法。

師:請你猜測還有其他的解法嗎?

生:(小聲議論,有人提出圖象解法)

師:看來的同學似乎已經(jīng)提前做了預(yù)習工作,很好!那么對于課題“二元一次方程組的圖象解法”,你想提什么問題?

生:二元一次方程組怎么會有圖象?它的圖象應(yīng)該怎樣畫?

生:二元一次方程組的圖象解法怎么做?

師:同學們都問得很好!那你有喜歡的.二元一次方程組嗎?

生:(比較害羞)

師:看來大家比較害羞,那么請大家把各自喜歡的二元一次方程組留在心里。讓我們帶著同學們提出的問題從二元一次方程開始今天的學習。

二、探究導學

題目:

判斷上面幾組解中哪些是二元一次方程的解?

生:和不是,其余各組均是方程的解。

師:請在學案上的直角坐標系中先畫出一次函數(shù)的圖象,再標出以上述的方程的解中為橫坐標,為縱坐標的點,思考:二元一次方程的解與一次函數(shù)圖象上的點有什么關(guān)系?

教學引入

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

動畫演示:

場景一:正方形折疊演示

師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

[學生活動:各自測量。]

鼓勵學生將測量結(jié)果與鄰近同學進行比較,找出共同點。

講授新課

找一兩個學生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

動畫演示:

場景二:正方形的性質(zhì)

師:這些性質(zhì)里那些是矩形的性質(zhì)?

[學生活動:尋找矩形性質(zhì)。]

動畫演示:

場景三:矩形的性質(zhì)

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學生活動;尋找菱形性質(zhì)。]

動畫演示:

場景四:菱形的性質(zhì)

師:這說明正方形具有矩形和菱形的全部性質(zhì)。

及時提出問題,引導學生進行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

[學生活動:積極思考,有同學做躍躍欲試狀。]

師:請同學們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

學生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形。”

“有一個角是直角的菱形叫做正方形。”

“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”

[學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

生:我發(fā)現(xiàn)二元一次方程的解就是相對應(yīng)的一次函數(shù)圖象上的點的坐標。

師:很好!反過來,請問:一次函數(shù)圖象上的點的坐標是否是與其相對應(yīng)的二元一次方程的解呢?

生:是的。并且二元一次方程的解中的、的值就是相對應(yīng)的一次函數(shù)圖象上點的橫、縱坐標的值。

三、鞏固基礎(chǔ)

師:非常好!那下面的題目你會解嗎?

(學生讀題)題目:方程有一個解是,則一次函數(shù)的圖象上必有一個點的坐標為______.

生:(2,1)

(學生讀題)題目:一次函數(shù)的圖象上有一個點的坐標為(3,2),則方程必有一個解是_________.

生:

師:你能把下面的二元一次方程轉(zhuǎn)化成相應(yīng)的一次函數(shù)嗎?

(學生讀題)把下列二元一次方程轉(zhuǎn)化成的形式:

(1)(2)

生:第(1)題利用移項,得到,所以

第(2)題利用移項,得到,兩邊同時除以2,所以

四、感悟提升

師:如果將和組成二元一次方程組,你能用代入消元法或者加減消元法求出它的解嗎?

生:能,我算出

師:很好!你能在同一直角坐標系中畫出一次函數(shù)與的圖象嗎?

生:可以。(動手在學案上畫圖)

師:觀察兩條直線的位置關(guān)系,你有什么發(fā)現(xiàn)?

生:我發(fā)現(xiàn)這兩條直線相交,并且交點坐標是(2,1)。

師:通過以上活動,你能得到什么結(jié)論?

生:我發(fā)現(xiàn)剛剛求出的二元一次方程的解剛好就是一次函數(shù)與的圖象的交點坐標(2,1)。

師:很好!你能抽象成一般的結(jié)論嗎?

生:如果兩個一次函數(shù)的圖象有一個交點,那么交點的坐標就是相應(yīng)的二元一次方程組的解。

師:非常好!用一次函數(shù)的圖象解二元一次方程組的方法就是我們今天要學習的二元一次方程組的圖象解法。

師:你能學以致用嗎?

y=2x-5

y=-x+1

題目:如圖,方程組的解是___________.

生:根據(jù)圖象可知:一次函數(shù)與的圖象的交點是(2,-1),因此,方程組的解是。

師:回答得真棒!

五、例題教學

例題:利用一次函數(shù)的圖象解二元一次方程組。

師:請大家在學案的做中感悟欄內(nèi)上大膽地寫出解題過程。

生:(投影展示解題過程)略。

師:很好!讓我們一起來看一下老師準備的解題過程(略)

師:你能就此歸納出二元一次方程組的圖象解法的一般步驟嗎?

生:先將二元一次方程組中的方程化成相應(yīng)的一次函數(shù),然后畫出一次函數(shù)的圖象,找出它們的交點坐標,就可以得出二元一次方程組的解。

師:非常好!我們可以用12個字的口訣來記住剛才同學的步驟:變函數(shù),畫圖象,找交點,寫結(jié)論。

師:接下來請同學們在學案上的鞏固強化欄內(nèi)利用圖象解法求出你心里埋你所喜歡的二元一次方程組的解。

生:(各自動手操作,教師展示學生求解過程)

師:觀察你作的圖象,你有什么發(fā)現(xiàn)嗎?

生:我發(fā)現(xiàn)有些一次函數(shù)圖象的交點比較容易看出來,而有些一次函數(shù)圖象的交點不容易看出來是多少。

師:是的,所以在這里老師需要說明的是我們用圖象法求解一元二次方程組的解得到的是近似解。

師:請大家比較一下,二元一次方程組的圖象解法和我們以前學過的代數(shù)解法——代入消元法、加減消元法相比,那種方法簡單一些?

生:代入消元法、加減消元法簡單。

師:二元一次方程組的圖象解法既不比代數(shù)解法簡單,且得到的解又是近似的,為什么我們還要學習這種解法呢?原因有以下幾個方面:一是要讓我們學會從多種角度思考問題,用多種方法解決問題;二是說明了“數(shù)”與“形”存在著這樣或那樣的密切聯(lián)系,有時我們要從“數(shù)”的角度去考慮“形”的問題,有時我們又要從“形”的角度去考慮“數(shù)”的問題,這里是從“形”的角度來考慮“數(shù)”的問題;三是為了以后進一步學習的需要。

師:看來大家都很愛動腦筋,那么接下來我們將例題加以變化。

六、例題變式

題目:用圖象法求解二元一次方程組時,兩條直線相交于點(2,-4),求一次函數(shù)的關(guān)系式。

師:請一位同學來分析一下。

生:由兩條直線的交點坐標(2,-4)可知,二元一次方程組的解就是,把代入到二元一次方程組中,可得:,解得,所以一次函數(shù)的關(guān)系式為。

師:非常好!

七、感悟歸納

師:再請同學們思考,如果二元一次方程組轉(zhuǎn)化成的一次函數(shù)的圖象沒有交點,那么所對應(yīng)的二元一次方程組的解是什么呢?

生:我想如果二元一次方程組轉(zhuǎn)化成的一次函數(shù)的圖象沒有交點,那么所對應(yīng)的二元一次方程組應(yīng)該無解。

八、拓寬提升

題目:不畫函數(shù)的圖象,判斷下列兩條直線是否有交點?它們的位置關(guān)系如何?每組一次函數(shù)中的有什么關(guān)系?

(1)與;

(2)與

師:你會怎樣分析這道題?

生:我們只要求解一下由這兩個一次函數(shù)所組成的二元一次方程組的解的情況就可以判斷兩條直線的位置關(guān)系。如果方程組有解,那么相應(yīng)的兩條直線就是相交,如果方程組無解,那么相應(yīng)的兩條直線就是平行的位置關(guān)系。

師:很好!抽象成一般結(jié)論怎樣敘述?

生:對于直線與,當時,兩直線平行;當時,兩直線相交。

九、例題再探

題目:利用一次函數(shù)的圖象解二元一次方程組

問:(1)這兩條直線有什么特殊的位置關(guān)系?

(2)這兩個一次函數(shù)的有何特殊的關(guān)系?

(3)由此,你能得出怎樣的結(jié)論?

師:哪位同學來嘗試一下?

生:(1)這兩條直線是垂直的位置關(guān)系;

(2)這兩個一次函數(shù)的相乘的結(jié)果等于-1;

(3)仿照剛才的結(jié)論,我得出的結(jié)論是:對于直線與,當時,兩直線垂直。

師:太棒了!那下面的這一題你會做嗎?

題目:已知直線和直線

(1)若,求的值;

(2)若,求垂足的坐標。

師:誰來試一下?

生:由前面的結(jié)論我們可以得出,如果,則,解得:;如果,則,解得,將代入二元一次方程組,可得,求出方程組的解就可以得出垂足的坐標。

十、學會創(chuàng)新

師:請你根據(jù)這節(jié)課中的例題(或習題)在學案中編(或出)一道題。看誰出的題新穎、精妙!

生:(暢所欲言,踴躍嘗試)

十一、小結(jié)與思考

師:(1)這節(jié)課你學到了什么?

(2)你還存在哪些疑問?

生:(分組討論,代表發(fā)言總結(jié))

【設(shè)計說明】

本節(jié)課的兩個知識點:二元一次方程和一次函數(shù)的關(guān)系,二元一次方程組的圖象解法對于學生來說都是難點。就本節(jié)課而言,前者較為重要,后者難度較大。確定本節(jié)課的重點為前者,是因為學生必須首先理解二元一次方程和一次函數(shù)在數(shù)與形兩方面的聯(lián)系,在此基礎(chǔ)上才能解決好后面的難點。在重難點的處理上,為了解決學生對重點的理解,用一組二元一次方程組串起一節(jié)課,加以變式,既使得學生理解了重點內(nèi)容,又為后面的難點突破留下了一定的時間和空間。本節(jié)課的教學,主要以問題為線索,注重引導學生仔細觀察、獨立思考、認真操作、分組討論、合作交流、師生互動,這對本節(jié)課的重難點的突破還是有效的,同時也體現(xiàn)了新課改提倡的學生的“自主、合作、探究”的學習方式的培養(yǎng)。另外,對利用二元一次方程組的解判斷直線的位置關(guān)系作為補充,滲透數(shù)形結(jié)合思想,也對教學目標中的情感態(tài)度和價值觀的又一方面體現(xiàn)。

【教學反思】

這節(jié)課以“回顧、先思”為先導,以“操作、思考”為手段,以“數(shù)、形結(jié)合”為要求,以“引導探究,變式拓寬”為主線,從舊知引入,自然過渡、不落痕跡。首先提出學生所熟知的二元一次方程并討論其解的情況,為后面探究二元一次方程與一次函數(shù)之間的關(guān)系作了必要的準備,結(jié)構(gòu)安排自然、緊湊。在操作中,提出問題、深化認識。一切知識來自于實踐。只有實踐,才能發(fā)現(xiàn)問題、提出問題;只有實踐,才能把握知識、深化認識。先讓學生畫出一次函數(shù)的圖象,在畫圖的過程中發(fā)現(xiàn):“以二元一次方程的解為坐標的點都在相應(yīng)的函數(shù)圖象上。”在應(yīng)用結(jié)論探索一元二次方程組的圖象解法時,也是在操作中來發(fā)現(xiàn)問題。這樣,就給了學生充分體驗、自主探索知識的機會;使他們在自主探索、合作交流中找到了快樂,深化了認識。以能力培養(yǎng)為核心,引導探究為主線,數(shù)、形結(jié)合為要求。能力培養(yǎng),特別是創(chuàng)新能力的培養(yǎng)是新課程關(guān)注的焦點。能力培養(yǎng)是以自主探究為平臺。“自主”不是一盤散沙,“探究”不是漫無邊際。要提高探究的質(zhì)量和效益必須在教師的引導下進行。為達到這一目的,教案中設(shè)計了“探究導學”、“例題變式”、“例題再探”、“學會創(chuàng)新”和“拓展提升”。新課程理念指出:教師是課程的研究者和開發(fā)者。這就要求我們:在新課程標準的指導下,認真研究教材,體會教材的編寫意圖。在此基礎(chǔ)上,設(shè)計出既體現(xiàn)課程精神,又適合本班學生實際的教學案例。本節(jié)課前半部分時間有些慢,后半部分例題再探和學會創(chuàng)新時間不夠。建議有針對性的學生板演多一點,進一步加強雙基的落實。

【同伴點評】

本節(jié)課教師創(chuàng)設(shè)問題情境,引導學生觀察、思考、操作、探究、合作交流。問題的設(shè)計層層遞進,通過問題的逐一解決,師生最終形成共識,達到了揭示二元一次方程組與一次函數(shù)的圖象關(guān)系的目的。(李曉紅)

在例題教學及學生動手嘗試時,教師在學生大膽嘗試之后給出解題過程,強調(diào)了解題的規(guī)范性,有利于培養(yǎng)學生的嚴謹認真的學習態(tài)度。同時強調(diào)了由于二元一次方程組的圖象解法得到的解往往是近似的,因此必須檢驗。教師對學習二元一次方程組的圖象解法的必要性的解釋,是非常有必要的,這一解釋解決了學生的疑惑,同時也滲透了數(shù)形結(jié)合思想,也是教學目標中的情感態(tài)度和價值觀的體現(xiàn)。對于這一解釋,相當一部分教師在這一節(jié)課中并沒有很好解決。這一處理方法值得他人借鑒。(丁葉謙)

本節(jié)課老師準備充分,教學環(huán)節(jié)緊緊相扣。授課老師充分體現(xiàn)了課題:“先思后導,變式拓寬教學設(shè)計”的精神,不斷地創(chuàng)設(shè)問題情境,引導學生學習新知,在探索二元一次方程組的圖象解法時給了學生充分體驗、自主探索知識的機會,使他們在自主探索、合作交流中找到了快樂,深化了認識。同時對例題連續(xù)的再利用,不斷變化,讓學生在變式中不斷豐富對二元一次方程組圖象解法的認識,充分認識二元一次方程組圖象解法的實用性,學會創(chuàng)新環(huán)節(jié)的設(shè)計更是極大地調(diào)動學生學習的積極性。教師教態(tài)親切,語言生動,娓娓道來。

第三篇:二元一次方程組教案

二元一次方程組教案

阜康市第四中學 方海艷

一、教學目標:

1.明確二元一次方程(組)的概念 2.正確掌握二元一次方程組的解法 3.運用二元一次方程組解決實際問題

4.進一步體會轉(zhuǎn)化思想在解二元一次方程組及實際應(yīng)用中運用

二、情感目標:

1.通過類比分析解二元一次方程組的不同方法,使學生樹立最優(yōu)解題的思想意識 2.通過建立方程模型解決實際問題,使學生深刻體會數(shù)學來源于生活,服務(wù)于生活,進一步培養(yǎng)學生的數(shù)學應(yīng)用意識,體會數(shù)學的美。

三、教學重難點

(一)教學重點: 1.正確選擇最優(yōu)方法解二元一次方程組

2.建立二元一次方程組模型解決實際問題

(二)教學難點:

能根據(jù)實際問題提供的信息準確找出等量關(guān)系,列出二元一次方程組。

四、教學過程

(一)情境引入

師:同學們你們喜歡看電視嗎?在電視上我們最多看到的是什么?(廣告)如果你是這個電視臺的臺長,你會如何安排這兩種廣告呢?

考考你:某電視臺在黃金時段的2分鐘廣告時間內(nèi),計劃插播長度為15秒和30秒的兩種廣告,若要求每種廣告播放不少于兩次,問:兩種廣告的播放次數(shù)有幾種安排方式?

師:觀察這個式子,你有什么發(fā)現(xiàn)? 考點一:概念 知識點回顧1:二元一次方程的概念

定義:含有兩個未知數(shù),并且未知數(shù)所在項的次數(shù)均為1的整式方程叫做二元一次方程。

1.下列方程中,是二元一次方程的是()

1?y?2

2x A.3x+4y=1 B.2x-3y=5 C.5xy+1=8 D.2.若5xy 與4xy 是同類項,如何求m與n?

師:觀察這個式子,和上面的有什么區(qū)別?你發(fā)現(xiàn)了什么? 知識點回顧2:二元一次方程組的概念

定義:由2個或2個以上的二元一次方程組成的方程組叫做二元一次方程組 練習: 判斷下列方程組是否為二元一次方程組

?11??1?x?1xy?1???xy B.? C.? A.?x?y?3y?21???x??2??x?2y?1?x?3?x?2y?1 E?2 D?F?2?y?2?5?y?z?8?x?2y?4師:現(xiàn)在我們已經(jīng)掌握了二元一次方程組的基本概念,那你們會解二元一次方程組嗎?現(xiàn)在我們就來練一練

考點二:解法 請你在下列方程中選擇兩個組合出你喜歡的方程組,并求出方程組的解

(1)3x+2y=13(2)x-2y=-1(3)3x-y =-2(4)2x+y=2 師:看來大家對于解方程組已經(jīng)掌握的很好了,那我們就一起來看看歷年中考是怎么靠考解方程組的?

真題演練1.(2015涼山州)已知方程組??2x?y?5,則x+y的值為()

?x?3y?5A.-1 B.0 C.2 D.3 2.(2014·廣安)如果a3xby與-a2ybx?1是同類項,則()A.??x??2?x?2?x??2?x?2 B.? C.? D.?

?y?3?y??3?y??3?y?3歸納總結(jié):(1)在二元一次方程組中,若一個未知數(shù)能很好地表示出另一個未知數(shù)時,一般采用代入法;

(2)當兩個方程中的某個未知數(shù)的系數(shù)相等或互為相反數(shù)時,或者系數(shù)均不為1時,一般采用加減消元法。

?mx?ny?7?x?2變式訓練:已知? 是二元一次方程組?的解,則m+3n為——

nx?my?1y?1??師:方程是解決實際生活的模型,我們已經(jīng)會解二元一次方程組了,那開頭我們所提出的問題你能解決嗎?

考點三:應(yīng)用

考考你:某電視臺在黃金時段的2分鐘廣告時間內(nèi),計劃插播長度為15秒和30秒的兩種廣告,15秒廣告每播一次收費0.6萬元,30秒廣告每插播一次收費1萬元,若要求每種廣告播放不少于兩次,問:

(1)兩種廣告的播放次數(shù)有幾種安排方式?(2)電視臺選擇哪種方式播放收益較大?

解:(1)設(shè)播放15秒廣告x次,播放30秒廣告y次 15 X +30y=120,化簡得 x+2y=8 ∵x,y為整數(shù),x≥2,y ≥ 2

?x?2?x?4∴? ? ?y?3?y?2(2)設(shè)播放收益為W元,當x=2,y=3時,W=4.2萬元;當x=4,y=2時,W=4.4萬元,所以15秒4次,30秒2次收益較大

師:對于單個一個二元一次方程求整數(shù)解我們已經(jīng)掌握,那么二元一次方程組的實際問題你可以解決嗎?

真題演練1.(2015江蘇南通)甲種電影票每張20元,乙種電影票每張15元.若購買甲、乙兩種電影票共40張,恰好用去700元,則甲、乙種電影票各買了多少張?

動動腦:小龍在拼圖時,發(fā)現(xiàn)8個一樣大的小長方形,恰好可以拼成一個大長方形,如圖甲所示,陳曄 看見了說“我來試一試”,結(jié)果陳曄七拼八湊,拼成一 個如圖乙的正方形,中間留下一個洞,恰好是邊長2mm的小正方形,你能算出小長方形的長和寬嗎?

甲 乙

真題演練:(2015新疆內(nèi)高班)某小區(qū)準備新建50個停車位,以解決小區(qū)停車難的問題。已知新建1個地上停車位和1個地下停車位需0.5萬元,新建3個地上停車位和2個地下停車位需1.1萬元。

(1)該小區(qū)新建1個地上停車位和1個地下停車位各需多少萬元?

(2)若該小區(qū)預(yù)計投資金額不超過11萬元且地上停車位不超過33個,則共有幾種建造方案?

中考熱點:全民戒煙已經(jīng)成為共識,為了研究吸煙是否對肺癌有影響,某腫瘤研究所隨機地調(diào)查了10000人,并進行統(tǒng)計分析.結(jié)果顯示:在吸煙者中患肺癌的比例是2.5%,在不吸煙者中患肺癌的比例是0.5%,吸煙者患肺癌的人數(shù)比不吸煙者患肺癌的人數(shù)多22人.如果設(shè)這10000人中,吸煙者患肺癌的人數(shù)為x,不吸煙者患肺癌的人數(shù)為y,根據(jù)題意,列出的方程組

師:通過練習,你能總結(jié)出列二元一次方程組解應(yīng)用題的一般步驟嗎? 列二元一次方程組解應(yīng)用題的一般步驟: 審 審清題意,找出題目中的兩個數(shù)量關(guān)系 設(shè) 用兩個字母表示問題中的兩個未知數(shù) 列 根據(jù)題意,列出方程組 解 解方程組,求出未知數(shù)的值

驗 檢驗求得的值是否正確和符合實際情形 答 寫出答案

五、課堂小結(jié)

本節(jié)課你收獲了什么?

六、作業(yè)布置

第四篇:二元一次方程組教案

二元一次方程(組)

一.二元一次方程的概念

含有兩個未知數(shù),并且兩個未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程. 判定一個方程是二元一次方程必須同時滿足三個條件: 1.方程兩邊的代數(shù)式都是整式——分母中不能含有字母; 2.有兩個未知數(shù)——“二元”;

3.含有未知數(shù)的項的最高次數(shù)為1——“一次”.

二.二元一次方程組的概念

由幾個一次方程組成并且一共含有兩個未知數(shù)的方程組叫做二元一次方程組 ..

1、下列方程中是二元一次方程的是()

312?6x?y?0 y232xy?1?0xy?3y?x?0 5?x2?2y?x?y?1?0

x2、下列屬于二元一次方程組的是()2x?3y?53x?y?z?0

x??351?xy???1???1?x?y?5??y?x?2 ?35?xy?2?22x?y?1???x?y?0??xy?1?x?y?0??x?1,??y?1?2?x?y?1,?x?2y?10,?x?y,????x?y?3?xy?4?x?2y?1a2?4|b|(a?2x),xy的二元一次方程,則?(b?1)y?13a=,b=

3、如果是關(guān)于

4、若2x2a?5??a?3?y?1是二元一次方程,求a的值.5、已知3xa?2?2y2b?5?5是二元一次方程,則a=b=.6、已知方程?m?3?xm?2?2yn?1?0是關(guān)于x、y的二元一次方程,則m?______,n?______

三.二元一次方程的解

使二元一次方程兩邊的值相等的兩個未知數(shù)的一組取值叫做二元一次方程的解.在寫二元一次方程解的時候我們用大括號聯(lián)立表示.

?x?1如:方程x?y?2的一組解為?,表明只有當x?1和y?1同時成立時,才能滿足

y?1?方程.

四.二元一次方程組的解

二元一次方程組中所有方程(一般為兩個)的公共解叫做二元一次方程組的解. ...

1、下列各組數(shù)中,_________是方程x?3y?2的解;_________是方程2x?y?9的解;?x?3y?2________是方程組?的解

2x?y?9??x??1?x?5?x?3?x?2①?;②?;③?;④??y??1?y??5?y?1?y?2

25、二元一次方程x-2y=1有無數(shù)多個解,下列四組值中不是該方程的解的是()

?x?0?A.?1

y???2?B.??x?1 ?y?1C.??x?1

?y?0D.??x??1

?y??1?x??

13、試寫出一個二元一次方程組,使它的解是?y?3,這個方程組可以是________

??x??2,4、已知?是方程x-ky=1的解,那么k=_______ y?3?x?2?mx?y?3的解,則m=_______,n=______.

5、已知?是方程組???y??1?x?ny?6五、二元一次方程組的解法-----代入消元法

代入消元法:將方程組中一個方程的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,代入另一個方程中,消去一個未知數(shù),得到一個一元一次方程,最后求得方程組的解,這種解方程組的方法叫做代入消元法.

用代入消元法解二元一次方程組的一般步驟:

(1)等量代換:從方程組中選一個系數(shù)比較簡單的方程,將這個方程中的一個未知數(shù)(例如y),用另一個未知數(shù)(如x)的代數(shù)式表示出來,即將方程寫成y?ax?b的形式;

(2)代入消元:將y?ax?b代入另一個方程中,消去y,得到一個關(guān)于x的一元一次方程;

(3)解這個一元一次方程,求出x的值;

(4)把求得的x的值代入y?ax?b中求出y的值,從而得出方程組的解; ?x?a(5)把這個方程組的解寫成?的形式.

y?b?

1、把方程7x-2y?15寫成用含x的代數(shù)式表示y的形式,得()

A.y?2x?

517B.x?15?2y

7C.y?7x?15

2D.y?15?7x

22、已知x=3t+1,y=2t-1,用含x的式子表示y,其結(jié)果是().

x?1 32x?5(C)y?

3(A)y?

y?1 2?2x?1(D)y?

3(B)x?2

??3x?4y?2①

3、用代入法解二元一次方程組?時,最好的變式是()

??2x?y?5 ②2?4y2?3xy?5A.由①得x?3 B.由①得y?

44、用代入法解下列方程組:

(1)??y(=42x ①)?2x?y?5 ②

(3)??3m?2n?6 ① ?4m?3n?1

?2x?1y?4(5)???32?25 ?1x11 ??4?8y??8

C.由②得x?2 D.由②得y?2x?5 ??x?y?4 ①?2x?y?5 ②(4)??2p?3q?13??p?5?4q

(6)??5x?2y?5a?3x?4y?3(a其中a為常數(shù))3

?m?12n?3

??x?2y??1?34(7)(8)???4m?3n?7?x:2?y:3 ?

5、若x-y+3與|2x+y|互為相反數(shù),則x+y的值為__________

6、如果ab與-ab2y123xyx+

1是同類項,則x、y分別為___________

7、如圖所示的兩臺天平保持平衡,已知每塊巧克力的質(zhì)量相等,且每個果凍的質(zhì)量也相等,則每塊巧克力和每個果凍的質(zhì)量分別為__________

8、如圖是一個正方體的展開圖,標注了字母a的面是正方體的正面,如果正方體相對兩個面上的代數(shù)式的值相等,則a,x,y的值_______________________

9、若方程組? ?x?y?7,則3?x?y???3x﹣5y?的值是

?3x?5y??3 4

10、若|x-y-1|+(2x-3y+4)2=0,則x=______,y=______.

11、二元一次方程組?

12、小亮解方程組?了兩個數(shù)

?4x?3y?7的解x,y的值相等,求k.

kx?(k?1)y?3??2x?y??x?5的解為?,由于不小心,滴上了兩滴墨水,剛好遮住

?y?#?2x?y?12??和▲,請你幫他找回▲這個數(shù),▲=

????Ax+By=2,?x=1,?x=2,13、甲、乙兩人共同解方程組?甲正確解得?乙抄錯C,解得?

????Cx-3y=-2,?y=-1,?y=-6,求A,B,C的值.

?x??3? ax?5y?15 ①變式:已知方程組 由于甲看錯了方程①中的得到方程組的解為;乙看錯了方程②a??4x?by??2  ②? ?y??1?x?5中的b得到方程組的解為?,若按正確的a、b計算,求原方程組的解.y?4?

14、關(guān)于x、y的二元一次方程組??x?y?5k的解也是二元一次方程2x?3y?6的解,則

?x?y?9kk的值是.變式:如果關(guān)于x、y的方程組?

?x?2y?7?k的解滿足3x+y=5,求k的值。

?2x?y?8?2k?x?y?3?x?my?2?

15、若方程組?x?y?1與方程組?同解,則m=。

?nx?y?

3?x?y?6?x?ay?3變式:如果關(guān)于x、y的方程組 的解與 的解相同,求a、b的???ax?2y?b?x?y?8值。

第五篇:二元一次方程組教案

二元一次方程組教案1

學習目標 :會運用代入消元法解二元一次方程組.

學習重難點:

1、會用代入法解二元一次方程組。

2、靈活運用代入法的技巧.

學習過程:

一、基本概念

1、二元一次方程組中有兩個未知數(shù),如果消去其中一個未知數(shù),那么就把二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程。我們可以先求出一個未知數(shù),然后再求另一個未知數(shù),。這種將未知數(shù)的個數(shù)由多化少、逐一解決的思想,叫做____________。

2、把二元一次方程組中一個方程的一個未知數(shù)用含另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解,這種方法叫做________,簡稱_____。

3、代入消元法的步驟:

二、自學、合作、探究

1、將方程5x-6y=12變形:若用y的式子表示x,則x=______,當y=-2時,x=_______;若用含x的.式子表示y,則y=______,當x=0時,y=________ 。

2、在方程2x+6y-5=0中,當3y=-4時,2x= ____________。

3、若 的解,則a=______,b=_______。

4、若方程y=1-x的解也是方程3x+2y=5的解,則x=____,y=____。

5、用代人法解方程組 ①②,把____代人____,可以消去未知數(shù)______。

6、已知方程組 的解也是方程組 的解,則a=_______,b=________ ,3a+2b=___________。

7、已知x=1和x=2都滿足關(guān)于x的方程x2+px+q=0,則p=_____,q=________ 。

8、當k=______時,方程組 的解中x與y的值相等。

9、用代入法解下列方程組:

⑴ ⑵ ⑶

二、訓練

1、方程組 的解是( )

A. B. C. D.

2、已知二元一次方程3x+4y=6,當x、y互為相反數(shù)時,x=_____,y=______;當x、y相等時,x=______,y= _______ 。

3、若2ay+5b3x與-4a2xb2-4y是同類項,則a=______,b=_______。

4、對于關(guān)于x、y的方程y=kx+b,k比b大1,且當x= 時,y= ,則k、b的值分別是( )

A. B.2,1 C.-2,1 D.-1,0

5、用代入法解下列方程組

⑴ ⑵

6、如果(5a-7b+3)2+ =0,求a與b的值。

7、已知2x2m-3n-7-3ym+3n+6=8是關(guān)于x,y的二元一次方程,求n2m

8、若方程組 與 有公共的解,求a,b.

二元一次方程組教案2

教學目標

1、弄懂二元一次方程、二元一次方程組和它們的解的含義,并會檢驗一對數(shù)是不是某個二元一次方程組的解;

2、學會用類比的方法遷移知識;體驗二元一次方程組在處理實際問題中的優(yōu)越性,感受數(shù)學的樂趣.

教學難點弄懂二元一次方程組解的含義。

知識重點二元一次方程、二元一次方程組及其解的含義。

教學過程(師生活動)

設(shè)計理念

創(chuàng)設(shè)情境

導入課題幻燈:古老的“雞兔同籠問題”

“今有雞兔同籠,上有三十五頭,下有九十四足.問雞、兔各幾何?”

師:這是我國古代數(shù)學著作《孫子算經(jīng)》中記載的數(shù)學名題.它曾在好幾個世紀里引起過人們的興趣,這個問題也一定會使在座的各位同學感興趣.怎樣來解答這個問題呢?

學生思考自行解答,教師巡視.最后,在學生動手動腦的基礎(chǔ)上,班級集體討論給出各種解決方案.

方案一:算術(shù)方法

把兔子都看成雞,則多出94-35×2=24只腳,每只兔子比雞多出兩只腳,故,由此可先求出兔子有24÷2=12只,

進而雞有35-12=23只.

或類似的也可以先求雞的數(shù)量.

35×4-94=46,46÷2=23

方案二:列一元一次方程解

設(shè)有x只雞,則有(35-x)只兔.根據(jù)題意,得

2x十4(35-x)=94.

(解方程略)

教師不失時機地復習一元一次方程的有關(guān)概念,“元”是指什么?“次”是指什么?以古老的數(shù)學名題引入,可以增強學生的民族自豪感,激發(fā)學好數(shù)學的感情

能用方案本來解的學生算術(shù)功底比較好,應(yīng)給予高度贊賞.

方案二既是對一元一次方程的復習與鞏固,又為二元一次方程組的引出做好鋪墊在。

分析問題(一)討論二元一次方程、二元一次方程組的概念

師:上面的問題可以用一元一次方程來解,還有其他方法嗎?(若學生想不到,教師要引導學生,要求的是兩個未知數(shù),能否設(shè)兩個未知數(shù)列方程求解呢?讓學生自己設(shè)未知數(shù),列方程)

方案三:設(shè)有x只雞,y只兔,依題意得

x+y=35,①

2x+4y=94.②

針對學生列出的這兩個方程,提出如下問題:

(1)、你能給這兩個方程起個名字嗎?

(2)為什么叫二元一次方程呢?

(3)什么樣的方程叫二元一次方程呢?

結(jié)合學生的`回答,教師板書定義1:含有兩個未知數(shù),并且未知數(shù)的指數(shù)都是1的方程,叫做二元一次方程.

師:在上面的問題中,雞、兔的只數(shù)必須同時滿足①②兩個方程.把①②兩個二元一次方程結(jié)合在一起,用花括號來連接.我們也給它起個名字,叫什么好呢?

定義2:把兩個二元一次方程合在一起,就組成了一個二元一次方程組.

(二)討論二元一次方程、二元一次方程組的解的概念

探究活動:滿足x+y=35的值有哪些?請?zhí)钊氡碇校?/p>

教師啟發(fā):

(1)若不考慮此方程與上面實際問題的聯(lián)系,還可以取哪些值?

(2)你能模仿一元一次方程的解給二元一次方程的解下定義嗎?

(3)它與一元一次方程的解有什么區(qū)別?

定義3:使二元一次方程兩邊相等的兩個未知數(shù)的值,叫二元一次方程的解,記為

師:那么什么是二元一次方程組的解呢?

學生討論達成共識:二元一次方程組的解必須同時滿足方程組中的兩個方程.即:既是方程①又是方程②的解.

定義4:二元一次方程組的兩個方程的公共解叫做二元一次方程組的解.

比如:從方案一,我們知道,x=23,y=12使方程組中每一個方程成立.所以我們把x=23,y=12叫做

的解記為:

注意:二元一次方程組的解是成對出現(xiàn)的,用花括號來連接,表示“且”.

議一議:將上述“雞兔同籠”問題的三種方案進行優(yōu)劣對比,你有哪些想法呢?

引導學生利用一元一次方程進行知識的遷移與奚比,讓學生用原有的認知結(jié)構(gòu)去同化新知識,符合建構(gòu)主義理念

通過探究活動得出結(jié)論:

1、二元一次方程的解是成對出現(xiàn)的;2、二元一次方程的解有無

數(shù)多個.這與一元一次方程有顯

著的區(qū)別.

通過對比,讓學生體臉到從算術(shù)方法到代數(shù)方法是一種進步.而當我們遇到求多個未知量,而且數(shù)量關(guān)系較復雜時,列二元一次方程組比列一元一次方程容易,它大大減輕了我們的思維負擔.

鞏固新知例1下列各對數(shù)值中是二元一次方程x+2y=2的解是

ABCD

解法分析:

將A、B,C,D中各對數(shù)值逐一代人方程檢驗是否滿足方程,選A,B,C.

變式:其中是二元一次方程組解是()

解法分析:

在例1的基礎(chǔ)上,進一步檢驗A、B、C中各對值是否滿足方程2x+y=-2,使學生明確認識到二元一次方程組的解必須同時滿足兩個方程.

例2(教材102頁練習)

解答過程略

本例先檢驗二元一次方程的解,再檢臉二元一次方程組的解,符合從簡單到復雜的認知規(guī)律.使學生更深刻地理解二元一次方程組的解的概念.

目的在于培養(yǎng)分析等量關(guān)系并列方程組的能力;培養(yǎng)觀察估算能力;使學生進一步熟悉二元一次方程組及其解的概

小結(jié)提高在學生暢所欲言話收獲的基礎(chǔ)上,通過老師進行補充的方式進行.

本節(jié)課學習了哪些內(nèi)容?你有哪些收獲?

(什么叫二元一次方程?什么叫二元一次方程組?什么叫二元一次方程組的解?)發(fā)揮學生主體意識,培養(yǎng)學生歸納小結(jié)的能力。

布置作業(yè)1、必做題:教科書102頁習題8.1第1、2題.

2、選做題:教科書102頁習題8.1第3題.

3、備選題:

(1)根據(jù)下列語句,列出二元一次方程:

①甲數(shù)的一半與乙數(shù)的的和為11

②甲數(shù)和乙數(shù)的2倍的差為17

(2)方程x+2y=7在自然數(shù)范圍內(nèi)的解()

A有無數(shù)個B有一個C有兩個D有三個

(3)若mx+y=1是關(guān)于x,y的二元一次方程,那么m

的值應(yīng)是()

A.m≠OB.m=0C.m是正有理數(shù)D.m是負有理數(shù)

(4)李平和張力從學校同時出發(fā)到郊區(qū)某公園游玩,兩人從出發(fā)到回來所用的時間相同,但是,李平游玩的時間是張力騎車時間的4倍,而張力游玩的時間是李平騎車時間的5倍,請問他倆人中誰騎車的速度快?

不同層次的學生根據(jù)自身的需要選擇不同的備用題,實現(xiàn)不同的人在數(shù)學上獲得不同的發(fā)展的教學理念.

本課教育評注(課堂設(shè)計理念,實際教學效果及改進設(shè)想)

本課的設(shè)計是從提出“雞兔同籠”的求解問題人手,激發(fā)學生的學習興趣與民族自豪感,讓學生經(jīng)歷從不同角度尋求不同的解決方法的過程,體現(xiàn)出解決問題策略的多樣性,激發(fā)了學生的學習興趣.以算術(shù)的方法襯托出方程解法的優(yōu)越性,以列一元一次方程解法襯托出列二元一次方程組解法的優(yōu)越性,更使學生感到二元一次方程組的引人順理成章.

本課內(nèi)容是在學生已經(jīng)掌握了一元一次方程的基礎(chǔ)知識,初步具有提取數(shù)學信息、解決實際問題的能力后展開的.根據(jù)建構(gòu)主義理念,學生完全有能力利用自己原有的知識去同化新知識,主動地將其納人自己的知識體系中.所以本課的通篇整體設(shè)計,突出了一元一次方程的樣板作用,讓學生在類比中,主動遷移知識,建立起新的概念.使得基礎(chǔ)知識和基本技能在學生頭腦中留下較深刻的印象是很有必要的。

二元一次方程組教案3

教學目標

知識與技能

掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。

過程與方法

能根據(jù)方程組的特點選擇合適的方法解方程組;并能把相應(yīng)問題轉(zhuǎn)化為解方程組

情感、態(tài)度與價值觀

培養(yǎng)學生分析問題,解決問題的能力,體驗學習數(shù)學的快樂。

重點:

掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。

難點:

選擇合適的方法解方程組;并能把相應(yīng)問題轉(zhuǎn)化為解方程組。

教學手段

多媒體,小組評比。

教學過程

一、知識梳理

以小組為單位討論二元一次方程組已經(jīng)學了哪些知識?

1、什么是二元一次方程?什么是二元一次方程的解?

2、什么是二元一次方程組?什么是二元一次方程組的`解?

3、解二元一次方程組的基本思想是什么?消元的方法有哪些?

設(shè)計意圖:知識回顧,掌握知識要點,為順利完成練習打下基礎(chǔ)

二、基礎(chǔ)訓練

教學手段與方法:每小組必答題,答對為小組的一分,調(diào)動學習的積極性。

設(shè)計意圖:

基礎(chǔ)知識達標訓練。

教學手段與方法:

毎小組選代表講解為小組加分,充分調(diào)動學生的積極性。學生講解不到位的老師補充。

設(shè)計意圖:

對二元一次方程組解法的靈活應(yīng)用。

二元一次方程組教案4

一 內(nèi)容和內(nèi)容解析

1.內(nèi)容

二元一次方程, 二元一次方程組概念

2.內(nèi)容解析

二元一次方程組是解決含有兩個提供運算未知數(shù)的問題的有力工具,也是解決后續(xù)一些數(shù)學問題的基礎(chǔ)。直接設(shè)兩個未知數(shù),列方程,方程組更加直觀,本章就從這個想法出發(fā)引入新內(nèi)容.

本節(jié)課一以引言中的問題開始,引導學生思考“問題中包含的等量關(guān)系”以及“設(shè)兩個未知數(shù)后如何用方程表示等量關(guān)系”.繼而深入探究二元一次方程, 二元一次方程組的解.

本節(jié)課的教學重點是:二元一次方程, 二元一次方程組的概念

二、目標和目標解析

1.教學目標

(1)會設(shè)兩個未知數(shù)后用方程表示等量關(guān)系列二元一次方程, 二元一次方程組.

(2)理解解二元一次方程, 二元一次方程組的解的概念.

2. 教學目標解析

(1)學生能掌握設(shè)兩個未知數(shù)后,分析問題中包含的等量關(guān)系”以及“用方程表示等量關(guān)系”.

(2)要讓學生經(jīng)歷探究的過程.體會二元一次方程組的解, 二元一次方程組的解是實際意義.

三、教學問題診斷分斷

1.學生過去已遇到二元問題,但只設(shè)一個未知數(shù),再表示出另一個未知數(shù),用一元一次方程解決. 現(xiàn)在如何引導學生設(shè)兩個未知數(shù)。需要結(jié)合實際問題進行分析。由于方程組的兩個方程中同一個未知數(shù)表示的是同一數(shù)量,通過觀察對照,可以發(fā)現(xiàn)一元一次方程向二元一次方程組轉(zhuǎn)化的思路

2.結(jié)合一元一次方程的解向二元一次方程, 二元一次方程組的解轉(zhuǎn)化,學習知識的遷移.

本節(jié)教學難點:

1.把一元向二元的轉(zhuǎn)化,設(shè)兩個未知數(shù).結(jié)合實際問題進行分析,列二元一次方程, 二元一次方程組.

2.二元一次方程組的解的意義

四、教學過程設(shè)計

1.創(chuàng)設(shè)情境,提出問題

問題1 籃球聯(lián)賽中,每場都要分出勝負,每隊勝1場得2分,負1場得1分,某隊10場比賽中得到16分,那么這個隊勝負場數(shù)分別是多少?你能用一元一次方程解決這個問題嗎?

師生活動:學生回答:能。設(shè)勝x場,負(10-x)場。根據(jù)題意,得2x+(10-x)=16

x=6,則勝6場,負4場

教師追問:你能根據(jù)兩個問題中的等量關(guān)系設(shè)兩個未知數(shù)列出二個反映題意的方程嗎?

師生活動:學生回答:能。設(shè)勝x場,負場。根據(jù)題意,得x+=10 , 2x+=16.

教師歸納:像這樣,每個方程都含有兩個未知數(shù)(x和)并且含有未知數(shù)的項的次數(shù)都是1的`方程叫做二元一次方程。

設(shè)計意圖:用引言的問題引人本節(jié)課內(nèi)容,先列一元一次方程解決這個問題,轉(zhuǎn)變思路,再列二元一次方程,為后面教學做好了鋪墊.

問題2:對比兩個方程,你能發(fā)現(xiàn)它們之間的關(guān)系嗎?

師生活動:通過對實際問題的分析,認識方程組中的兩個x,都是這個隊的勝,負場

數(shù),它們必須同時滿足這兩個方程,這樣,連在一起寫成

就組成了一個方程組 。這個方程組中每個方程都含有兩個未知數(shù)(x和)并且含有未知數(shù)的項的次數(shù)都是1,像這樣的方程組叫做二元一次方程組 。

設(shè)計意圖:從實際出發(fā),引入方程組的概念,切合學生的認知過程。

問題3 : 探究

滿足了方程①,且符合問題的實際意義的x,的值有哪些?把它們填入表中

x

(3) 當 =12時,x的值

師生活動:小組討論,然后每組各派一名代表上黑板完成.

設(shè)計意圖:借助本題,充分發(fā)揮學生的合作探究精神通過比較,進一步體會二元一次方程及二元一次方程的解的意義.

3加深認識,鞏固提高

練習: 一條船順流航行,每小時行20 ,逆流航行,每小時行16 .求船在靜水中的速度和水的流速。

師生活動:分兩小組討論.一組用一元一次方程解決,另一組嘗試列方程組(不要求求解),為解二元一次方程組埋下伏筆。然后每組各派一名代表上黑板完成。

設(shè)計意圖:提醒并指導學生要先分析問題的兩個未知數(shù)關(guān)系,嘗試結(jié)合題意,尋找到兩個等量關(guān)系,列方程組。體會直接設(shè)兩個未知數(shù),列方程,方程組更加直觀,

4歸納總結(jié)

師生活動:共同回顧本節(jié)課的學習過程,并回答以下問題

1.二元一次方程, 二元一次方程組的概念

2.二元一次方程, 二元一次方程組的解的概念.

3.在探究的過程中用到了哪些思想方法?

4.你還有哪些收獲?

設(shè)計意圖:通過這一活動的設(shè)計,提高學生對所學知識的遷移能力和應(yīng)用意識;培養(yǎng)學生自我歸納概括的能力.

5. 布置作業(yè)

教科書第90頁第3,4題

五、目標檢測設(shè)計

1.填表,使上下每對x,的值是方程3x+=5的解

x

2.選擇題

二元一次方程組的解為( )

A. B. C. D.

設(shè)計意圖:考查學生二元一次方程組的解的掌握情況.

二元一次方程組教案5

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

代入消元法解二元一次方程組

2.內(nèi)容解析

二元一次方程組是解決含有兩個提供運算未知數(shù) 的問題的有力工具,也是解決后續(xù)一些數(shù)學問題的基礎(chǔ)。其解法將為解決這些問題的工具。如用待定系數(shù)法求一次函數(shù)解析式,

在平面直角坐標系中求兩直線交點坐標等.

解二元一次方程組就是要把二元化為一元。而化歸的方法就是代入消元法,這一方法同樣是解三元一次方程組的基本思路,是通法。化歸思想在本節(jié)中有很好的體現(xiàn)。

本節(jié)課的教學重點是:會用代入消元法解一些簡單的二元一次方程組,體會解二元一次方程組的思路是消元.

二、目標和目標解析

1.教學目標

(1)會用代入消元法解一些簡單的二元一次方程組

(2)理解解二元一次方程組的思路是消元,體會化歸思想

2.教學目標解析

(1)學生能掌握代入消元法解一些簡單的二元一次方程組的一般步驟,并能正確求出簡單的二元一次方程組的解,

(2)要讓學生經(jīng)歷探究的過程.體會二元一次方程組的解法與一元一次方程的解法的關(guān)系,進一步體會消元思想和化歸思想

三、教學問題診斷分析

1.學生第一次遇到二元問題,為什么要向一元轉(zhuǎn)化,如何進行轉(zhuǎn)化。需要結(jié)合實際問題進行分析。由于方程組的兩個方程中同一個未知數(shù)表示的是同一數(shù)量,通過觀察對照,可以發(fā)現(xiàn)二元一次方程組向 一元一次方程轉(zhuǎn)化的思路

2.解二元一次方程組的'步驟多,每一步需要理解每一步的目的和依據(jù),正確進行操作,把探究過程分解細化,逐一實施。

本節(jié)教學難點理:把二元向一元的轉(zhuǎn)化,掌握代入消元法解二元一次方程組的一般步驟。

四、教學過程設(shè)計

1.創(chuàng)設(shè)情境,提出問題

問題1

籃球聯(lián)賽中,每場都要分出勝負,每隊勝1場得2分,負1場得1分,某隊10場比賽中得到16分,那么這個隊勝負場數(shù)分別是多少?你能用一元一次方程解決這個問題嗎?

師生活動:學生回答:能。設(shè)勝x場,負(10-x)場。根據(jù)題意,得2x+(10-x)=16

x=6,則勝6場,負4場

教師追問:你能根據(jù)問題中的等量關(guān)系列出二元一次方程組嗎?

師生活動:學生回答:能.設(shè)勝x場,負y場.根據(jù)題意,得

我們在上節(jié)課,通過列表找公共解的方法得到了這個方程組的解,x=6,y=4.顯然這樣的方法需要一個個嘗試,有些麻煩,能不能像解一元一次方程那樣來求出方程組的解呢?

這節(jié)課我們就來探究如何解二元一次方程組.

設(shè)計意圖:用引言的問題引人本節(jié)課內(nèi)容,先列一元一次方程解決這個問題,再二元一次方程組,為后面教學做好了鋪墊.

問題2 對比方程和方程組,你能發(fā)現(xiàn)它們之間的關(guān)系嗎?

師生活動:通過對實際問題的分析,認識方程組中的兩個y都是這個隊的負場數(shù),由此可以由一個方程得到y(tǒng)的表達式,并把它代入另一個方程,變二元為一元,把陌生知識轉(zhuǎn)化為熟悉的知識。

師生活動:根據(jù)上面分析,你們會解這個方程組了嗎?

學生回答:會.

由①,得y=10-x ③

把③代入②,得2x+(10-x)=16 x=6

設(shè)計意圖:共同探究,體會消元的過程.

問題3 教師追問:你能把③代入①嗎?試一試?

師生活動:學生回答:不能,通過嘗試,x抵消了.

設(shè)計意圖:由于方程③是由方程①,得來的,它不能又代回到它本身。讓學生實際操作,得到體驗,更好地認識這一點.

教師追問:你能求y的值嗎?

師生活動:學生回答:把x=6代入③得y=4

教師追問:還能代入別的方程嗎?

學生回答:能,但是沒有代入③簡便

教師追問:你能寫出這個方程組的解,并給出問題的答案嗎?

學生回答:x=6,y=4,這個隊勝6場,負4場

設(shè)計意圖:讓學生考慮求另一個未知數(shù)的過程,并如何優(yōu)化解法。

師生活動:先讓學生獨立思考,再追問.在這種解法中,哪一步最關(guān)鍵?為什么?

學生回答:代入這一步

教師總結(jié):這種方法叫代入消元法。

教師追問:你能先消x嗎?

學生紛紛動手完成。

設(shè)計意圖:讓學生嘗試不同的代入消元法,為后面學習選擇簡單的代入方法做鋪墊.

2. 應(yīng)用新知,拓展思維

例 用代入法解二元一次方程組

師生活動,把學生分兩組,一組先消x, 一組先消y,然后每組各派一名代表上黑板完成。

設(shè)計意圖:借助本題,充分發(fā)揮學生的合作探究精神,通過比較,讓學生自主認識代入消元法,并學會優(yōu)選解法.

3.加深認識,鞏固提高

練習用代入法解二元一次方程組

設(shè)計意圖:提醒并指導學生要先分析方程組的結(jié)構(gòu)特征,學會優(yōu)選解法。在練習的基礎(chǔ)上熟練用代入消元法解二元一次方程組.

4.歸納總結(jié),知識升華

師生活動,共同回顧本節(jié)課的學習過程,并回答以下問題

1. 代入消元法解二元一次方程組有哪些步驟?

2. 解二元一次方程組的基本思路是什么?

3.在探究解法的過程中用到了哪些思想方法?

4.你還有哪些收獲?

設(shè)計意圖:通過這一活動的設(shè)計,提高學生對所學知識的遷移能力和應(yīng)用意識;培養(yǎng)學生自我歸納概括的能力.

5. 布置作業(yè)

教科書第93頁第2題

五、目標檢測設(shè)計

用代入法解下列二元一次方程組

設(shè)計意圖:考查學生對代入法解二元一次方程組的掌握情況.

二元一次方程組教案6

知識要點

1、二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是一次的整式方程叫做~

2、二元一次方程的解:適合二元一次方程的一組未知數(shù)的值叫做這個二元一次方程的一個解;

3、二元一次方程組:由幾個一次方程組成并含有兩個未知數(shù)的方程組叫做二元一次方程組

4、二元一次方程組的解:適合二元一次方程組里各個方程的一對未知數(shù)的值,叫做這個方程組里各個方程的公共解,也叫做這個方程組的解(注意:①書寫方程組的`解時,必需用“”把各個未知數(shù)的值連在一起,即寫成的形式;②一元方程的解也叫做方程的根,但是方程組的解只能叫解,不能叫根)

5、解方程組:求出方程組的解或確定方程組沒有解的過程叫做解方程組

6、解二元一次方程組的基本方法是代入消元法和加減消元法(簡稱代入法和加減法)

(1)代入法解題步驟:把方程組里的一個方程變形,用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù);把這個代數(shù)式代替另一個方程中相應(yīng)的未知數(shù),得到一個一元一次方程,可先求出一個未知數(shù)的值;把求得的這個未知數(shù)的值代入第一步所得的式子中,可求得另一個未知數(shù)的值,這樣就得到了方程的解

(2)加減法解題步驟:把方程組里一個(或兩個)方程的兩邊都乘以適當?shù)臄?shù),使兩個方程里的某一個未知數(shù)的系數(shù)的絕對值相等;把所得到的兩個方程的兩邊分別相加(或相減),消去一個未知數(shù),得到含另一個未知數(shù)的一元一次方程(以下步驟與代入法相同)

一、例題精講

分別用代入法和加減法解方程組

解:代入法:由方程②得:③

將方程③代入方程①得:

解得x=2

將x=2代入方程②得:4-3y=1

解得y=1

所以方程組的解為

加減法:

例2.從少先隊夏令營到學校,先下山再走平路,一少先隊員騎自行車以每小時12公里的速度下山,以每小時9公里的速度通過平路,到學校共用了55分鐘,回來時,通過平路速度不變,但以每小時6公里的速度上山,回到營地共花去了1小時10分鐘,問夏令營到學校有多少公里?

分析:路程分為兩段,平路和坡路,來回路程不變,只是上山和下山的轉(zhuǎn)變導致時間的不同,所以設(shè)平路長為x公里,坡路長為y公里,表示時間,利用兩個不同的過程列兩個方程,組成方程組

解:設(shè)平路長為x公里,坡路長為y公里

依題意列方程組得:

解這個方程組得:

經(jīng)檢驗,符合題意

x+y=9

答:夏令營到學校有9公里二、課堂小結(jié):

回顧本章內(nèi)容,總結(jié)二元一次方程組的解法和應(yīng)用。

三、作業(yè)布置:

P25A組習題

二元一次方程組教案7

教學目標

1.使學生會用加減法解二元一次方程組。

2.學生通過解決問題,了解代入法與加減法的共性及個性。

重點:探尋用加減法解二元一次的方程組的進程。

難點:消元轉(zhuǎn)化的過程

教學方法:講練結(jié)合、探索交流課型新授課教具投影儀

教師活動:學生活動

情景設(shè)置:

小明買了兩份水果,一份是3kg蘋果、2kg香蕉,共用去13.2元;另一份是2kg蘋果、5kg香蕉,共用去19.8元。設(shè)蘋果x元/kg,香蕉y元/kg.列出方程。

新課講解:

列出方程組

1.解方程組

分析:關(guān)鍵的出方程〈1〉中的2y與方程〈2〉中的-2y互為相反數(shù)。想象出如果相加兩個方程,會是什么結(jié)果?

板演:

解:〈1〉+〈2〉得:

4x=6

x=

把x= 代入〈1〉得

+2y=1

解出這個方程,得

y=

所以原方程組的解是

2.解方程組

通過議一議,讓學生都有感覺消去含x或y的.項都可以,但哪個更簡便?

解:〈1〉 3,得

15x-6y=12 〈3〉

〈2〉 2,得

4x-6y=-10 〈4〉

〈3〉-〈4〉,得

11x=22

x=2

將x=2代入〈1〉,得

5 2-2y=4

y=3

所以原方程組的解是

加減消元法:把方程組的兩個防城(或先作適當變形)相加或相減,消去其中一個未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程。

練一練:

解方程組

小結(jié):

加減消元法關(guān)鍵是如何消元,化二元為一元。

先觀察后確定消元。

教學素材:

A組題:解下列方程組:

(1)

(2)

(3)

(4)

(5)

B組題:運用轉(zhuǎn)化的思想方法,你能解下面的三元一次方程組嗎?

(1)

(2)

學生讀題,議一議

學生想一想,如感到困難則看道簡單題。

由學生觀察,如何求出x,y的值,學生再討論。

試一試。學生口述。

老師板演

得到一元一次方程

學生再觀察,議一議

①消去哪個未知數(shù)

②怎樣消去?

P112 1(1)(2)(3)(4)

作業(yè)習題11.3 P112 1(3)(4) 3 , 4

二元一次方程組教案8

教學目標:

1.會用加減消元法解二元一次方程組.

2.能根據(jù)方程組的特點,適當選用代入消元法和加減消元法解二元一次方程組.

3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的'轉(zhuǎn)化過程,體會解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.

教學重點:

加減消元法的理解與掌握

教學難點:

加減消元法的靈活運用

教學方法:

引導探索法,學生討論交流

教學過程:

一、情境創(chuàng)設(shè)

買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價各是多少?

設(shè)蘋果汁、橙汁單價為x元,y元.

我們可以列出方程3x+2y=23

5x+2y=33

問:如何解這個方程組?

二、探索活動

活動一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?

2、這些方法與代入消元法有何異同?

3、這個方程組有何特點?

解法一:3x+2y=23①

5x+2y=33②

由①式得③

把③式代入②式

33

解這個方程得:y=4

把y=4代入③式

所以原方程組的解是x=5

y=4

解法二:3x+2y=23①

5x+2y=33②

由①—②式:

3x+2y-(5x+2y)=23-33

3x-5x=-10

解這個方程得:x=5

把x=5代入①式,

3×5+2y=23

解這個方程得y=4

所以原方程組的解是x=5

y=4

把方程組的兩個方程(或先作適當變形)相加或相減,消去其中一個未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法(eliminationbyadditionorsubtraction),簡稱加減法.

三、例題教學:

例1.解方程組x+2y=1①

3x-2y=5②

解:①+②得,4x=6

將代入①,得

解這個方程得:

所以原方程組的解是

鞏固練習(一):練一練1.(1)

例2.解方程組5x-2y=4①

2x-3y=-5②

解:①×3,得

15x-6y=12③

②×3,得

4x-6y=-10④

③—④,得:

11x=22

解這個方程得x=2

將x=2代入①,得

5×2-2y=4

解這個方程得:y=3

所以原方程組的解是x=2

y=3

鞏固練習(二):練一練1.(2)(3)(4)2.

四、思維拓展

解方程組:

五、小結(jié):

1、掌握加減消元法解二元一次方程組

2、靈活選用代入消元法和加減消元法解二元一次方程組

六、作業(yè)

習題10.31.(3)(4)2.

二元一次方程組教案9

教學目標

1.使學生會用代入消元法解二元一次方程組;

2.理解代入消元法的基本思想體現(xiàn)的“化未知為已知”,“變陌生為熟悉”的化歸思想方法;

3.在本節(jié)課的教學過程中,逐步滲透樸素的辯證唯物主義思想.

教學重點和難點

重點:用代入法解二元一次方程組.

難點:代入消元法的基本思想.

課堂教學過程設(shè)計

一、從學生原有的認知結(jié)構(gòu)提出問題

1.誰能造一個二元一次方程組?為什么你造的方程組是二元一次方程組?

2.誰能知道上述方程組(指學生提出的方程組)的解是什么?什么叫二元一次方程組的解?

3.上節(jié)課我們提出了雞兔同籠問題:(投影)一個農(nóng)民有若干只雞和兔子,它們共有50個頭和140只腳,問雞和兔子各有多少?設(shè)農(nóng)民有x只雞,y只兔,則得到二元一次方程組

對于列出的這個二元一次方程組,我們?nèi)绾吻蟪鏊慕饽兀?學生思考)教師引導并提出問題:若設(shè)有x只雞,則兔子就有(50-x)只,依題意,得2x+4(50-x)= 140從而可解得,x=30,50-x=20,使問題得解.

問題:從上面一元一次方程解法過程中,你能得出二元一次方程組串問題,進一步引導學生找出它的解法) (1)在一元一次方程解法中,列方程時所用的等量關(guān)系是什么?(2)該等量關(guān)系中,雞數(shù)與兔子數(shù)的表達式分別含有幾個未知數(shù)?(3)前述方程組中方程②所表示的等量關(guān)系與用一元一次方程表示的等量關(guān)系是否相同?

(4)能否由方程組中的方程②求解該問題呢?

(5)怎樣使方程②中含有的兩個未知數(shù)變?yōu)橹缓幸粋€未知數(shù)呢?(以上問題,要求學生獨立思考,想出消元的方法)結(jié)合學生的回答,教師作出講解.

由方程①可得y=50-x③,即兔子數(shù)y用雞數(shù)x的代數(shù)式50-x表示,由于方程②中的y與方程①中的y都表示兔子的只數(shù),故可以把方程②中的y用(50-x)來代換,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30.

將x=30代入方程③,得y=20.

即雞有30只,兔有20只.

本節(jié)課,我們來學習二元一次方程組的解法.

二、講授新課例1解方程組

分析:若此方程組有解,則這兩個方程中同一個未知數(shù)就應(yīng)取相同的值.因此,方程②中的y就可用方程①中的表示y的代數(shù)式來代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.

(本題應(yīng)以教師講解為主,并板書,同時教師在最后應(yīng)提醒學生,與解一元一次方程一樣,要判斷運算的結(jié)果是否正確,需檢驗.其方法是將所求得的一對未知數(shù)的值分別代入原方程組里的.每一個方程中,看看方程的左、右兩邊是否相等.檢驗可以口算,也可以在草稿紙上驗算)教師講解完例1后,結(jié)合板書,就本題解法及步驟提出以下問題:1.方程①代入哪一個方程?其目的是什么?2.為什么能代入?

3.只求出一個未知數(shù)的值,方程組解完了嗎?

4.把已求出的未知數(shù)的值,代入哪個方程來求另一個未知數(shù)的值較簡便?在學生回答完上述問題的基礎(chǔ)上,教師指出:這種通過代入消去一個未知數(shù),使二元方程轉(zhuǎn)化為一元方程,從而方程組得以求解的方法叫做代入消元法,簡稱代入法.例2解方程組

分析:例1是用y=1-x直接代入②的.例2的兩個方程都不具備這樣的條件(即用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù)),所以不能直接代入.為此,我們需要想辦法創(chuàng)造條件,把一個方程變形為用含x的代數(shù)式表示y(或含y的代數(shù)式表示x).那么選用哪個方程變形較簡便呢?通過觀察,發(fā)現(xiàn)方程②中x的系數(shù)為1,因此,可先將方程②變形,用含有y的代數(shù)式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(問:能否代入②中?)

2(8-3y)+5y=-21,-y=-37,所以y=37.

(問:本題解完了嗎?把y=37代入哪個方程求x較簡單?)把y=37代入③,得x= 8-3×37,所以x=-103.

(本題可由一名學生口述,教師板書完成)

三、課堂練習(投影)用代入法解下列方程組:

四、師生共同小結(jié)

在與學生共同回顧了本節(jié)課所學內(nèi)容的基礎(chǔ)上,教師著重指出,因為方程組在有解的前提下,兩個方程中同一個未知數(shù)所表示的是同一個數(shù)值,故可以用它的等量代換,即使“代入”成為可能.而代入的目的就是為了消元,使二元方程轉(zhuǎn)化為一元方程,從而使問題最終得到解決.

五、作業(yè)

用代入法解下列方程組:

5.x+3y=3x+2y=7.

二元一次方程組教案10

教學目標知識技能

會根據(jù)行程問題、百分比問題情境及條件,列出方程組,解行程問題及百分比問題;2.使學生掌握運用方程組解決實際問題的一般步驟.

數(shù)學思考

讓學生經(jīng)歷和體驗列方程組解決實際問題的過程,進一步體會方程組是刻畫現(xiàn)實世界的有效數(shù)學模型.

問題解決

通過列方程組解應(yīng)用題,培養(yǎng)學生的數(shù)學應(yīng)用能力,增強列方程解決實際問題的能力,進一步提高學生解二元一次方程組的技能.

情感態(tài)度

進一步豐富學生學習數(shù)學的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.

教學重點

列二元一次方程組解行程問題和百分比問題.

教學難點

根據(jù)題意找出等量關(guān)系,列出方程.

授課類型新授課課時

教具多媒體課件

(續(xù)表)

教學活動

教學步驟師生活動設(shè)計意圖

回顧問題1:解二元一次方程組的基本思想是________,解法有________.問題2:七年級上冊我們學習了列一元一次方程解應(yīng)用題,那么你還記得它的一般步驟嗎?通過復習舊知,為本節(jié)課的學習做好鋪墊,掃除知識障礙.

活動一:創(chuàng)設(shè)情境導入新課

【課堂引入】圖1-3-3《孫子算經(jīng)》大約產(chǎn)生于一千五百年前,現(xiàn)在傳本的《孫子算經(jīng)》共三卷,其中卷下第31題,可謂是后世“雞兔同籠”題的始祖,書中是這樣敘述的:“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?”問題1:“上有三十五頭”的意思是什么?“下有九十四足”呢?問題2:你能解決這個有趣的.問題嗎?以數(shù)學歷史故事為背景,激發(fā)學生的愛國熱情,感受數(shù)學在生活中的應(yīng)用,吸引學生的注意力,激發(fā)學生的學習興趣,同時為本課的學習做好鋪墊.

活動二:實踐探究交流新知

【探究1】雞免同籠問題①一元一次方程解法(實物投影).解:設(shè)有雞x只,則有兔(35-x)只.根據(jù)題意,得2x+4(35-x)=94.2x+140-4x=94.-2x=-46.x=23.35-x=12.答:有雞23只,兔12只.②二元一次方程組解法(實物投影).解:設(shè)有雞x只,兔y只.根據(jù)題意,得①×2,得2x+2y=70,③②-③,得2y=24,y=12.把y=12代入①,得x=23.答:有雞23只,兔12只.你能比較兩種解法的優(yōu)劣嗎?

【探究2】行程問題情境:小琴去縣城要經(jīng)過外祖母家,第一天下午她從家走到外祖母家,第二天上午,她從外祖母家出發(fā),勻速前進,走了2小時和5小時后,離她自己家的距離分別為13千米、25千米.你能算出她的速度嗎?能算出她家與外祖母家相距多遠嗎?問題1:你能畫線段表示本題的數(shù)量關(guān)系嗎?問題2:填空:(用含s,v的代數(shù)式表示)設(shè)小琴的速度是v千米/時,她家與外祖母家相距s千米,第二天她走2小時的路程是________千米,此時她離家距離是________千米;她走5小時的路程是________千米,此時她離家的距離是________千米.

【探究3】百分比問題情境:兩塊合金,一塊含金95%,另一塊含金80%,將它們與2克純金熔合得到含金90.6%的新合金25克,計算原來兩塊合金的重量.問題1:設(shè)原來含金95%的合金為x克,含金80%的合金為y克.熔合后新合金中的含金量為25×90.6%,熔合前的總含金量為95%x+80%y+2,因此可以列出方程95%x+80%y+2=25×90.6%.問題2:兩塊合金的重量,加上2克純金的重量等于新合金的重量,據(jù)此你能列出什么樣的方程呢?引導學生體會兩種解法的優(yōu)點和不足,為學生建立方程組模型做鋪墊.對于二元一次方程組的解法,如果學生學習存在困難,可以借助微視頻講解,或者教師設(shè)計表格,幫助學生分析等量關(guān)系.

活動三:開放訓練體現(xiàn)應(yīng)用

【應(yīng)用舉例】例1甲、乙兩人都從A地到B地,甲步行,乙騎自行車,如果甲先走6千米乙再動身,則乙走0.75小時后恰好與甲同時到達B地;如果甲先走1小時,那么乙用0.5小時可追上甲,求兩人的速度及AB兩地的距離.變式訓練1.兩碼頭相距280千米,一船順流航行需14小時,逆流航行需20小時,求船在靜水中的速度和水流的速度.2.從小華家到姥姥家有一段上坡路和一段下坡路.星期天,小華騎自行車去姥姥家,如果保持上坡每小時行3 km,下坡每小時行5 km,她到姥姥家需要行66分鐘,從姥姥家回來時需要行78分鐘才能到家.那么,從小華家到姥姥家上坡路和下坡路各有多少千米,姥姥家離小華家有多遠?例2革命老區(qū)百色某芒果種植基地,去年結(jié)余500萬元,估計今年可結(jié)余960萬元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入與支出各是多少萬元.鞏固用列二元一次方程組解應(yīng)用題的思想,掌握列二元一次方程組解應(yīng)用題的方法和步驟.

【拓展提升】例3某鐵路橋長1000 m,現(xiàn)有一列火車從橋上通過,測得該火車從開始上橋到完全過橋共用了1 min,整列火車完全在橋上的時間共40 s.求火車的速度和長度.例4從甲地到乙地的路有一段上坡與一段平路,如果保持上坡每小時走3千米,平路每小時走4千米,下坡每小時走5千米.那么從甲地到乙地需54分,從乙地到甲地需42分,從甲地到乙地全程是多少千米?通過練習,使學生熟練掌握解決問題的方法,提升解決問題的能力.

活動四:課堂總結(jié)反思

【當堂訓練】1.甲、乙二人練習跑步,如果甲讓乙先跑10米,甲跑5秒鐘就可追上乙,如果甲讓乙先跑2秒鐘,那么甲跑4秒鐘就追上乙.若設(shè)甲、乙每秒鐘分別跑x米,y米,則列出方程組應(yīng)為( )A. B.C. D.2.一輪船順流航行的速度為a千米/時,逆流航行的速度為b千米/時,那么船在靜水中的速度為多少千米/時( )A.a(chǎn)+b B.(a-b) C.(a+b) D.a(chǎn)-b3.甲、乙兩人從相距36千米的兩地相向而行,如果甲比乙先走2小時,那么他們在乙出發(fā)后2.5小時相遇;如果乙比甲先走2小時,那么他們在甲出發(fā)后3小時相遇.設(shè)甲每小時走x千米,乙每小時走y千米,可列出方程組________________.通過設(shè)置當堂訓練,進一步鞏固所學新知,同時檢測學習效果,做到堂堂清.框架圖式總結(jié),更容易形成知識網(wǎng)絡(luò).

【教學反思】①[授課流程反思]通過古代的“雞兔同籠”問題,進行列二元一次方程組解決實際問題的訓練,這樣,一方面在列方程組的建模過程中,強化了方程思想,培養(yǎng)了學生列方程(組)解決實際問題的意識和應(yīng)用能力.另一方面,將解方程組的技能訓練與實際問題的解決融為一體,在實際問題的解決過程中,進一步提高學生解方程組的技能.

②[講授效果反思]通過師生互動,讓學生體會數(shù)學的實用性,掌握列方程組解應(yīng)用題的思考方法及解題步驟.

③[師生互動反思]在建立方程思想的過程中采用了循序漸進的思路,由算術(shù)方法到一元一次方程再到二元一次方程組,遵循了學生的思維梯度,逐步建立起學生用二元一次方程組解應(yīng)用題的思想,充分感受它的優(yōu)點和思維的簡化.

④[習題反思]好題題號__________________________________________錯題題號__________________________________________ 反思,更進一步提升.

活動四:課堂總結(jié)反思

二元一次方程組教案11

知識與技能

(1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;

(2) 掌握二元一 次方程組和對應(yīng)的兩條直線之間的 關(guān)系;

(3) 掌握二元一次方程組的圖像解法.

過程與方法

(1) 教材以“問題串”的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學生在自主探索中學會不同數(shù)學知識間可以互相轉(zhuǎn)化的數(shù)學思想和方法;

(2) 通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結(jié)合的意識和能力.

情感與態(tài)度

(1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.

(2) 在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.

教學重點

(1)二元一次方程和一次函數(shù)的關(guān)系;

(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.

教學難點

數(shù)形結(jié)合和數(shù)學轉(zhuǎn)化的思想意識.

教學準備

教具:多媒體課件、三角板.

學具:鉛筆、直尺、練習本、坐標紙.

教學過程

第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)

內(nèi)容:

1.方程x+y=5的解有多少個? 是這個方程的解嗎?

2.點(0,5),(5,0),(2,3)在一次函數(shù)y= 的'圖像上嗎?

3.在一次函數(shù)y= 的圖像上任取一點,它的坐標適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y= 的圖像相同嗎?

由此得到本節(jié)課的第一個知識點:

二元一次方程和一次函數(shù)的圖像有如下關(guān)系:

(1) 以二元一次方程的解為坐標的點都在相應(yīng)的函數(shù)圖像上;

(2) 一次函數(shù)圖像上的點的坐標都適合相應(yīng)的二元一次方程 .

第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導學 生解決)

內(nèi)容:

1.解方程組

2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y= 和y=2x ,在同一直角坐標系內(nèi)分別作出這兩個函數(shù) 的圖像.

3.方程組的解和這兩個函數(shù)的圖像的交點坐標有什么關(guān)系?由此得到本節(jié)課的第2個知識點:二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;

(1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;

(2) 求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達式聯(lián)立的二元一次方程組的解.

(3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.

注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.

第三環(huán)節(jié) 典型例題 (10分鐘,學生獨立解決)

探究方程與函數(shù)的相互轉(zhuǎn)化

內(nèi)容:

例1 用作圖像的方法解方程組

例2 如圖,直線 與 的交點坐標是 .

第四環(huán)節(jié) 反饋練習(10分鐘,學生解決全班交流)

內(nèi)容:

1.已知一次函數(shù) 與 的圖像的交點為 ,則 .

2.已知一次函數(shù) 與 的圖像都經(jīng)過點A(—2, 0),且與 軸分別交于B,C兩點,則 的面積為.

(A)4 (B)5 (C)6 (D)7

3.求兩條直線 與 和 軸所圍成的三角形面積.

4.如圖,兩條直線 與 的交點坐標可以看作哪個方程組的解?

第五環(huán)節(jié) 課堂小結(jié)(5分鐘,師生共同總結(jié))

內(nèi)容:以“問題串”的形式,要求學生自主總結(jié)有關(guān)知識、方法:

1.二元一次方程和一 次函數(shù)的圖像的關(guān)系;

(1) 以二元一次方程的解為坐標的點都在相應(yīng)的函數(shù)圖像上;

(2) 一次函數(shù)圖像上 的點的坐標都適合相應(yīng)的二元一次方程.

2.方程組和對應(yīng)的兩條直線的關(guān)系:

(1) 方程組的解是對應(yīng)的兩條直線的交點坐標;

(2) 兩條直線的交 點坐標是對應(yīng)的方程組的解;

3.解二元一次 方程組的方法有3種:

(1)代入消元法;

(2)加減消元法;

(3)圖像法. 要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解.

第六環(huán)節(jié) 作業(yè)布置

習題7.7A組(優(yōu)等生)1、2、3 B組(中等生)1、2 C組1、2

二元一次方程組教案12

教學目標

1.會列二元一次方程組解簡單的應(yīng)用題并能檢驗結(jié)果的合理性。

2.提高分析問題、解決問題的能力。

3.體會數(shù)學的應(yīng)用價值。

教學重點

根據(jù)實際問題列二元一次方程組。

教學難點

1.找實際問題中的相等關(guān)系。

2.徹底理解題意。

教學過程

一、引入。

本節(jié)課我們繼續(xù)學習用二元一次方程組解決簡單實際問題。

二、新課。

例1. 小琴去縣城,要經(jīng)過外祖母家,頭一天下午從她家走到個祖母家里,第二天上午,從外外祖母家出發(fā)勻速前進,走了2小時、5小時后,離她自己家分別為13千米、25千米。你能算出她的'速度嗎?還能算出她家與外祖母家相距多遠嗎?

探究: 1. 你能畫線段表示本題的數(shù)量關(guān)系嗎?

2.填空:(用含S、V的代數(shù)式表示)

設(shè)小琴速度是V千米/時,她家與外祖母家相距S千米,第二天她走2小時趟的路程是______千米。此時她離家距離是______千米;她走5小時走的路程是______千米,此時她離家的距離是________千米20xx年-20xx學年七年級數(shù)學下冊全冊教案(人教版)教案。

3.列方程組。

4.解方程組。

5.檢驗寫出答案。

討論:本題是否還有其它解法?

三、練習。

1.建立方程模型。

(1)兩在相距280千米,一般順流航行需14小時,逆流航行需20小時,求船在靜水中速度,水流的速度

(2)420個零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個零件?

2.P38練習第2題。

3.小組合作編應(yīng)用題:兩個寫一方程組,另兩人根據(jù)方程組編應(yīng)用題。

四、小結(jié)。

本節(jié)課你有何收獲?

二元一次方程組教案13

教學目標:

1、會用代入法解二元一次方程組

2、會闡述用代入法解二元一次方程組的基本思路——通過“代入”達到“消元”的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程。

此外,在用代入法解二元一次方程組的知識發(fā)生過程中,讓學生從中體會“化未知為已知”的重要的數(shù)學思想方法。

引導性材料:

本節(jié)課,我們以上節(jié)課討論的求甲、乙騎自行車速度的問題為例,探求二元一次方程組的解法。前面我們根據(jù)問題“甲、乙騎自行車從相距60千米的兩地相向而行,經(jīng)過兩小時相遇。已知乙的速度是甲的速度的2倍,求甲、乙兩人的速度。”設(shè)甲的速度為X千米/小時,由題意可得一元一次方程2(X+2X)=60;設(shè)甲的速度為X千米/小時,乙的速度為Y千米/小時,由題意可得二元一次方程組 2(X+Y)=60

Y=2X 觀察

2(X+2X)=60與 2(X+Y)=60 ①

Y=2X ② 有沒有內(nèi)在聯(lián)系?有什么內(nèi)在聯(lián)系?

(通過較短時間的觀察,學生通常都能說出上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系——把方程①中的“Y”用“2X”去替換就可得到一元一次方程。)

知識產(chǎn)生和發(fā)展過程的教學設(shè)計

問題1:從上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系的研究中,我們可以得到什么啟發(fā)?把方程①中的“Y”用“2X”去替換,就是把方程②代入方程①,于是我們就把一個新問題(解二元一次方程組)轉(zhuǎn)化為熟悉的.問題(解一元一次方程)。

解方程組 2(X+Y)=60 ①

Y=2X ②

解:把②代入①得:

2(X+2X)=60,

6X=60,

X=10

把X=10代入②,得

Y=20

因此: X=10

Y=20

問題2:你認為解方程組 2(X+Y)=60 ①

Y=2X ② 的關(guān)鍵是什么?那么解方程組

X=2Y+1

2X—3Y=4 的關(guān)鍵是什么?求出這個方程組的解。

上面兩個二元一次方程組求解的基本思路是:通過“代入”,達到消去一個未知數(shù)(即消元)的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解二元一次方程組的方法叫“代入消元法”,簡稱“代入法”。

問題3:對于方程組 2X+5Y=-21 ①

X+3Y=8 ② 能否像上述兩個二元一次方程組一樣,把方程組中的一個方程直接代入另一個方程從而消去一個未知數(shù)呢?

(說明:從學生熟悉的列一元一次方程求解兩個未知數(shù)的問題入手來研究二元一次方程組的解法,有利于學生建立新舊知識的聯(lián)系和培養(yǎng)良好的學習習慣,使學生逐步學會把一個還不會解決的問題轉(zhuǎn)化為一個已經(jīng)會解決的問題的思想方法,對后續(xù)的解三無一次方程組、一元二次方程、分式方程等,學生就有了求解的策略。)

例題解析

例:用代入法將下列解二元一次方程組轉(zhuǎn)化為解一元一次方程:

(1)X=1-Y ①

3X+2Y=5 ②

將①代入②(消去X)得:

3(1-Y)+2Y=5

(2)5X+2Y-25.2=0 ①

3X-5=Y(jié) ②

將②代入①(消去Y)得:

5X+2(3X-5)-25.2=0

(3)2X+Y=5 ①

3X+4Y=2 ②

由①得Y=5-2X,將Y=5-2X代入②消去Y得:

3X+4(5-2X)=2

(4)2S-T=3 ①

3S+2T=8 ②

由①得T=2S-3,將T=2S-3代入②消去T得:

3S+2(2S-3)=8

課內(nèi)練習:

解下列方程組。

(1)2X+5Y=-21 (2)3X-Y=2

X+3Y=8 3X=11-2Y

小結(jié):

1、用代入法解二元一次方程組的關(guān)鍵是“消元”,把新問題(解二元一次方程組)轉(zhuǎn)化為舊知識(解一元一次方程)來解決。

2、用代入法解二元一次方程組,常常選用系數(shù)較簡單的方程變形,這用利于正確、簡捷的消元。

3、用代入法解二元一次方程組,實質(zhì)是數(shù)學中常用的重要的“換元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替換,使方程②中只含有一個未知數(shù)Y。

課后作業(yè):

教科書第14頁練習題2(1)、(2)題,第15頁習題5.2A組2(1)、(2)、(4)題。

二元一次方程組教案14

教學目標:

1. 認識二元一次方程和二元一次方程組.

2. 了解二元一次方程和二元一次方程組的解,會求二元一次方程的正整數(shù)解.

教學重點:

理解二元一次方程組的解的意義.

教學難點:

求二元一次方程的正整數(shù)解.

教學過程:

籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝一場得2分.負一場得1分,某隊為了爭取較好的名次,想在全部22場比賽中得到40分,那么這個隊勝負場數(shù)分別是多少?

思考:

這個問題中包含了哪些必須同時滿足的條件?設(shè)勝的場數(shù)是x,負的場數(shù)是y,你能用方程把這些條件表示出來嗎?

由問題知道,題中包含兩個必須同時滿足的條件:

勝的場數(shù)+負的場數(shù)=總場數(shù),

勝場積分+負場積分=總積分.

這兩個條件可以用方程

x+y=22

2x+y=40

表示.

上面兩個方程中,每個方程都含有兩個未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程.

把兩個方程合在一起,寫成

x+y=22

2x+y=40

像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組.

探究:

滿足方程①,且符合問題的實際意義的x、y的值有哪些?把它們填入表中.

x

y

上表中哪對x、y的值還滿足方程②

一般地,使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解.

二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解.

例1 (1)方程(a+2)x +(b-1)y = 3是二元一次方程,試求a、b的.取值范圍.

(2)方程x∣a∣ – 1+(a-2)y = 2是二元一次方程,試求a的值.

例2 若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程.求m、n的值

例3 已知下列三對值:

x=-6 x=10 x=10

y=-9 y=-6 y=-1

(1) 哪幾對數(shù)值使方程 x-y=6的左、右兩邊的值相等?

(2) 哪幾對數(shù)值是方程組 的解?

例4 求二元一次方程3x+2y=19的正整數(shù)解.

課堂練習:

教科書第102頁練習

習題8.1 1、2題

作業(yè):

教科書第102頁3、4、5題

二元一次方程組教案15

教學目標

1.會用加減法解一般地二元一次方程組。

2.進一步理解解方程組的消元思想,滲透轉(zhuǎn)化思想。

3.增強克服困難的勇力,提高學習興趣。

教學重點

把方程組變形后用加減法消元。

教學難點

根據(jù)方程組特點對方程組變形。

教學過程

一、復習引入

用加減消元法解方程組。

二、新課。

1.思考如何解方程組(用加減法)。

先觀察方程組中每個方程x的系數(shù),y的系數(shù),是否有一個相等。或互為相反數(shù)?

能否通過變形化成某個未知數(shù)的系數(shù)相等,或互為相反數(shù)?怎樣變形。

學生解方程組。

2.例1.解方程組

思考:能否使兩個方程中x(或y)的系數(shù)相等(或互為相反數(shù))呢?

學生討論,小組合作解方程組。

提問:用加減消元法解方程組有哪些基本步驟?

三、練習。

1.P40練習題(3)、(5)、(6)。

2.分別用加減法,代入法解方程組。

四、小結(jié)。

解二元一次方程組的.加減法,代入法有何異同?

五、作業(yè)。

P33.習題2.2A組第2題(3)~(6)。

B組第1題。

選作:閱讀信息時代小窗口,高斯消去法。

后記:

2.3二元一次方程組的應(yīng)用(1)

下載二元一次方程組教案word格式文檔
下載二元一次方程組教案.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔相關(guān)法律責任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    二元一次方程組教案

    名師傳方法.有效提分授課老師:李老師 考點一:判斷二元一次方程 考點二:二元一次方程組的解的應(yīng)用 若x、y互為相反數(shù),且x+3y=4,,3x-2y=___________ ?4x?3y?k方程組?的解與x與y的值相等,則......

    二元一次方程組教案

    二元一次方程組 一、基本定義: 二元一次方程定義:一個含有兩個未知數(shù),并且未知數(shù)的都指數(shù)是1的整式方程,叫二元一次方程。二元一次方程組定義:兩個結(jié)合在一起的共含有兩個未知數(shù)......

    二元一次方程組復習教案

    二元一次方程組期末復習一、知識點 1、二元一次方程及二元一次方程組及其解的概念 2、二元一次方程組的解法:代入消元法,加減消元法 二、教學過程 (一)、知識點復習1、 二元一......

    8.1-二元一次方程組(教案)

    第八章 二元一次方程組 8.1 二元一次方程組 【知識與技能】 1.了解二元一次方程、二元一次方程組的概念. 2.理解二元一次方程的解、二元一次方程組的解的概念. 【過程與方法......

    解二元一次方程組教案

    解二元一次方程組——代入消元法(1) 教學目標 1、知識與技能目標 (1)會用代入法解二元一次方程組 (2)初步體會解二元一次方程組的基本思想“消元”。 (3)通過對方程組中的未知數(shù)特點......

    《解二元一次方程組》教案

    教案格式樣例(一節(jié)課) 教師 XXX 學科/班級 XXXX 單元 (可以不寫)授課日期 課題消元——二元一次方程組解法一、教學目標(一)知識與技能目標 1.能說出二元一次方程、二元一次方程組......

    二元一次方程組的教案

    教學目標: 1.認識二元一次方程和二元一次方程組. 2.了解二元一次方程和二元一次方程組的解,會求二元一次方程的正整數(shù)解. 教學重點: 理解二元一次方程組的解的意義.......

    二元一次方程組練習題

    七年級數(shù)學〔下〕單元檢測題〔二元一次方程組〕〔考試時間90分鐘,總分值100分〕姓名:_______________學號:__________得分:________________一、填空〔每題2分,共20分〕1、x=4,y=-5滿......

主站蜘蛛池模板: 51国产黑色丝袜高跟鞋| 国产精品久久久久久爽爽爽床戏| 日本簧片在线观看| 亚洲这里只有久热精品伊人| 欧美极品色午夜在线视频| 秋霞电影网午夜鲁丝片无码| 精品视频一区二区三区中文字幕| 日本黄页网站免费观看| 欧美综合区自拍亚洲综合绿色| 人人妻人人澡人人爽人人精品浪潮| 玩弄少妇的肉体k8经典| 偷窥xxxx盗摄国产| 军人粗大的内捧猛烈进出视频| 国产精品欧美一区二区三区不卡| 7777色鬼xxxx欧美色妇| 日本道色综合久久影院| 国模无码视频一区| 99re6在线视频精品免费下载| 热99re6久精品国产首页| 国产精品hdvideosex4k| 日韩 另类 综合 自拍 亚洲| 日韩亚洲国产高清免费视频| 亚洲女毛多水多21p| 久久综合色_综合色88| 乱人伦精品视频在线观看| 久久久久青草线蕉综合| 午夜高清在线无码| 欧美内射深喉中文字幕| 久久久无码精品亚洲日韩蜜臀浪潮| 欧美肉大捧一进一出免费视频| 日日天干夜夜人人添| 欧美黑人又粗又大的性格特点| 少妇被粗大的猛进69视频| 成人免费毛片内射美女-百度| 久久精品成人亚洲另类欧美| 日日噜噜夜夜爽爽| 亚洲精品一区三区三区在线观看| 久久伊99综合婷婷久久伊| 国内精品伊人久久久影视| 无码乱人伦一区二区亚洲一| 18禁在线永久免费观看|