久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

電子產品的電磁兼容性設計、測試和對策技術培訓班

時間:2019-05-15 02:46:50下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《電子產品的電磁兼容性設計、測試和對策技術培訓班》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《電子產品的電磁兼容性設計、測試和對策技術培訓班》。

第一篇:電子產品的電磁兼容性設計、測試和對策技術培訓班

電子產品的電磁兼容性設計、測試和對策技術培訓

開課信息: 開課日期(天數)2014/1/13-14

上課地區 上海-閘北區

課程編號:KC4694 費用 3000

更多: 無

招生對象

---------------------------------

從事開發部門主管、EMC設計工程師、EMC整改工程師、測試經理、工程師 【主辦單位】中 國 電 子 標 準 協 會 培 訓 中 心

【協辦單位】深 圳 市 威 碩 企 業 管 理 咨 詢 有 限 公 司 課程內容

---------------------------------

培訓地點:2014年1月13-14日,上海;

培訓費用:3000元/人(含培訓、資料、午餐費)。

培訓對象:從事開發部門主管、EMC設計工程師、EMC整改工程師、測試經理、工程師 隨著中國加入WTO,如何使自己的產品在國際及國內市場中滿足電磁兼容(EMC),從而快速低成本的取得相關認證,許多企業面臨這樣一個現實問題!但目前大多電子企業研發人員沒有很好掌握EMC的設計方法和建立一套完善的EMC流程,導致多數產品在后期不能順利的通過測試與認證,影響了產品的上市進度。為了幫助企業導入正確EMC設計策略,同時研發工程師掌握正確的EMC設計方法,從產品設計源頭解決EMC問題,將可以減少許多不必要的人力及研發成本,縮短產品上市周期,中國電子標準協會

決定分期組織召開“電子產品的電磁兼容性設計、測試和對策技術培訓班”現將具體事宜通知如下:

課程提綱:課程大綱根據報名學員要求,上課時會有所調整。

一、電磁兼容試驗問題概述 1 電磁兼容的基本定義

電磁兼容測試標準的標準體系 3 電磁兼容的試驗內容 電磁兼容標準標準化試驗和可信度

二、脈沖群抗擾度試驗的要點及其對策 1 脈沖群瞬變干擾的形成原理 2 脈沖群發生器的基本線路及其波形 3 脈沖群試驗的配置和布局 脈沖群的實驗室型式試驗方法和注意點 新的脈沖群抗擾度試驗國家標準和目前尚在沿用的試驗方法差異性說明 6 脈沖群干擾的抑制

三、常用抗擾度標準新舊版本的差異與理解 1 靜電放電抗擾度試驗 2 射頻輻射電磁場抗擾度試驗 3 脈沖群抗擾度試驗 4 浪涌抗擾度試驗 電壓暫降、短時中斷和電壓變化抗擾度試驗

四、電子設備電磁騷擾發射的定性測試 1 比較“正規”的輻射發射定性測試方案 2 比較“正規”的傳導發射定性測試方案 3 定性觀察的輻射發射測試方案 4 定性觀察的傳導騷擾發射測試方案

五、電磁兼容故障診斷和常用處理方法 1 設備的輻射發射超標問題 2 設備的傳導發射超標 設備的靜電放電抗擾度試驗不合格 4 設備的射頻輻射電磁場抗擾度試驗不合格 5 設備的脈沖群干擾抗擾度試驗不合格 6 設備的浪涌抗擾度試驗不合格 設備的射頻場感應所引起的傳導抗擾度試驗不合格 8 設備的電壓跌落、短時中斷抗擾度試驗不合格

設備在調試過程中的電磁兼容性故障定位

六、電子設備的電磁騷擾問題分析和抑制技術概述 1 電子設備的電磁騷擾發射問題 2 電子設備的電磁騷擾發射原因分析 3 電子設備電磁騷擾發射的性質分析 4 電子設備的電磁騷擾抑制技術概述

七、電子設備輻射騷擾測試和常用抑制技術 1 電子設備的輻射發射 通過減小環路面積來減小電子設備的輻射噪聲 3 通過采用緩沖吸收來降低電子設備的高次諧波成分 4 電子設備印刷線路板的設計

八、電子設備傳導騷擾和電源線輸入濾波器 1 電子設備傳導騷擾測量結果的數值分析 2 電子設備傳導騷擾的一般抑制技術 3 電源線濾波器的作用 4 電源線濾波器插入損耗的測量 5 電子設備輸入濾波器的設計 6 電子設備輸入濾波器中電感器的設計 電源線濾波器中電容耐壓、泄漏電流和選擇問題 8 濾波器的內部裝配 9 濾波器的安裝和使用

九、電子設備的瞬變干擾抑制問題 1 電磁干擾 2 瞬變干擾吸收器件 3 鐵氧體抗干擾磁芯 4 隔離變壓器

十、電子設備的電磁兼容設計,試驗和對策案例分析 案例1:電磁干擾問題的診斷和整改步驟 案例2:不間斷電源的電磁兼容問題的處理 案例3:開關電源高頻變壓器的屏蔽層應用問題

4:由多個開關電源組成的電源系統的電磁兼容性考慮 案例5:便攜式智能溫度計開關電源的電磁兼容性設計 案例6: 開關電源電磁騷擾發射問題的排查及解決 案例7:在電源線上使用鐵氧體抗干擾磁芯 案例8:由通信設備集線器電源引起的輻射發射超標 案例9:開關電源的電磁兼容性設計,試驗和對策例 案例10:設備內部電源布線不當造成的輻射超標 案例11:錯誤接地線引起的輻射超標

案例12:屏蔽電纜屏蔽層接地小辮引起的設備輻射問題 案例13:印刷電路板的不良布線引起設備輻射超標 案例14:印刷電路板局部地平面布局不良與設備輻射超標 案例15:電容器的容量對集成電路電源去耦效果的影響 案例16:防雷器件的正確安裝

案例17:兩個在機房增設浪涌保護器的實例 案例18:在浪涌試驗中因磁珠使用不當造成損壞問題 案例19:電源濾波器的安裝使用問題

案例20:同類產品,不同布局引起的傳導騷擾超標問題

案例21:對于有數字和模擬器件混合線路的設備的數字地和模擬地正確接法 案例22:房間電加熱器浪涌抗擾度試驗不合格問題處理 案例23:對電子變壓器傳導發射和浪涌抗擾度試驗不合格的整改 案例24 帶碳刷的電動機的電磁兼容解決方法 案例25 小家電產品電磁騷擾發射情況的改進例 案例26:改進線路設計來提高設備的抗干擾能力 案例27:開關電源輸出紋波和噪聲的測量和抑制 案例28:工業自動化設備的結構與電磁兼容試驗

講師介紹

--------------------------------- 錢振宇

國家機械局上海電器科學研究所研究員級高級工程師,上海三基電子工業有限公司總工程 師,全國電磁兼容標準化技術委員會委員,全國電磁兼容標準化技術委員會低頻現象分技術委員會委員,國內知名的電磁兼容專家。主要研究方向為電磁兼容測試的干擾模擬器與電磁兼容的對策技術。近年來有較多機會參加國內各地的電磁兼容培訓活動,由于內容通俗易懂、切合實際,深受各方好評。出版的與電磁兼容性測試和設計主題相關的主要著作有:①《3C認證中的電磁兼容測試與對策》(電子工業出版社,2004年8月出版)②《開關電源的電磁兼容測試與對策》(電子工業出版社,2005年12月出版)③《電氣、電子產品的電磁兼容技術及設計實例》(電子工業出版社,2008年6月出版)

第二篇:開關電源的電磁兼容性技術

開關電源的電磁兼容性技術 引言

電磁兼容是一門新興的跨學科的綜合性應用學科。作為邊緣技術,它以電氣和無線電技術的基本理論為基礎,并涉及許多新的技術領域,如微波技術、微電子技術、計算機技術、通信和網絡技術以及新材料等。電磁兼容技術應用的范圍很廣,幾乎所有現代化工業領域,如電力、通信、交通、航天、軍工、計算機和醫療等都必須解決電磁兼容問題。其研究的熱點內容主要有:電磁干擾源的特性及其傳輸特性、電磁干擾的危害效應、電磁干擾的抑制技術、電磁頻譜的利用和管理、電磁兼容性標準與規范、電磁兼容性的測量與試驗技術、電磁泄漏與靜電放電等。

電磁兼容的英文名稱為Electromagnetic Compatibility,簡稱EMC。所謂電磁兼容是指設備(分系統、系統)在共同的電磁環境中能一起執行各自功能的共存狀態。這里包含兩層意思,即它工作中產生的電磁輻射要限制在一定水平內,另外它本身要有一定的抗干擾能力。這便是設備研制中所必須解決的兼容問題。電磁兼容技術涉及的頻率范圍寬達0 GHz ~400GHz,研究對象除傳統設備外,還涉及芯片級,直到各種艦船、航天飛機、洲際導彈甚至整個地球的電磁環境。

電磁兼容三要素是干擾源(騷擾源)、耦合通路和敏感體。切斷以上任何一項都可解決電磁兼容問題,電磁兼容的解決常用的方法主要有屏蔽、接地和濾波。2 電磁兼容技術名詞(1)電磁兼容性

電磁兼容性是指設備或者系統在其電磁環境中能正常工作,且不對該環境中任何事物構成不能承受的電磁騷擾的能力。(2)電磁騷擾

電磁騷擾是指任何可能引起設備、裝備或系統性能降低或者對有生命或者無生命物質產生損害作用的電磁現象。電磁騷擾可引起設備、傳輸通道或系統性能的下降。它的主要要素有自然和人為的騷擾源、通過公共地線阻抗/內阻的耦合、沿電源線傳導的電磁騷擾和輻射干擾等。電子系統受干擾的路徑為:經過電源,通過信號線或控制電纜、場滲透,經過天線直接進入;通過電纜耦合,從其他設備來的傳導干擾;電子系統內部場耦合;其他設備的輻射干擾;電子設備外部耦合到內部場;寬帶發射機天線系統;外部環境場等(3)電磁環境

電磁環境是一種明顯不傳送信息的時變電磁現象,它可能與有用信號疊加或組合。(4)電磁輻射

電磁輻射是指電磁波由源發射到空間的現象。“電磁輻射”一詞的含義有時也可引申,將電磁感應現象也包含在內。RFI/EMI可以通過任何一種設備機殼的開口、通風孔、出入口、電纜、測量孔、門框、艙蓋、抽屜和面板以及機殼的非理想連接面等進行輻射。RFI/EMI也可由進入敏感設備的導線和電纜進行輻射,任何一個良好的電磁能量輻射器也可以作為良好的接收器。(5)脈沖

脈沖是指在短時間內突變,隨后又迅速返回至其初始值的物理量。(6)共模干擾和差模干擾

電源線上的干擾有共模干擾和差模干擾兩種方式。共模干擾存在于電源任何一相對大地或電線對大地之間。共模干擾有時也稱縱模干擾、不對稱干擾或接地干擾。這是載流導體與大地之間的干擾。差模干擾存在于電源相線與中線及相線與相線之間。差模干擾也稱常模干擾、橫模干擾或對稱干擾。這是載流導體之間的干擾。共模干擾提示了干擾是由輻射或串擾耦合到電路中的,而差模干擾則提示了干擾是源于同一條電源電路。通常這兩種干擾是同時存在的,由于線路阻抗的不平衡,兩種干擾在傳輸中還會相互轉化,所以情況十分復雜。干擾經長距離傳輸后,差模分量的衰減要比共模大,這是因為線間阻抗與線-地阻抗不同的緣故。出于同一原因,共模干擾在線路傳輸中還會向鄰近空間輻射,而差模則不會,因此共模干擾比差模更容易造成電磁干擾。不同的干擾方式要采取不同的干擾抑制方法才有效。判斷干擾方法的簡便方法是采用電流探頭。電流探頭先單獨環繞每根導線,得出單根導線的感應值,然后再環繞兩根導線(其中一根是地線),探測其感應情況。如感應值是增加的,則線路中干擾電流是共模的;反之則是差模的。(7)抗擾度電平和敏感性電平

抗擾度電平是指將某給定的電磁騷擾施加于某一裝置、設備或者系統并使其仍然能夠正常工作且保持所需性能等級時的最大騷擾電平。也就是說,超過此電平時該裝置、設備或者系統就會出現性能降低。而敏感性電平是指剛剛開始出現性能降低的電平。所以,對某一裝置、設備或者系統而言,抗擾度電平與敏感性電平是同一數值。(8)抗擾度裕量

抗擾度裕量是指裝備、設備或者系統的抗擾度電平限值與電磁兼容電平之間的插值。3 開關電源的電磁兼容性

開關電源因工作在高電壓大電流的開關工作狀態下,引起電磁兼容性問題的原因是相當復雜的。從整機的電磁性講,主要有共阻抗耦合、線間耦合、電場耦合、磁場耦合及電磁波耦合幾種。共阻耦合主要是騷擾源與受騷擾體在電氣上存在的共同阻抗,通過該阻抗使騷擾信號進入受騷擾體。線間耦合主要是產生騷擾電壓及騷擾電流的導線或 PCB線因并行布線而產生的相互耦合。電場耦合主要是由于電位差的存在,產生感應電場對受騷擾體產生的場耦合。磁場耦合主要是指在大電流的脈沖電源線附近,產生的低頻磁場對騷擾對象產生的耦合。電磁場耦合主要是由于脈動的電壓或電流產生的高頻電磁波通過空間向外輻射,對相應的受騷擾體產生的耦合。實際上,每一種耦合方式是不能嚴格區分的,只是側重點不同而已。在開關電源中,主功率開關管在很高的電壓下,以高頻開關方式工作,開關電壓及開關電流均接近方波,從頻譜分析知,方波信號含有豐富的高次諧波。該高次諧波的頻譜可達方波頻率的1000次以上。同時,由于電源變壓器的漏電感及分布電容以及主功率開關器件的工作狀態非理想,在高頻開或關時,常常產生高頻高壓的尖峰諧波震蕩。該諧波震蕩產生的高次諧波,通過開關管與散熱器間的分布電容傳入內部電路或通過散熱器及變壓器向空間輻射。用于整流及續流的開關二極管,也是產生高頻騷擾的一個重要原因。因整流及續流二極管工作在高頻開關狀態,二極管的引線寄生電感、結電容的存在以及反向恢復電流的影響,使之工作在很高的電壓及電流變化率下,且產生高頻震蕩。整流及續流二極管一般離電源輸出線較近,其產生的高頻騷擾最容易通過直流輸出線傳出。開關電源為了提高功率因數,均采用了有源功率因數校正電路。同時,為了提高電路的效率及可靠性,減少功率器件的電應力,大量采用了軟開關技術。其中零電壓、零電流或零電壓/零電流開關技術應用最為廣泛。該技術極大的降低了開關器件所產生的電磁騷擾。但是,軟開關無損吸收電路多數利用L、C進行能量轉移,利用二極管的單向導電性能實現能量的單向轉換,因此,該諧振電路中的二極管成為電磁騷擾的一大騷擾源。

開關電源一般利用儲能電感及電容器組成L、C濾波電路,實現對差模及共模騷擾信號的濾波。由于電感線圈的分布電容,導致了電感線圈的自諧振頻率降低,從而使大量的高頻騷擾信號穿過電感線圈,沿交流電源線或直流輸出線向外傳播。濾波電容器隨著騷擾信號頻率的上升,引線電感的作用導致電容量及濾波效果不斷的下降,甚至導致電容器參數改變,也是產生電磁騷擾的一個原因。4 電磁兼容性的解決方法

從電磁兼容的三要素講,要解決開關電源的電磁兼容性問題,可從三個方面入手:第一,減小騷擾源產生的騷擾信號;第二,切斷騷擾信號的傳播途徑;第三,增強受騷擾體的抗騷擾能力。在解決開關電源內部的兼容性時,可以綜合利用上述三個方法,以成本效益比及實施的難易性為前提。因而,開關電源產生的對外騷擾,如電源線諧波電流、電源線傳導騷擾、電磁場輻射騷擾等只能用減小騷擾源的方法來解決。一方面,可以增強輸入/輸出濾波電路的設計,改善APFC電路的性能,減小開關管及整流、續流二極管的電壓、電流變化率,采用各種軟開關電路拓撲及控制方式等;另一方面,加強機殼的屏蔽效果,改善機殼的縫隙泄漏,并進行良好的接地處理。而對外部的抗騷擾能力(如浪涌、雷擊)應優化交流電輸入及直流輸出端口的防雷能力。通常,對1.2/50?s開路電壓及8/20?s短路電流的組合雷擊波形,因能量較小,通常采用氧化鋅壓敏電阻與氣體方電管等的組合方法來解決。對于靜電放電,通常在通信端口及控制端口的小信號電路中,采用TVS管及相應的接地保護、加大小信號電路與機殼等的電距離來解決或選用具有抗靜電騷擾的器件。快速瞬變信號含有很寬的頻譜,很容易以共模的方式傳入控制電路內,采用與防靜電相同的方法并減小共模電感的分布電容、加強輸入電路的共模信號濾波(加共模電容或插入損耗型的鐵氧體磁環等)來提高系統的抗擾性能。

減小開關電源的內部騷擾,實現其自身的電磁兼容性,提高開關電源的穩定性及可靠性,應從以下幾個方面入手:①注意數字電路與模塊電路PCB布線的正確分區;②數字電路與模擬電路電源的去耦;③數字電路與模擬電路單點接地、大電流電路與小電流特別是電流電壓取樣電路的單點接地以減小共阻騷擾,減小地環地影響,布線時注意相鄰線間的間距及信號性質,避免產生串擾,減小輸出整流回路及續流二極管回路與支流濾波電路所包圍的面積,減小變壓器的漏電、濾波電感的分布電容,運用諧振頻率高的濾波電容器等。5 濾波器結構

濾波是一種抑制傳導干擾的方法。例如,在電源輸入端接上濾波器,可以抑制來自電網的噪聲對電源本身的侵害,也可以抑制由開關電源產生并向電網反饋的干擾。電源濾波器作為抑制電源線傳導干擾的重要單元,在設備或系統的電磁兼容設計中具有極其重要的作用。它不僅可以抑制傳輸線上的傳導干擾,同時對傳輸線上的輻射發射也具有顯著的抑制效果。在濾波電路中,選用穿心電容、三端電容、鐵氧體磁環,能夠改善電路的濾波特性。進行適當的設計或選擇合適的濾波器,并正確的安裝濾波器是抗干擾技術的重要組成部分。在交流電輸入端加裝的電源濾波器電路如圖1所示。圖中Ld、Cd用于抑制差模噪聲,一般取Ld為100 mH-700mH,Cd取1?F-10?F。Lc、Cc用于抑制共模噪聲,可根據實際情況加以調整。所有電源濾波器都必須接地(廠家特別說明允許不接地的除外),因為濾波器的共模旁路電容必須在接地時才起作用。一般的接地方法是除了將濾波器與金屬外殼相接之外,還要用較粗的導線將濾波器外殼與設備的接地點相連。接地阻抗越低,濾波效果越好。濾波器盡量安裝在靠近電源入口處。濾波器的輸入及輸出端要盡量遠離,避免干擾信號從輸入端直接耦合到輸出端。

如在電源輸出端加輸出濾波器、加裝高頻電容、加大輸出濾波電感的電感量及濾波電容的容量,則可以抑制差模噪聲。如果把多個電容并聯,則效果會更好。6 EMI濾波器選用與安裝

開關電源EMI濾波器中的4只電容器用了兩種不同的下標“x”和“y”,不僅說明了它們在濾波網絡中的作用,還表明了它們在濾波網絡中的安全等級。無論是選用還是設計EMI濾波器,都要認真的考慮Cx和Cy的安全等級。在實際應用中,Cx電容接在單相電源線的L和N之間,它上面除加有電源額定電壓外,還會疊加L和N之間存在的EMI信號峰值電壓。因此,要根據EMI濾波器的應用場合和可能存在的EMI信號峰值,正確選用適合安全等級的Cx電容器。Cy電容器是接在電源供電線L、N與金屬外殼(E)之間的,對于220V、50Hz電源,它除符合250V峰值電壓的耐壓要求外,還要求這種電容器在電氣和機械性能方面具有足夠的安全裕量,以避免可能出現的擊穿短路現象。7 結語

在開關電源設計中,為了少走彎路和節省時間,應充分考慮并滿足抗干擾性的要求,避免在設計完成后去進行抗干擾的補救措施。

第三篇:IGBT模塊電磁兼容性設計

IGBT模塊電磁兼容性設計

(1)IGBT模塊的優化布局

變流器主電路在空間產生的磁場強度隨輸入、輸出母線中通過電流的強弱而變化,同時IGBT模塊產生的空間交變電磁場的強度隨其兩端電壓和電流突變的劇烈程度而變化。這些干擾信號很容易耦合到IGBT模塊的驅動線上。通過合理的布局,可以使在功率驅動端附近和驅動線一帶的空間交變電磁場強度最小,即干擾信號最小。設計中應采取以下措施。1)從濾波電容到IGBT模塊的直流連接采用雙層鍍錫銅板疊加技術。2)輸入、輸出母線與外部直流輸入端和外部交流輸出端采用銅條連接。

這種結構不僅可以減小寄生電感,而且對于IGBT模塊產生的空間交變電磁場起到了很好的屏蔽作用。

(2)IGBT模塊的接地設計

當IGBT模塊的柵極驅動或控制信號與主電流共用一個接地回路時,在開關過渡過程中,由于主電流具有很高的di/dt,功率電路漏電感上有感應電壓存在。一旦發生這種情況,電路中應該為“地”電位的各點實際上會處于高于“地電位”幾伏的電位上。這個電壓會出現在IGBT模塊的柵極,從而使IGBT模塊有可能誤導通。為了避免這個問題的出現,需要慎重考慮柵極驅動與控制電路的設計。在設計中應采取以下措施。

1)下橋臂每個柵極IGBT驅動電路都采用了分離絕緣措施,且各自的電源零線按在IGBT模塊的輔助端子上,不與主電流共用電流支路,以消除接地回路噪聲問題。2)在功率器件關斷期間,使用負的反向偏置電壓,以避免噪聲干擾。

經過電磁兼容性設計的變流器,在實際運行中可以獲得良好的技術性能指標,對此可以得到以下結論。

1)變流器所處的電磁環境十分復雜,帶來很多電磁干擾,良好的電磁兼容性設計是變流器安全可靠運行的關鍵。

2)吸收電路設計是變流器電磁兼容設計的難點,由于在功率母線的設計中采用了獨特的雙層鍍錫銅板疊加技術,母線電感足夠小,吸收電路只需簡單的無感電容即可。3)在設備或系統設計的初始階段應同時進行電磁兼容設計,把電磁兼容的大部分問題解決在設計定型之前,這樣可得到最高的性能價格比。

第四篇:通信設備的電磁兼容性設計

通信設備的電磁兼容性設計

李宏堅

(陜西烽火電子股份有限公司)摘要:本文從印制板設計、內部走線設計和機殼結構設計三方面,介紹了通信設備的一些電磁兼容性設計方法。

關鍵字:電磁兼容、印制板設計、內部走線設計、結構設計

隨著電磁環境越來越復雜,通信設備的電磁兼容性要求也越來越高,在設計階段就應該考慮其電磁兼容性,這樣可以將產品在生產階段出現電磁兼容問題的可能性減少到一個較低的程度。

一、通信設備印制板電磁兼容性設計

造成通信設備輻射超標的原因是多方面的,接口濾波不好,結構屏效低,電纜設計有缺陷都有可能導致輻射發射超標,但產生輻射的根本原因卻在PCB的設計,主要關注這幾個方面:

1.從減小輻射干擾的角度出發,應盡量選用多層板,內層分別作電源層、地線層,用以降低供電線路阻抗,抑制公共阻抗噪聲,對信號線形成均勻的接地面,加大信號線和接地面間的分布電容,抑制其向空間輻射的能力。

2.電源線、地線、印制板走線對高頻信號應保持低阻抗。在頻率很高的情況下,電源線、地線、或印制板走線都會成為接收與發射干擾的小天線,降低這種干擾的方法除了加濾波電容外,更值得重視的是減小電源線、地線及其他印制板走線本身的高頻阻抗,因此,各種印制板走線要短而粗,線條要均勻。

3.電源線、地線及印制導線在印制板上的排列要恰當,盡量做到短而直,以減小信號線與回線之間所形成的環路面積。

4.電路元件和信號通路的布局必須最大限度地減少無用信號的相互耦合。在PCB的不同的設計階段所關注的問題點不同,在元器件布局階段需要注意:

1.接口信號的濾波、防護和隔離等器件是否靠近接口連接器放置,先防護,后濾波;電源模塊、濾波器、電源防護器件是否靠近電源的入口放置,盡可能保證電源的輸入線最短,電源的輸入輸出分開,走線互不交叉;

2.晶體、晶振、繼電器、開關電源等強輻射器件或敏感器件是否遠離單板拉手條、連接器;

3.濾波電容是否靠近IC的電源管腳放置,位置、數量適當; 4.時鐘電路是否靠近負載,且負載均衡放置; 5.接口濾波器件的輸入、輸出是否未跨分割區;除光耦、磁珠、隔離變壓器、A/D、D/A等器件外,其它器件是否未跨分割區;

在PCB布線階段需要注意:

1.電源、地的布線處理無地環路,電源及與對應地構成的回路面積小; 2.差分信號線對是否同層、等長、并行走線,保持阻抗一致,差分線間無其他走線;

3.時鐘等關鍵信號線是否布內層(優先考慮優選布線層),并加屏蔽地線或與其他布線間距滿足3W原則,關鍵信號走線是否未跨分割區;

4.是否無其他信號線從電源濾波器輸入線下走線,濾波器等器件的輸入、輸出信號線是否未互相并行、交叉走線;

二、通信設備內部走線電磁兼容性設計 通信設備內部走線混亂,不僅會造成高、低電平信號之間相互干擾,也會給后期采用屏蔽、濾波、接地等補救措施帶來不便,會使設計的屏蔽、濾波電路、接地措施起不到應有的作用,在規劃內部走線時,需要遵循以下基本原則:

1.機箱內各種裸露走線要盡量短。2.傳輸不同電平信號的導線分組捆扎,數字電路和模擬電路信號線應分組捆扎,并保持適當距離,減少導線相互影響。

3.對產品中用來傳遞信號的扁平電纜,應采用地-信號-地-信號-地排列的方式,這樣可以有效抑制干擾,增強其抗干擾能力。

4.將低頻進線和回線絞合在一起,形成雙絞線,減少電磁干擾,如電源線。5.對確定的輻射干擾較大或敏感的導線要加屏蔽措施。

6.屏蔽電纜進出屏蔽體必須保證屏蔽層與屏蔽體之間可靠搭接,一般要求360°環接,并提供足夠低的搭接阻抗。

7.非屏蔽電纜原則上禁止直接從屏蔽體中出線。特殊情況下允許直接出線,但是要求屏蔽體內側(或者外側)電纜的長度不得越過80mm,注意這個尺寸包括PCB上面的走線,如果有濾波電路,指濾波電路與屏蔽體之間的電纜長度。

8.屏蔽電纜還有一種特殊應用場合,有時系統規定其屏蔽層不得與屏蔽體(實際上就是PGND)連接,典型的例子是同軸電纜。這時的屏蔽電纜可以按照非屏蔽電纜處理(在屏蔽體一側的長度不得超過80mm),或者采用雙層屏蔽電纜。

三、通信設備機殼結構的電磁兼容性設計

通信設備的金屬機殼是良好的屏蔽體,但實際上,由于屏蔽體上面不可避免地存在各種縫隙、開孔以及進出電纜等各種缺陷,這些缺陷將對屏蔽體的屏蔽效能有急劇的劣化作用,真正決定實際屏蔽體的屏蔽效能的因素是各種電氣不連續缺陷,包括縫隙、開孔、電纜穿透等。

1.機殼接縫

主要為通信設備的殼體與安裝蓋板之間的接縫,該類縫雖然面積不大,但其最大線度尺寸即縫長卻非常大,由于維修、開啟等限制,致使該類縫成為電子設備中屏蔽難度最大的一類孔縫,采用導電襯墊等特殊屏蔽材料可以有效地抑制電磁泄漏。該類孔縫屏蔽設計的關鍵在于:合理地選擇導電襯墊材料并進行適當的變形控制。

2.通風孔

該類孔面積和最大線度尺寸較大,通風孔設計的關鍵在于通風部件的選擇與裝配結構的設計。在滿足通風性能的條件下,應盡可能選用屏效較高的屏蔽通風部件,如在風扇的風道口增加與機殼連接,具有一定深度蜂窩狀銅網等。

3.觀察孔與顯示孔

該類型孔面積和最大線度尺寸較大,其設計的關鍵在于屏蔽透光材料的選擇與裝配結構的設計。

4.連接器與機箱的接縫

這類縫的面積與最大線度尺寸均不大,但由于在高頻時導致連接器與機箱的接觸阻抗急劇增大,從而使得屏蔽電纜的共模傳導發射變大,往往導致整個設備的輻射發射出現超標,為此應采用導電橡膠等連接器導電襯墊。

電磁兼容是一個整機性能指標,它與PCB設計、設備內部走線設計、結構設計的好壞有著密切的關系。在設計一個新產品時,一開始就必須考慮到電磁兼容問題,如果忽視了這一問題,到新產品定型時,干擾問題會暴露出來,因此及早地解決電磁干擾問題不僅是行之有效的,而且會大大降低產品成本。

參考文獻:

1、電磁兼容的印制板電路設計,(美)Mark I,Montrose著,呂英華 于學平張金玲譯,機械工業出版社,2008;

2、產品設計中的EMC技術,(英)威廉姆斯著,李迪 王培清譯,電子工業出版社,2004;

3、電磁兼容設計與整改對策及案例分析,朱文立著,電子工業出版社,2012。

第五篇:軍工電子設備電磁兼容性的試驗標準和達標技術

軍工電子設備電磁兼容性的試驗標準和達標技術

關鍵詞:GJBI51A-97標準;電磁兼容性;電磁干擾;受測試設備;屏蔽;濾波 0 引 言

近20年來,軍工電子設備對于電磁工作環境的兼容性能日益受到重視。EMC不僅與溫度、濕度、振動等并列成為考核軍工設備環境適應能力的重要指標,而且對某些軍工電子設備來講,電磁兼容性更是提到了所有各種環境要求中最重要的位置。這是因為現代軍工裝備的電子化程度大幅度提高后,軍工電子設備的功率譜和頻率譜不斷向高端和低端兩個方向延伸,軍工電子設備在海、陸、空各種平臺上的安裝密集度也大幅增加,導致各電子設備相互之間的電磁干擾(EMI)問題越來越突出。因此,要求軍工電子設備必須具有規定的電磁兼容能力已成為從事設備設計、生產、使用有關各方的共識。

為了考核軍工電子設備的EMC性能,幾乎所有的軍工電子設備都要求必須通過國家軍用標準規定的電磁兼容性試驗測試。因此,近年來有關軍工電子設備電磁兼容性的試驗標準和達標技術受到了前所未有的關注。

與其他環境條件的考核要求不同,“電磁兼容性”的檢驗不僅要考核設備對電磁環境的適應能力,還要考核該設備的存在是否會造成不利于容納其他設備正常工作的電磁環境。因此,電磁兼容性試驗是雙向性的試驗,受測試設備(EUT)必須在承受外部電磁干擾和不對外產生電磁干擾兩方面同時達標才算合格。又因為電磁信號能夠通過電路傳導和空間輻射2種途徑產生效應,所以,為使軍工電子設備能夠在電磁兼容性試驗中達標,必須在設備的電子電氣系統和機械結構系統兩方面協調采取措施。這些因素決定了電磁兼容性試驗相對其他的例行環境試驗來說更為復雜,達標也更不容易。

對從事軍工電子設備電磁兼容性設計和試驗的人員來說,除了要掌握與設備有關的專業知識和必不可少的電磁學、電子學、電工學方面的基礎知識以及有關材料科學和結構設計方面的知識外,還必須熟悉有關電磁兼容性試驗的軍用標準,并盡可能詳細地了解各項試驗的物理含義及對試驗測試的要求等方面的內容。

圍繞GJB151A.97標準¨ 的主要條文,筆者結合十幾年來對海、陸、空各種安裝平臺上的軍工電子設備從事電磁兼容性設計和試驗工作的實踐,針對軍標電磁兼容性試驗的各項主要考核要求,提供一些有利于使試驗項目達標的實用技術和經驗。1 GJB151A一97標準簡介

GJB151A.97標準全稱為“軍用設備和分系統電磁發射和敏感度要求”,是我國為軍用電子、電氣、機電等設備和分系統的研制和訂購制定的關于設備電磁發射和敏感度特性的國家軍用標準,規定了軍用設備必須滿足的EMC要求。該標準由國防科學技術工業委員會批準,發布于1997年5月23日,于1997年12月1日起實施。與該標準密切相關并同期發布和實施的另一個標準是GJB152A-97標準[2]“軍用設備和分系統電磁發射和敏感度測量”,規定了GJB151A-97標準中各項試驗指標的測量方法。

GJB151A-97標準的前身是發布于1986年的GJB151A-86標準,新版標準參照國外軍標(主要是美國軍標MIL)對老標準作了修訂,對一些指標作出了更嚴格的要求。

根據GJB151A-97標準的規定,軍用電子設備的EMC試驗包括下列19項:

· CE101 25 Hz~10 kHz電源線傳導發射

· CE102 10 kHz~10 MHz電源線傳導發射

· CE106 10 kHz~40 GHz天線端子傳導發射

· CE107電源線尖峰信號(時域)傳導發射

· CS101 25 Hz~50 kHz電源線傳導敏感度.

· CS103 15 kHz~10 GHz天線端子互調傳導敏感度

· CS104 25 Hz~20 GHz天線端子無用信號抑制傳導敏感度

· CS105 25 Hz~20 GHz天線端子交調傳導敏感度 · CS106電源線尖峰信號傳導敏感度

· CS109 50 Hz~100 kHz殼體電流傳導敏感度

· CS114 10 kHz~400 MHz電纜束注入傳導敏感度

· CS1 15電纜束注入脈沖激勵傳導敏感度

· CS116 10 kHz~100 MHz電纜和電源線阻尼正弦瞬變傳導敏感度

· REIO1 25 Hz~100 kHz磁場輻射發射

· RE102 10 kHz~18 GHz電場輻射發射

· RE103 10 kHz~40 GHz天線諧波和亂真輸出輻射發射

· RSIO1 25 Hz~100 kHz磁場輻射敏感度

· RS103 10 kHz 40 GHz電場輻射敏感度

· RS105瞬變電磁場輻射敏感度

對于各種不同的軍用安裝平臺,上述19項EMC試驗并非全部是必做的。所謂的軍用安裝平臺分為水面艦船、潛艇、陸軍飛機(含航線保障設備)、海軍飛機、空軍飛機、空間系統(含運載火箭)、陸軍地面、海軍地面、空軍地面9類。在GJB151A-97標準中,每個試驗項目對每種平臺的適用性都作出了規定。

對于要求進行EMC試驗的軍用電子設備,通常在所有試驗項目中,CE102、CSIO1、CS114、RE102、RS103這5項是最主要的必做項目。對裝載于艦船和飛機上的設備,還往往要求做CE101、CS115、CS116、RE101、RS101中的一些項,連同前述的5項,總的必做試驗項目在7項到9項之間。其余項目由訂購單位根據有關規范確定是否需做試驗。軍工電子設備的EMC特點和設計對策

軍工電子設備相對于一般的非軍工類電子設備或非電子類軍工設備來說,其電磁兼容性有如下一些特點。

1.安裝密集度高。出于戰術技術方面的考慮,軍工電子設備的安裝非常緊湊,大量功能各異的軍工電子設備密集于狹小的空間內,使得設備間的電磁干擾問題特別突出。

2.強弱信號共存。幾乎所有種類的軍工電子設備都要同時處理幅度相差懸殊的強弱多種信號。強信號對外部設備造成干擾,弱信號又對外部干擾極為敏感。

3.頻譜分布廣。軍工電子設備充分利用了頻率資源,占用了從直流到微波的各個頻帶。有的設備如雷達等工作于脈沖方式,覆蓋了廣闊的頻率范圍,對周邊設備造成強烈干擾。

4.共用電源和地線。各種安裝平臺上的大量軍工電子設備往往共用電源和備份電源、共用地線,使得通過電源耦合和地線耦合造成的相互干擾不能忽視。

5.設備機電結構的回旋余地小。軍工電子設備結構堅固,設備內部冗余空間小。如果在設計后期才對設備進行EMC強化,往往會與設備的原有機械結構或電氣布局發生沖突,這時就難以兼顧各方面的戰術技術性能指標。

由于以上這些特點,決定了軍工電子設備的EMC設計比一般的電子設備更為復雜和困難,電磁兼容性試驗的達標難度更高。要設計符合GJB151A.97電磁兼容性標準的軍工電子設備,首先要遵循通用的EMC設計原則,再在這個基礎上強化EMC措施,尤其要關注電源、機箱屏蔽、電路設計、接地質量這幾方面。2.1 電源和EMC的關系

在GJB151A.97標準中,CE101、CE102、CE107、CS101、CS106這5項是直接與電源有關的,CS114、CS115和CS116這3項與電源電纜有關,其余輻射發射和敏感度的項目間接與電源有關。因此可以說,軍工電子設備的EMC設計,第1步要做好的就是設備電源的EMC設計。2.1.1 電源EMC設計的主要對策(1)電源輸入端的電磁屏蔽和電源線濾波。電源線一進入機箱就要直接連接到電源濾波器上,或者采用輸入端兼做電源插座的電源濾波器。電源濾波器的安裝很有講究,濾波器的輸出線要遠離輸入線,金屬外殼要大面積接地。如果把進出濾波器的電源線捆扎在一起,這個濾波器就幾乎等于沒用。

(2)使用隔離變壓器。如果采用交流電源,在成本和安裝條件許可的情況下,最好使用隔離變壓器。最簡單的隔離變壓器是在初次級間有屏蔽隔離層的電源變壓器,這種變壓器能夠起到安全防護、變壓、隔離地線環流、提高共模干擾抑制能力等多種作用,而且其濾波特性能夠和電源濾波器互補。

(3)合理設計二次電源。設備的二次電源有開關電源和線性電源2種。雖然開關電源對外來干擾有一定的抑制能力,但不少開關電源對外的輻射發射和傳導發射過大,致使在EMC試驗時,能通過敏感度項目卻通不過發射項目。因此,在低功耗電路中,如可不用開關電源就盡量不用,選用線性穩壓器可避免產生對外干擾。

(4)電源的整體屏蔽。鑒于電源部分在電子設備EMC性能方面的重要性,還可以在屏蔽機箱內部把電源部分整體再屏蔽在另一個與其它部分隔離的空間內,形成對電源的整體屏蔽。2.2 機箱電磁屏蔽

機箱電磁屏蔽是防止空間電磁輻射最基本也是最有效的辦法,在GJB151A.97標準中,RE101、RE102、RS101、RS103、RS105這5項與機箱的屏蔽直接有關,其余與電纜有關的項目也間接與機箱屏蔽有關,因為電纜是要通過機箱進出的。2.2.1 設計屏蔽機箱的幾點原則

(1)保證屏蔽層的導電連續性。理論分析和EMC試驗都證明,電磁屏蔽體上的細長縫隙將使屏蔽效果大打折扣。因此,機箱結構上的所有外部縫隙都要實現連續且有良好的導電接觸。而對于直徑小于屏蔽機箱厚度的小孔,一般不必擔心影響EMC效果。

(2)妥善處理機箱的各種開口。機箱開口主要用來安裝開關、按鈕、指示燈與顯示屏等。開口較大時,如果難以在所安裝器件的前面采取屏蔽措施,也要在器件的后面加裝屏蔽層(后置屏蔽法),并對穿過屏蔽層的導線做濾波處理。

(3)正確選擇和安裝機箱接插件,解決電纜屏蔽問題。進出機箱的線纜如處理不當,會減弱甚至失去機箱屏蔽效能。因此,連接至機箱插座的外部線纜可加外屏蔽層,并且線纜的外屏蔽層要和機箱的屏蔽層保持導電連續性。安裝在機箱上的插座要選用符合軍用標準的屏蔽型接插件。機箱上安裝插座的接觸面不能有漆膜或涂塑層等任何絕緣材料。

(4)機箱散熱最好采用自然風冷的方式,允許有一些小的散熱孔。如果要安裝散熱風扇的話,需要在風扇外側安裝截止波導式屏蔽通風板。2.3 電路設計中的EMC對策

電路EMC設計的基本原則已有許多文獻述及,此處僅提一下幾個實用的具體細節。

1)應用多層印制電路板和表面貼裝元器件。具有電源層和地線層的4層以上印制電路板的EMC特性優于普通的單、雙面印制電路板,在電路設計時應盡可能采用多層板。表面貼裝元器件的等效電磁輻射面積顯著小于插裝式元器件,具有更好的EMC性能。所以多層電路板加表面貼裝元器件的組合應當成為符合GJBI51A-97標準要求的印制電路板設計首選。

2)信號傳感器的選用和傳感信號放大器的設計。傳感器一般安裝在設備主機箱以外,因此,對主機箱采取的電磁屏蔽措施覆蓋不到傳感器。又由于來自傳感器的信號十分微弱,所以傳感器經常成為電子設備中最易遭受外部電磁干擾的薄弱環節,尤其是在做RS101和RS103測試時。

傳感放大器有單端輸入式和差分輸入式之別。從理論上講,理想的平衡輸入差分放大器抑制共模干擾信號的能力很強,因此一般應采用這種輸入方式。但當干擾信號大到一定程度時(如RS103試驗時干擾場強最大可達200 V/m),可能導致有源差分放大器的工作范圍脫離線性區,使共模抑制失效。實際試驗的結果也表明,在嚴密屏蔽和良好接地的條件下,單端輸入式的傳感放大器抗干擾能力有時更勝一籌。因此,究竟選用哪種輸入放大電路,還需結合實際情況決定。

3)強化有源器件的高頻旁路。按照GJB151A.97標準做RS103項目的試驗時,有時會出現這種情況:干擾信號為等幅波時,輸出信號不受干擾;干擾信號為調幅波時,輸出信號中就有了干擾。經分析,可能是調幅波干擾信號竄入電路后,由于有源器件的非線性響應產生了高頻檢波,從而造成干擾。為防止這種情況,強化對有源器件的高頻旁路可起一些作用。2.4 注重接地質量

在電源、屏蔽和電路設計這3方面,都必須高度關注地線和接地質量問題。接地質量首先體現在要正確接地,即選擇正確的接地點和接地方式;再則是要可靠接地,接地面積要大、接地線要粗而短、接地螺栓要安裝緊固,以減小接地電阻。

綜上所述,對軍工電子設備進行EMC設計時,設計重點依次是電源、屏蔽、電路,而對接地的設計考慮則自始至終貫穿于這3個方面。3 針對各項軍標EMC試驗的達標技術

電磁干擾的物理本質是電磁場的相互作用。從理論上來講,有關電磁場的任何問題,都可以通過求解Maxwell方程組來得到精確的解答。但大多數軍工電子設備由數量眾多的結構件和電子元件組成,電磁場的空間分布非常復雜,閨此,在求解Maxwell方程組時無法得到足夠精確的、與現實環境相一致的邊界條件。而眾所周知,數學物理方程的解是強烈地依賴于邊界條件的。只要在理論計算中假定的邊界條件與實際分布有細微的差別,計算得出的結果就可能變得毫無意義。在這樣的情況下,實用經驗仍然在軍工電子設備EMC設計中起著相當重要的作用。

在GJB151A.97標準所列出的全部19項EMC試驗中,有5項和天線有關。如果被測試的不是無線通信類設備,這5項一般不需要做。CS109和RS105這2項試驗通常做得較少。余下的12項試驗,按其性質可分成4類:傳導發射類試驗、傳導敏感度類試驗、輻射發射類試驗、輻射敏感度類試驗。以下針對這4類電磁兼容性試驗項目,以測試達標為目的,介紹一些經實踐證明有效的設計準則和經驗。3.1 傳導發射類試驗

傳導發射類試驗包括CE101、CE102、CE107。前2項屬于電源線常規傳導發射試驗,都是測試EUT傳導發射到電源線上的信號,區別是所測試的傳導發射頻段不同;后1項測試EUT從電源線傳導發射出的尖峰信號。這3項傳導發射試驗所針對的都是EUT電源對環境的干擾,要求必須在規定值之下,以防止任何1臺設備經由共用電源去干擾其他設備。

EUT的電源線傳導發射信號有2個來源:來自EUT的功能電路和來自EUT的電源電路。在電源電路里阻斷EMI信號的傳導發射,主要手段是隔離和濾波。如果EUT是交流供電的,最簡單的隔離方法是采用具有屏蔽隔離層的電源變壓器,對于低頻段的EMI有較強的隔離功能。

在直流供電的情況下,為達到隔離的目的,要使用輸出和輸入不共地的DC/DC變換器。但DC/DC變換器采用脈寬調制技術,本身就是一個干擾源,因此,選型十分重要,應盡量選用低EMI的DC/DC變換器。電源進線處的濾波器必不可少。由于該濾波器為對稱無源電路結構,能夠起到雙向隔離濾波作用,不僅能阻擋外來干擾進入EUT,同時也防止內部干擾傳向外部。但電源濾波器主要用于濾除高頻段的干擾,對低頻段干擾基本無效。

電源電路的輸出濾波也很重要。對于功率型的電子設備,當負載功率變化時,造成電源供電變化,進而造成外部線上電源波動。如果這個波動的頻率超過25 Hz且幅度過大,CE101就不能達標。在電源電路的輸出端并聯大容量濾波電容器,利用電容的儲能作用,能夠使電源波動平滑化。只要把電源波動的頻率降到25 Hz以下,就可避開CE101試驗頻率的下限使試驗達標。對于信號型的電子設備,前端電路通過電源傳出去的干擾信號能量主要集中在高頻段,要使用高頻性能優良的小容量濾波電容器。又因為穩壓電源輸出端的交流等效阻抗很低,單純并聯電容的濾波效果不明顯,所以還要結合采用串聯電感的方法來提高高頻阻抗,增強濾波電容的旁路效果,以濾除高頻干擾。

采用這些方法,參照EUT的功率、工作頻率來選定所用抗干擾器件的參數,就能使CE101和CE102試驗項目達標。

CE107項目測試電源線尖峰信號對外的傳導發射干擾。電子設備工作時可能產生各種類型的尖峰干擾信號,但從傳導功率的強度和對共用電源的影響方面來考慮,EUT的電源開關是尖峰干擾的一個主要來源。如在某工程的一次多設備EMC聯合測試時,發現每當某設備啟閉電源時,都會造成鄰近的另一臺設備死機。檢查結果發現前一臺設備未通過CE107試驗,影響了相鄰設備。可使CE107達標的辦法較多,可在電源開關上并聯尖峰干擾吸收電路,或把設備電源從冷啟動改為熱啟動,或用無觸點開關代替機械開關,或者降低開關接通/關閉時電流上升/下降的速率等。3.2 傳導敏感度類試驗

傳導敏感度類試驗包括CS101、CS106、CS114、CS115、CSI16。前2項針對EUT的電源線做試驗,后3項測試的是連接到EUT的所有電纜(包括電源線)。本類試驗測試EUT對通過電纜傳人的外來干擾的敏感度,要求在規定的外來干擾傳人時,EUT對干擾不敏感,能保持正常工作。

CS101和CS106這2項試驗要求EUT在來自電源線的傳導干擾信號作用下能夠正常工作,3.1節中有關電源的隔離、濾波等措施在這里同樣適用。不過一般來說,傳導敏感度測試比傳導發射測試更難達標。這是因為在傳導發射測試時,被測信號是來自設備的,而設備依據其功能和用途的不同,并不一定會有干擾向外傳導發射,或者即使有的話,傳導發射出的干擾信號幅度和頻率也不一定落在被測的范圍內。比如當被測設備內部只有低頻小信號電路時,傳導發射類試驗就較易過關。而在做傳導敏感度試驗時,干擾信號來自外部,EUT必須在整個頻段內防御外來干擾。對付這種干擾,單純依靠電源濾波器是不夠的。對低頻段來說,要求的濾波電容容量很大,一般的電源濾波器不能使用這么大的電容容量。因為電源濾波器的濾波電容跨接在電源線和接地平面之間,過大的濾波電容會使旁路的干擾電流通過公共地線耦合到同一接地平面的其他設備中去,反而會造成新的電磁干擾。這一點對于裝載在艦船上的設備來講尤為突出。所以在GJB151A.97標準中,對電源輸入端的接地濾波電容容量上限是有限制的,一般應該小于0.1μF。

既要阻擋住來自電源線的EMI,又不能采用大容量的濾波電容,這時可選用能夠吸收和衰耗EMI的器件。磁環和磁柱等就是這類器件。在電源輸入端采用合適的磁性元件能夠有效地吸收EMI能量。這些磁性元件有許多品種規格,在滿足適用頻率要求的前提下,一般可選擇導磁率高的品種,但要避免在使用中出現磁飽和而使抗干擾性能失效。把輸入的一對電源線并排在磁環上繞幾圈,或并在一起穿過磁柱,可使電源電流一去一回產生的磁場相互抵消,避免磁飽和,共模干擾得到了抑制。在EMC測試時有過這樣的經驗,當CS101就差一點達不到標準的時候,在電源線上串1個磁環,往往可收到立竿見影的效果。

對于傳導敏感度試驗項目CS114、CS115、CS116來說,干擾頻率范圍從10 kHz到數百MHz,可采用高頻濾波和低頻電磁衰耗相結合的抗干擾措施。現在市面上已有商品化的EMI三端濾波器,其內部綜合采用了磁珠、電感和高頻電容,組成T型或雙T型濾波網絡,對高頻段干擾有較好的抑制作用。這些三端濾波器體積很小,可以在每1根進出設備的導線上串接1個濾波器。在電纜接入到設備機箱的地方,可選用內部襯有磁性材料的接插件。這類接插件內除了插針、插孔的金屬接觸偶以外的部位都襯了高頻磁性體,相當于在每根導線上都串了磁環,能夠在電纜接入設備處吸收掉高頻干擾。

從電路設計上來講,如電路的輸入信號采用平衡差分方式,連接到EUT的信號電纜應采用雙絞線型電纜,并選擇適當的絞距,使共模干擾信號的主要能量在輸入電路中相互抵消。3.3 輻射發射類試驗

輻射發射類試驗包括磁場輻射發射項目RE101和電場輻射發射項目RE102,最主要的測試項目是電場輻射發射RE102,測試的頻率范圍是10 kHz~18 GHz,在這個頻段內任何一個頻點上EUT的輻射發射信號都必須低于規定值才判定為測試達標。對于一臺具體的受測設備,實際的輻射發射頻率不可能覆蓋上述整個頻率范圍,輻射發射的能量往往集中在某些頻點或頻段中。大多數情況下,EUT低頻端的輻射發射常常來自開關電源,高頻端的輻射發射主要來自電路中振蕩器的基波和高次諧波。

開關電源的輻射發射和電源的品質密切相關,優質的開關電源不僅效率高,而且雜散輻射少。所以在選用開關電源時,一定要挑選符合軍標要求的電源,如Ericsson和Vicor等公司的軍標電源就具有低輻射的特性。

開關電源中DC/DC變換器的脈沖頻率是個很重要的參數,這個頻率一般在幾十kHz到幾百kHz間,也有的使用MHz級的變換頻率。如果在RE102測試時有某些頻段最難達標,有時改換頻率不同的開關電源,可以在試驗時避開這些頻段。

經驗表明,開關電源除了直接的對外輻射發射外,電源電路的脈寬調制(PWM)信號還可能對設備內的鄰近電路尤其是高頻電路產生寄生調制作用,使得在遠離開關電源工作頻率的頻點處出現輻射干擾。這種干擾很難在事先預料到,即使出現了也很難想到是由開關電源造成的。在機箱內部對開關電源單獨進行屏蔽可以大幅度抑制掉這種干擾。

另一個主要的輻射發射源是EUT電路里的晶體振蕩器。一般來說,要判斷輻射發射是否來自晶體振蕩器很簡單,因為晶振的頻率都是已知的,而且非常精確,如在RE102項目測試中測到的輻射頻率正好與晶振頻率相同或是其整數倍,那就說明是來自振蕩器基波或諧波的干擾。但也有例外,如果EUT里使用了多個頻率不同的晶振,各晶振頻率可能發生交叉調制,使輻射頻譜復雜化,導致在大量頻點處出現輻射干擾。降低晶體振蕩器的輻射發射,首先是要選用質量好的晶振并使其工作在低電壓、低功耗狀態,其次是正確設計振蕩電路以減少晶振的諧波,必要時對晶振電路進行板級屏蔽。盡量避免在電路里使用多個振蕩源,而采用從一個振蕩器導出其余所需頻率的技術。這些措施都可以使晶振的對外輻射大幅降低。目前有一種擴展頻譜能量的晶體振蕩器,可以把晶振的輻射能量分散到主振頻率周圍的譜帶中,以降低在某個特定頻點上的峰值輻射能量。有時可以考慮選用這種晶體振蕩器。

對于大多數軍工電子設備來說,不具有產生強磁場輻射的條件,RE101項目達標難度一般不大。3.4 輻射敏感度類試驗

輻射敏感度類試驗包括磁場輻射敏感度項目RS101和電場輻射敏感度項目RS103。對于需要接收或檢測微弱電信號的通信設備和自動控制設備,電場輻射敏感度是極為關鍵的測試項目,也可以說是所有EMC試驗中最難過關的一項測試。

要使RS103測試達標,仍然是在電源和屏蔽方面做工作。前述有關電源的抗傳導干擾措施也能適用于抗輻射干擾。為了避免外來輻射干擾通過電源電纜進入機箱,電源電纜要有屏蔽層,而且這一屏蔽層要在機箱外部接地,不能隨電源電纜進入機箱內再接地。

對于機箱的屏蔽,前面已提到要盡量保持整個機箱的導電連續性,仔細處理好機箱上的每一處接縫和開口。機箱的接縫最好是焊接,如果出于維修拆卸的考慮不能焊接,那必須把接縫壓緊。筆者曾經做過這樣的試驗:把l臺調頻收音機調到收音狀態放在鐵制機箱內,讓聲音通過機箱表面的小孔傳出。當把機箱蓋好后,收音機仍然能接收到電波。然后開始壓緊機箱蓋板,每壓緊一點,收音機的廣播聲就輕一點,當壓緊到一定程度后,就完全收不到廣播,只傳出收音機自身的靜態噪聲。可見壓緊接縫的重要性。為填充接縫問的細微問隙,在接縫處可使用銀鋁填料的導電橡膠襯墊。

機箱的開口有顯示孔和電纜進出孔等。3 mm以下的LED顯示孔對屏蔽效果影響不大,LCD顯示屏面積較大,不加屏蔽的話,外來電場輻射就會進入機箱。屏蔽的方法有在顯示屏上貼透明導電膜或加裝夾有金屬絲網的玻璃等。前者使用方便但屏蔽效果有限,后者屏蔽效果較好但對透光性有影響。無論采用哪種方法,都要注意屏蔽層與機箱良好的導電連續性,最好在顯示器的后面再加屏蔽罩,并使用高頻穿心電容器對通過后屏蔽罩的信號線進行濾波。電纜孔也是外來電場干擾竄人機箱的薄弱點。未采取措施的電纜穿過屏蔽體時,屏蔽效能將降低30 dB以上[4]。現在一些標準的軍品接插件可配裝專用的屏蔽電纜附件,使用這類附件能夠確保電纜外屏蔽層和接插件外殼有良好的導電連續性。

相比電場輻射來說,要求做磁場輻射敏感度RS101試驗的較少。但要注意,如果設備中有對磁場輻射敏感的器件如電感線圈或電磁傳感器等,就可能在RS101測試中不能達標。筆者曾把1臺通信設備安裝在某平臺的艙壁上,結果出現400 Hz的干擾聲,取下來就沒有干擾。起初懷疑在安裝位置處有電場干擾,但該設備已通過了RS103測試,而且無論如何改進屏蔽和接地都無濟于事。后來得知在安裝位置的艙壁內敷有400 Hz的電力電纜,大電流產生了強磁場,屬于磁場干擾而非電場干擾。因為電屏蔽和磁屏蔽的防護要求不同,通常的密封金屬機箱無法抵御磁場輻射。最后把該設備的動圈式語音傳感器改換成對磁場不敏感的駐極體式傳感器,干擾立即消失了。4 軍工電子設備EMC設計實例

近年來,筆者參照上述技術,結合選用合適的EMC器材,為陸用、海用、空用的多種軍工電子設備進行了符合GJB151A一97標準的EMC設計,獲得了良好的效果。以下試介紹一例。某通信設備,由1臺主機和若干臺從機、分機組成,要求按照GJB151A.97標準做CE102、CE107、CS101、CS106、CS114、CS115、CS116、RE102、RS103共9項EMC試驗。4.1 主要設計考慮及措施

1)機箱:考慮到該項設備對于重量相當敏感,決定采用ZL110型航空鑄鋁制造主機機箱。為減少縫隙,除前面板和上蓋板外,機箱一體化鑄造成型后進行精加工。前面板和上蓋板采用LY12型鋁板銑制,與機箱結合處銑出凹槽,槽內嵌入EMC專用彈性合金不銹鋼螺旋管。當面板和上蓋板安裝到機箱上時,螺旋管被適度壓緊,保持接觸面的導電連續性。為保證機箱表面的高導電率,機箱及蓋板在金加工完畢后經化學清洗,再進行導電氧化處理。從機和分機的機箱也采取類似工藝制造。

2)電源:電源采用屏蔽型電源接插件接人機箱,保險絲座加屏蔽罩。電源線進入機箱后立即接人雙節型電源濾波器,濾波輸出接至三層屏蔽(初級、初次級問、次級三層屏蔽)隔離變壓器。電源濾波器和隔離變壓器一起用一體化密封鋁盒整體屏蔽在機箱內部左后角。變壓器的輸出用雙絞線經高頻磁芯共模扼流圈接人整流橋,整流橋的每只二極管上并聯高頻旁路電容器,二次電源的每路輸出串接直流濾波器。3)機箱接插件:機箱插座采用軍標XC系列插座,通過座基方盤用4只螺絲把插座固定在機箱上。線纜插頭配裝屏蔽套筒。插座和插頭均鍍鎘處理,插針鍍金。插座方盤和機箱接觸面安裝CONCIL—A型鋁鍍銀微粒填充氟硅導電橡膠襯墊并壓緊。

4)系統間線纜:系統問線纜全部采用雙絞雙屏蔽輻射交聯氟塑料護套航空電纜,外屏蔽層接安裝平臺結構地,內屏蔽層根據線纜所載信號的性質選擇接地方式。所有線纜在進入機箱后通過饋通式濾波器或片式三端濾波器濾除高頻干擾信號;差分信號線通過共模扼流圈濾除共模干擾信號;話筒輸入的微弱音頻信號通過閉合磁路音頻變壓器進行隔離放大。5)電路板:采用4層印制電路板,貼片式元器件。

6)電子電路:選用低壓、小電流器件,精心進行電路設計,整機工作于低功耗狀態,可省去散熱系統以利機箱屏蔽。因為功耗小,可以使用線性二次電源,杜絕了開關電源的電磁輻射。

采取以上各種措施后,使得該臺設備在確保各項技術指標的同時,順利通過了按照GJB151A-97標準進行的9個項目EMC試驗,安裝到使用平臺后又通過了全系統EMC實測試驗,已在復雜的電磁環境中工作多年始終正常。5 結 語

參照國家軍用標準GJB151A.97的相關條文,結合實際工作,總結了軍工電子設備EMC設計和測試達標的一些經驗。電磁兼容是理論性與實踐性都很強的技術,在設計軍工電子設備時,如能夠依據理論和經驗較充分地預估到EMI的各種可能形式并采取相應的EMC對策,將使得整個設計過程更為合理有效,并且在完成設備制造進行電磁兼容性試驗時,不會出現大的反復,確保工作的質量和進度。參考文獻:

[1] 韋錦松,湯恒正,陳世鋼,等.軍用設備和分系統電磁發射和敏感度要求[M].北京:國防科工委軍標出版發行部,1997.

[2] 曲長云,王素英,郭仕恩,等.軍用設備和分系統電磁發射和敏感度測量[M].北京:國防科工委軍標出版發行部,1997.

[3] J.D.杰克遜.經典電動力學[M].北京:人民教育出版社,1978. [4] 陳偉華.電磁兼容實用手冊[M].北京:機械工業出版社,1998.

下載電子產品的電磁兼容性設計、測試和對策技術培訓班word格式文檔
下載電子產品的電磁兼容性設計、測試和對策技術培訓班.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

主站蜘蛛池模板: 欧美精品无码久久久久久| 国产丝袜一区视频在线观看| 久久伊人少妇熟女大香线蕉| 无码专区aaaaaa免费视频| 亚洲高清偷拍一区二区三区| 久久久综合香蕉尹人综合网| 成人亚洲一区无码久久| 熟女人妇交换俱乐部| 中文幕无线码中文字蜜桃| 亚洲 欧美 日韩 综合aⅴ视频| 精品国产福利在线视频| 无码专区中文字幕无码| 亚洲精品无码久久久久久久| 精品久久久久久无码免费| 亚洲色欲色欲综合网站| 亚洲一线二线三线写真| 日韩人妻无码一区二区三区综合部| 7m精品福利视频导航| 欧美黑人性暴力猛交喷水黑人巨大| 国产精品污www一区二区三区| 国产莉萝无码av在线播放| 五月天天天综合精品无码| 香蕉久久人人97超碰caoproen| 欧美日韩精品suv| 亚洲人成在线播放无码| 午夜精品久久久久久久喷水| 欧美老人巨大xxxx做受视频| 国产精品无码mv在线观看| 中年国产丰满熟女乱子正在播放| 国产精品无码av一区二区三区| 无码国产精品一区二区免费3p| 性生交大全免费看| 夜色阁亚洲一区二区三区| 无码吃奶揉捏奶头高潮视频| 天天躁日日躁狠狠久久| 中国精学生妹品射精久久| 国内精品久久久久久久电影视| 亚洲人成无码网站在线观看| 无码少妇精品一区二区免费| 精品国产乱码久久久久软件| 国模杨依粉嫩蝴蝶150p|