第一篇:《連乘解決問題》教學設計
教學目標:
1、經歷解決問題的過程,學會兩步乘法解決問題,感受解決問題策略多樣化。
2、讓學生從多角度解決同一個問題,提高解決問題的能力,發展思維。
3、使學生感受數學知識在生活中的應用價值,體會成功的快樂。
教學重點:
多角度能用兩步連乘解決問題
教學難點:
描述解決問題的思考過程。
教學過程:
一、課前談話
師:今天謝老師非常高興能和我們班的同學一起來學習數學。在上課之前,老師問了本校的其他老師說我們班的同學上課特別積極,老師特想在這節課上看到大家的風采。看誰的耳朵最會聽老師和其他同學的發言,看誰的腦筋動得最快并且能舉手發表自己的意見。
二、創設情境,導入新課
1、一個方陣
師:前段時間育才小學正在舉行運動會,瞧,他們排著整齊的方陣過來了。(播放:運動會情境)如果老師用手中的這副圖上的一個圓表示其中的一個人(貼圖),那你從這一個方陣中(板:一個方陣)找到了哪些數學信息?
生1:橫著排的有5人。
師:在數學上,我們把橫著排的叫做行。板:行
師:那有幾行?每行幾人?板:每行有5人,有4行。
生2:豎著排的有4人。
師:在數學上,我們把豎著排的叫做列。板:列
師:那有幾列?每列幾人?板:每列有4人,有5列。
生:一個方陣有20人。
師:很棒,你還看出了一個方陣的人數。
2、提出問題
師:緊接著又走來了一個相同的方陣,看著這兩個方陣,現在你能提一個數學問題嗎?
生:2個方陣一共有幾人?
3、探究方法
師:這個問題你能自己解決嗎?
(安靜獨立地思考,把算式寫到本子上;寫好后,思考你是先求什么,再求什么跟你的同桌說一說)。
師巡視一圈,同時聽取和指導完善學生說的過程。
4、匯報交流
(1)師:誰來說說你是怎么算的?(生說算式師板,再說思路)
生1:54=20(人)
202=40(人)
師:那你的這個算式是先求哪部分,再求什么?
生:先求一個方陣的人數,就是54=20(人),再求2個方陣的人數,就是202=40(人)。
師:你能上來圈一圈嗎?
師:誰聽懂了他的解題思路再來說一說?(生說師同步媒體演示)
師:大家都都聽懂了他的解題思路嗎?一起來讀一讀這個方法的解題思路。(生齊讀)
(2)師:除了這種方法,誰有不同的算法或思路?
生1:25=10(人)
104=40(人)
師:那你的這個思路是先求哪部分,再求什么?
生:先求合并后一個行的人數,就是25=10(人),再求4個這樣一行的人數,就是 104=40(人)
師:你能上來圈一圈嗎?第一步先求哪部分?
師:誰能根據這幅圖把剛才這名同學的思路再說一次?(生說師同步媒體演示)
師:大家都都聽懂了他的解題思路嗎?一起來讀一讀這個方法的解題思路。(生齊讀)
(3)師:還有另一種方法嗎?
生1:42=8(人)
85=40(人)
師:42=8(人),表示你先求哪部分?(生:先求合并后一個列的人數)師移動方陣
師:你能上來圈一圈嗎?第一步先求哪部分?
生:先求合并后一個列的人數,就是42=8(人),再求5個這樣一行的人數,就是 85=40(人)
師:誰聽懂了他的解題思路再來說一說?(生說師同步媒體演示)
師:大家都都聽懂了他的解題思路嗎?一起來讀一讀這個方法的解題思路。(生齊讀)
【預設】:若學生出不來第三種方法,則師出示。
師:老師這里也有一個小朋友的方法,42=8,85=40你能說一說嗎?他表示的42先求哪部分,再求?
師:你能上來指一指嗎?你可真聰明!
(4)師:那我們能把這2條算式,寫成一條綜合算式嗎?
生1:452=40(人),生2:254=40(人),生3:245=40(人)
您現在正在閱讀的《連乘解決問題》教學設計文章內容由收集!本站將為您提供更多的精品教學資源!《連乘解決問題》教學設計
5、對比提升
(1)師:通過剛才的小組交流,我們得出了這樣3種方法。(課件出示3種方法)。
(2)觀察這三種方法有什么相同和不同?
相同點預設:答案相同,都用乘法計算(揭題:這就是我們今天學習的用連乘解決問題)
不同點預設:方法不一樣。方法怎么不一樣?先求什么,再求什么?
小結:真了不起!,同一個問題,能從不同的角度去思考,采用不同的方法來解決。
三、聯系實際,鞏固提高
師:學習了方法,就來解決具體生活中的實際問題。
1、雞蛋問題。(不同策略,解決問題)
師:這么多雞蛋會有多少個呢?(課件出示堆成一堆的雞蛋)。
(1)師:要解決這個問題。這里有信息嗎?你能用簡潔的語言給大家介紹一下這張圖片的內容嗎?獨立解題。
(2)師:如果用一個正方體換掉雞蛋,你能用多種方法解決這個正方體的問題嗎?
生1:從上面看先求一層的正方體個數,45=20(個),203=60(個)
生2:從側面看先求一層的正方體個數,34=12(個),125=60(個)
生3:從前面看先求一層的正方體個數,35=15(個),154=60(個)
(同步媒體演示,讓學生建立空間觀念)
小結:真棒!同一個問題,不僅能自己收集信息,還能采用不同的方法來解決。在數學中有很多題目是類似的,只要你掌握其中最本質的方法,其實我們的數學就這么簡單。
2、面包問題(選擇信息,解決問題)
40個隊,每隊有20位運動員;每人要3個面包,2瓶礦泉水,共要多少個面包呢?
(1)40202=1600
(2)40203=2400
(3)32040=1600
師:怎樣改一改其他兩個也是正確的。
小結:在解決問題中,選擇有價值的信息非常重要。
3、游泳問題(隱含信息,解決問題)
師:在信息中,你覺得那個是需要特別提醒其他同學的?
小結:我很佩服大家,不但能用乘法解決問題,還能靈活的找出題中隱含的信息。
四、課堂總結:
今天我們一起學習了什么?老師也非常高興與同學們一起還學會了一種解決問題的方法:先求一部分,再求整體。
第二篇:連乘解決問題 教學設計
用連乘解決問題
鼓樓實驗小學 蔡盈 2015.4.教學內容:人教版小學三年級數學下冊第52-57頁。教學目標:
1.讓學生通過自主探究和合作學習掌握較復雜的“已知單價和數量,求總價”解決問題的數量關系和解題思路,提高學生分析問題、解決問題的能力,以及兩位數連乘的計算能力和計算技巧。
2.培養學生的合作學習與探究意識,培養學生的發散思維和創新精神。
3.讓學生運用數學知識解決生活中的實際問題,從中體驗到數學的價值,培養學生的應用意識和實踐能力。教學重點:
正確分析數量關系,能用兩步乘法解決相關問題。教學難點:
理解數量關系,找出解決問題的中間問題,靈活解決問題。教學過程:
一、復習
我每天讀12頁,20天能讀多少頁? 分析:為什么用乘法? 數量關系?
(板書:每份數×份數=總數)
二、新授
1、出示例題3,閱讀題目,你知道了什么?(貼板書:閱讀與理解)生匯報并且板書:5箱 每箱12個 每個45元 一共賣了多少錢?(邊匯報邊貼板書)
2、分析題意,整理樹狀圖,介紹中間問題(1)用哪個數量關系解決(2)你想怎么求?你從哪求起?(3)5箱的數量題目直接告訴你了嗎?(4)12×5 12表示什么 5表示什么 每箱12個乘5箱,這樣就可以求出什么?
(5)小結:像這樣,題目沒有直接告訴你,但是我們可以先求出來,我們把這樣的問題叫做中間問題,我們得先解決藏在題目中的中間問題,才能解決最終的問題。
3、讓學生根據分步計算列綜合式,并匯報
(1)12×5×45=2700(元)45×(12×5)=2700(元)(2)兩個算式有什么不一樣?為什么要加括號?
4、還有其他方法嗎?
同桌討論,并像黑板上那樣寫出中間問題,先分步計算,在列綜合式計算。同時和同桌說一說,每個算式求的是什么?
5、回顧與反思(1)點題
(2)辨析45×5×12 45×5表示什么?列的算式有意義嗎?
小結:解決連乘的問題,我們得知道先求什么,要在題目中找到隱藏的中間問題。不能隨意的把數字連乘。
6、總結: 首先,讀題
接著,根據信息列樹狀圖,找出中間問題 最后,列式解答
三、練習
1、張莊小學新蓋16間教室,每間教室有6扇窗子。每扇窗子安裝8塊玻璃,一共要安裝多少塊玻璃?
2、每天跑2圈,跑道每圈長400米,她一個星期(7天)跑多少米?
第三篇:解決問題(連乘)教學設計
《解決問題(連乘)》教學設計
員村小學 程曉燕
教學內容:人教版實驗教材 小學數學第六冊第99頁例
1、練習二十三習題 教學目標:
1、經歷從實際生活中發現問題、提出問題和解決問題的過程,體會同一問題可以有不同種解決方法。
2、探索用連乘方法解決問題的數量關系,學會用連乘兩步計算解決問題。
3、通過解決實際問題,感受數學與生活的密切聯系,體會數學的應用價值。
教學重點、難點:理解數量關系,靈活解決問題。課前準備:投影儀、課件 預設過程:
一、情境引入:
“六一”節快到了,少先隊大隊輔導員老師正在為慶祝大會做準備工作。首先要考慮的是新隊員的入隊儀式。(出示幻燈片,新隊員入隊儀式場面分成3個方陣,每方陣5行,每行8人。)
二、探究新知:
(一)初步感知連乘數量關系
1、提出問題:
問:從圖中你獲得了什么數學信息?(如果一個學生說不完整,可以請其他同學補充)
2、自主探索,解決問題: 要求“三個方陣一共有多少人?”你能解決這個問題嗎?請大家試一試,可以跟同桌討論一下,該怎樣解決這個問題。先算什么,再算什么?
指名匯報,說說你是怎么想的?根據哪些信息先算了什么?又根據哪些信息再算什么?
(根據學生的回答,板出思路:
(1)每個方陣的人數(2)3個方陣的人數(1)3個方陣共幾行(2)3個方陣的人數
(1)3個方陣并在一起一行有幾人(3)3個方陣的人數)怎樣列式,算式中每個數字分別表示什么?(鼓勵有不同解法,如果只有一種方法教師也可以要求介紹一種。)
(設計意圖:使學生經歷自己收集信息、提出問題、解決問題的過程,激發學生的學習積極性與主動性。)
3、小結:
看來同一個問題,我們可以先求一個方陣有多少人,也可以先求3個方陣共有多少行,還可以先求3個方陣并在一起一行共幾人,只要講的有道理都可以采取。但無論哪種方法都可以用連乘的方法來解決,這就是我們今天要學習的用連乘方法來解決問題。
(設計意圖:允許有不同的解題方法,使學生體會到同一問題可以有多種解決策略。)
(二)自主嘗試,加深理解:
在六一節到來時,為了激勵先進,老師打算購買一些獎品發給優秀少先隊員。讓我們一起去看一看。解決購買獎品問題.出示(圖文結合)一支圓珠筆3元,買兩盒需要多少錢?
問:怎么算呢?你還需要什么信息?(一盒有幾支)
一起看圖得出:一盒有12支 要求學生獨立嘗試,指名匯報,說說你是怎么解決的?算式中每個數字分別表示什么?
預計出現的解法:
A、12×2×3=72(元)B、12×3×2=72(元)請學生說出解題的想法。
(設計意圖:此題通過讓學生根據問題收集需要的信息,解決問題,從而使學生初步體會到不是所有的問題都是有現成的信息的。)
三、應用提高:
過渡:同學們真棒,剛剛幫老師解決了許多有關“六一”節慶祝準備工作中的數學問題。其實生活中還有許多像這樣的問題,你有信心自己解決嗎?讓我們比一比看誰最能干?
1、書本第99頁做一做:(投影出示)
要求學生看懂題意,你能怎樣幫阿姨又快又準地計算出一共有多少個雞蛋?獨立解決,然后同桌交流解題思路,指名匯報。預計:
5×6×8=240(個)??
2、書本練習二十三第1題:(投影出示)
學生嘗試,及時反饋,投影,學生講解題思路。預計: 方法一:400*2*7=5600(米)方法二:2*7*400=5600(米)
3、書本練習二十三第4題:(投影出示)
這道問題,你有什么想提醒我們大家的嗎?(來回)
學生嘗試,及時反饋,如果出現25×3與25×3×2這樣兩種情況就組織學生討論:哪種解法對?為什么要乘2?
4、書本練習二十三第3題:(投影出示)
要求學生看懂題意,獨立解決,投影反饋,學生自己講解題思路。預計:
方法一:24*4*3=288(瓶)方法二:24*6*2=288(瓶)方法三:4*3*24=288(瓶)
5、(機動)出示(圖文結合):鋼筆每支25元,文具盒每個10元,我想買20支鋼筆和16個文具盒共要付多少錢呢?
獨立算,算好后與同桌交流(說說你是怎么想的?先算了什么?再算什么?)然后指名匯報,著重說解題思路。(25×20=500元 10×16=160元 500+160=660元)
(設計意圖:安排這樣的三步計算問題,與前幾題比較,可以避免學生的思維定勢。)
小結:同學們要避免在解決問題過程中想當然,一定要分析清楚數學信息間的數量關系,采用恰當的方法解決問題。
6、(機動)書本練習二十三第2題:(投影出示)
學生嘗試,指名反饋,交流解題思路。(3×7+4×6=45元)(設計意圖:這1——4小題的安排,主要是鞏固新知,提高解題能力,同時也讓學生感受到數學與生活的密切聯系。第5、6小題的練習安排這樣的三步計算問題,與前幾題比較,可以避免學生的思維定勢。)
四、總結:
今天我們一起學習了什么?通過學習你有什么感想或疑問嗎?
第四篇:用連乘方法解決問題》教學設計
<<用連乘方法解決問題》教學設計
教學內容:人教版小學數學第六冊第99頁例1和做一做 教學目標:
1、培養學生從具體情景中根據問題學會收集、分析相關的信息數據,學會用連乘兩步計算的方法來解決問題。
2、在探索問題解決的過程中,體現同一個問題可以從不同角度來思考和解決(解題策略多樣化),明確先算什么,再算什么(數量關系)。
3、通過對具體問題的解決,通過編題,使學生感受數學在日常生活中的作用,讓學生體驗學習數學的價值,激發學生學習數學的興趣。
教學重點:運用連乘解決簡單的生活實際問題。
教學難點:解決“連乘”問題的策略多樣化的感悟與“連乘”問題數量關系的理解。
教具準備:課件
一、復習鋪墊,引入新課 解決簡單問題
二、自主學習,解決問題
1、創設情景,提出問題 出示主題圖
(1)提出問題(出示:3個方陣一共有幾人?)
(2)要解決“3個方陣一共有多少人” 這個問題還必須知道什么相關的信息?你能從圖中找出信息嗎?
2、收集信息,解決問題
(1)你們從圖中知道了哪些數學信息?(2)誰能解決這個問題?(3)學生列式計算,指名板演。(4)匯報:誰來說說看,你是怎么做的? 預設學生有以下幾種解答:
(1)10×4=40(人)
40×3=120(人)(2)10×3=30(人)
30×8=240(人)(3)8×3=24(行)
24×10=240(人)
3、優化解法,理清思路
(1)說說每種算法的解題思路。你能不能用綜合算式來表達?(2)這3種方法之間有什么共同點?板書課題:用連乘方法解決問題
(3)你覺得那種方法最容易理解?
三、拓展練習,鞏固延伸
1、完成書本上的做一做(數學書第99頁)算一算一共有多少個雞蛋?
(1)學生列式計算,同桌說說:先算什么,后算什么?(2)集體交流。
(3)比較哪種方法最易理解。
2、出示第101頁第1題“跑步”圖。圖中的小朋友在干嗎?(跑步)
(1)從圖中你知道了什么信息?要我們解決的問題是什么?(2)學生嘗試解決。
(3)交流。解釋算式所含的意義。
(要求一個星期跑多少米,要先求出每天跑幾米,再乘7。要求一個星期跑多少米,要先求出一星期一共跑了幾圈,每圈400,就有幾個400。)
3、想一想,辨一辨,選擇正確答案。出示第102頁第4題 “游泳”圖
(1)和你的同桌說一說你從圖中知道了哪些信息?
(2)匯報。(游泳池長25米,游了三個來回。我知道小明游了6個25米,三個來回是就是2×3=6次。)(3)要我們解決什么問題?
四、課堂總結,自我評價
1、今天我們學習了什么?你有什么收獲?
2、誰能評價一下自己學得怎么樣? 板書設計:
用連乘方法解決問題
①10×8=80(人)
②10×3=30(人)
③8×3=24(行)
80×3=240(人)
30×8=240(人)
24×10=240(人)
10×8×3=240(人)
10×3×8=240(人)
8×3×10=240(人)
答:一共有240人。
第五篇:三下數學《用連乘解決問題》教學設計
“用連乘解決問題”教學設計
一、教學目標:
1、知識與技能:理解連乘問題的數量關系,明確解題思路,學會用乘法兩步計算解決問題。
2、過程與方法:使學生經歷從實際生活中發現問題、提出問題、解決問題的過程,了解同一問題可以有不同的解決辦法。
3、情感、態度與價值觀:讓學生獲得一些用乘法計算解決問題的活動經驗,感受數學在日常生活中的應用。
二、教學重難點:
重點:學會用兩步計算解決問題,初步學會“連乘”問題的策略。
難點:多角度地觀察、解決問題。
三、教學準備:
課件、學生每人3個方陣圖
四、教學過程
一、創設情境,引入新課。
6月1日兒童節快到了,為了迎接這個節日,集團校決定進行一系列的活動。首先要進行廣播操比賽。看,我們三年級的同學入場了,他們排成了3個整齊的方陣精神抖擻地進入操場。
課件依次出示3個完整的方陣圖。
二、主動建構,學習新知。
(一)呈現情境,提出問題
1、提出問題,揭示課題。
師:請大家仔細觀察這3個方陣,你能提出哪些有價值的數學問題?
預設:每排有多少人?每個方陣有多少排?每個方陣有多少人?3個方陣一共有多少人???
師:同學們真能干,提出了這么多有價值的數學問題,鼓勵自己。今天這節課我們就來解決這些問題。(揭示課課:解決問題)
師:在這幾個問題中,我們最想解決哪個問題? 生:3個方陣一共有多少人? 師:哪老師想的一樣。
2、尋找數學信息。
師:要解決這個問題,你們能從方陣圖中找到哪些相關的數學信息? 生:橫著數,每行有10人。生:一共有8行。??
師:這樣橫著每排(畫橫線指示)應該說成“每行”,每個方陣有幾行呢?如果豎著的應該說成“每列”,每個方陣有幾列呢? 生:每個方陣有8行,每行有10人。生:每個方陣有10列,每列有8人。
(二)自主探索,解決問題
1、師:你們能解決這個問題嗎?請算一算,想一想第一步算出來的是什么,并在學具圖上圈一圈。盡可能用多種方法解題。
為了讓同學們看得更清楚,老師給你們準備了“點子圖”,一個點表示一個人。
2、學生獨立操作。
3、展示、交流。預設:
(1)方法一
10×8×3=240(人)或8×10×3=240(人)師:你是怎么想的?
生:先算一個方陣,一個方陣有8行,每行是10人,10×8是一個方陣的人數,有3個方陣,所以再乘3,算出來是一共的人數。
師板書:先算每個方陣多少人?3個方陣一共有多少人? 師:同意他的說法嗎?
師:10×8表示什么?80×3表示什么? 師:誰還想再來說說算式表示的意思?
師:說得真清楚明了,老師明白了這種方法是先算每個方陣的人數,再算3個方陣一共的人數。(課件)
(2)方法二
10×3×8=240(人)師:你是怎么想的?
生:每行有10人,3個方陣合起來就有 3個10,表示3個方陣合起來一行的人數。
每個方陣有8行,再乘8,就是3個方陣一共的人數。師板書:先算每個方陣多少人?3個方陣一共有多少人? 師:同意他的說法嗎?
師:原來這位同學是把3個方陣看成一個大的方陣,先求3個方陣合起來一行的人數,再乘行數,就得到了一共的人數。(板書)
(課件)
(3)方法三
8×3×10=240(人)師:你是怎么想的?
生:把3個方陣合成一個大方陣,先用8×3算出這個大方陣共有 24行,再乘每行10人。(課件)
師:這位同學很有想像力,他把3個方陣組成大方陣,先算一共有 幾行,再乘每行人數。(板書)
(三)比較異同,提高認識。
師:這個問題我們用了幾種方法解決?(三種)現在請同學們比較這三種方法,有什么相同的地方?小組里交流一下。
1、學生交流,相互補充。
2、小結:通過比較發現,三種方法都是用乘法來計算的,并且用了兩次,像這樣的問題叫做連乘問題。解決類似問題,你喜歡用哪種方法就用哪種方法來計算。
三、運用新知,解決問題。
1、兒童節,學校還打算在益盈教學樓舉辦游園活動。為了增加節日的氣氛,學校為每個教室進行了氣球裝扮。益盈教學樓有4層,每層樓有5個教室,每個教室需要28個氣球,一共需要多少個氣球?(1)獨立完成。(2)交流反饋。
4×5×28=560(個)
5×28×4=560(個)??
師:說說你是怎么想的?
生:先求一共有多少個教室,再求一共需要多少個氣球。
生:先求一層樓需要多少個氣球,再求4層樓一共有多少個氣球。
2、在游園活動中,三年級同學設計了“25米來回接力跑”活動,一支隊伍需要6位同學,每人要進行一次25米的來回跑,問一支隊伍一共要跑多少米?
(1)獨立完成。
(2)交流反饋。
25×6×2=3000(米)或者25×2×6=3000(米)5 師:題目中沒有出現數字2,為什么乘2?
生:來回就是2次。
師:你的算式的表示什么意思?
3、接力跑獲勝同學將會得到美麗的花環,所以三年級四個班的同學正在開始準備編花環了。(只列式,不計算)
三(1)班用紅花、黃花、藍花各7束做花環,每束有9朵,三(1)班一共用了多少朵花?
三(2)班用了紅花45朵,黃花36朵,藍花58做花環,三(2)班一共用了多少朵花?
三(3)班準備了145朵,其中紅花42朵,黃花51朵,藍花有多少朵?(1)學生獨立完成。
(2)思考:都是講紅花、黃花、藍花的事,又都是3個條件,怎么有的用連乘,有的不用連乘?
(3)小結:因為它們之間的數量關系不一樣,所以,分析數量關系多少重要啊!
4、你能用4、6、18來編一道連乘應用題嗎?