第一篇:海倫公式
海倫公式
與海倫在他的著作“Metrica”(《度量論》)中的原始證明不同,在此我們用三角公式和公式變形來證明。設(shè)三角形的三邊a、b、c的對角分別為A、B、C,則余弦定理為下述推導(dǎo)[1]
cosC =(a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
設(shè)p=(a+b+c)/2
則p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面積S=√[p(p-a)(p-b)(p-c)]
證明⑵
中國宋代的數(shù)學(xué)家秦九韶在1247年也提出了“三斜求積術(shù)”。它與海倫公式基本一樣,其實在《九章算術(shù)》中,已經(jīng)有求三角形公式“底乘高的一半”,在實際丈量土地面積時,由于土地的面積并不是三角形,要找出它來并非易事。所以他們想到了三角形的三條邊。如果這樣做求三角形的面積也就方便多了。但是怎樣根據(jù)三邊的長度來求三角形的面積?直到南宋,中國著名的數(shù)學(xué)家秦九韶提出了“三斜求積術(shù)”。
秦九韶他把三角形的三條邊分別稱為小斜、中斜和大斜。“術(shù)”即方法。三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個數(shù),小斜平方乘以大斜平方,送到上面得到的那個。相減后余數(shù)被4除,所得的數(shù)作為“實”,作1作為“隅”,開平方后即得面積。
所謂“實”、“隅”指的是,在方程px 2=q,p為“隅”,q為“實”。以△、a,b,c表示三角形面積、大斜、中斜、小斜,所以
q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}
當(dāng)P=1時,△ 2=q,△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}
因式分解得
△ ^2=1/4[4a^2c^2-(a^2+c^2-b^2)^2]
=1/4[(c+a)^2-b ^2][b^ 2-(c-a)^ 2]
=1/4(c+a+b)(c+a-b)(b+c-a)(b-c+a)
=1/4(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c)
=1/4[2p(2p-2a)(2p-2b)(2p-2c)]
=p(p-a)(p-b)(p-c)
由此可得:
S△=√[p(p-a)(p-b)(p-c)]
其中p=1/2(a+b+c)
這與海倫公式完全一致,所以這一公式也被稱為“海倫-秦九韶公式”。
S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}.其中c>b>a.根據(jù)海倫公式,我們可以將其繼續(xù)推廣至四邊形的面積運算。如下題:
已知四邊形ABCD為圓的內(nèi)接四邊形,且AB=BC=4,CD=2,DA=6,求四邊形ABCD的面積
這里用海倫公式的推廣
S圓內(nèi)接四邊形= 根號下(p-a)(p-b)(p-c)(p-d)(其中p為周長一半,a,b,c,d,為4邊)
代入解得s=8√ 3
證明⑶
在△ABC中∠A、∠B、∠C對應(yīng)邊a、b、c
O為其內(nèi)切圓圓心,r為其內(nèi)切圓半徑,p為其半周長
有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1
r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r
∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2
∴ r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)
=[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2
=ptanA/2tanB/2tanC/2
=r
∴p^2r^2tanA/2tanB/2tanC/2=pr^3
∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2)
=p(p-a)(p-b)(p-c)
∴S=√p(p-a)(p-b)(p-c)
第二篇:海倫公式原理簡介
原理簡介
我國宋代的數(shù)學(xué)家秦九韶也提出了“三斜求積術(shù)”,它與海倫公式基本一樣。
假設(shè)在平面內(nèi),有一個三角形,邊長分別為a、b、c,三角形的面積S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)]
而公式里的p為半周長:
p=(a+b+c)/2
——————————————————————————————————————————————
注1:“Metrica”(《度量論》)手抄本中用s作為半周長,所以
S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]兩種寫法都是可以的,但多用p作為半周長。
——————————————————————————————————————————————
由于任何n邊的多邊形都可以分割成n-2個三角形,所以海倫公式可以用作求多邊形面積的公式。比如說測量土地的面積的時候,不用測三角形的高,只需測兩點間的距離,就可以方便地導(dǎo)出答案。編輯本段證明過程 證明(1)
與海倫在他的著作“Metrica”(《度量論》)中的原始證明不同,在此我們用三角公式和公式變形來證明。設(shè)三角形的三邊a、b、c的對角分別為A、B、C,則余弦定理為
cosC =(a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 設(shè)p=(a+b+c)/2 則p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面積S=√[p(p-a)(p-b)(p-c)] 證明(2)
我國宋代的數(shù)學(xué)家秦九韶也提出了“三斜求積術(shù)”。它與海倫公式基本一樣,其實在《九章算術(shù)》中,已經(jīng)有求三角形公式“底乘高的一半”,在實際丈量土地面積時,由于土地的面積并不是的三角形,要找出它來并非易事。所以他們想到了三角形的三條邊。如果這樣做求三角形的面積也就方便多了。但是怎樣根據(jù)三邊的長度來求三角形的面積?直到南宋,我國著名的數(shù)學(xué)家秦九韶提出了“三斜求積術(shù)”。
秦九韶他把三角形的三條邊分別稱為小斜、中斜和大斜。“術(shù)”即方法。三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個數(shù),小斜平方乘以大斜平方,送到上面得到的那個。相減后余數(shù)被4除,所得的數(shù)作為“實”,作1作為“隅”,開平方后即得面積。
所謂“實”、“隅”指的是,在方程px 2=q,p為“隅”,q為“實”。以△、a,b,c表示三角形面積、大斜、中斜、小斜,所以
q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}
當(dāng)P=1時,△ 2=q,△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2} 因式分解得
△ ^2=1/16[4a^2c^2-(a^2+c^2-b^2)^2] =1/16[(c+a)^2-b ^2][b^ 2-(c-a)^ 2] =1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)=1/16(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c)=1/16 [2p(2p-2a)(2p-2b)(2p-2c)] =p(p-a)(p-b)(p-c)由此可得:
S△=√[p(p-a)(p-b)(p-c)]
其中p=1/2(a+b+c)
這與海倫公式完全一致,所以這一公式也被稱為“海倫-秦九韶公式”。
S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}.其中c>b>a.根據(jù)海倫公式,我們可以將其繼續(xù)推廣至四邊形的面積運算。如下題:
已知四邊形ABCD為圓的內(nèi)接四邊形,且AB=BC=4,CD=2,DA=6,求四邊形ABCD的面積
這里用海倫公式的推廣
S圓內(nèi)接四邊形= 根號下(p-a)(p-b)(p-c)(p-d)(其中p為周長一半,a,b,c,d,為4邊)
代入解得s=8√ 3 證明(3)
在△ABC中∠A、∠B、∠C對應(yīng)邊a、b、c O為其內(nèi)切圓圓心,r為其內(nèi)切圓半徑,p為其半周長 有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1 r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r ∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2 ∴ r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2 =ptanA/2tanB/2tanC/2 =r ∴p^2r^2tanA/2tanB/2tanC/2=pr^3
∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2)=p(p-a)(p-b)(p-c)∴S=√p(p-a)(p-b)(p-c)證明(4)通過正弦定理:和余弦定理的結(jié)合證明(具體可以參考證明方法1)編輯本段推廣
關(guān)于三角形的面積計算公式在解題中主要應(yīng)用的有:
設(shè)△ABC中,a、b、c分別為角A、B、C的對邊,ha為a邊上的高,R、r分別為△ABC外接圓、內(nèi)切圓的半徑,p =(a+b+c)/2,則
S△ABC
=1/2 aha
=1/2 ab×sinC
= r p
= 2R^2sinAsinBsinC
= √[p(p-a)(p-b)(p-c)]
其中,S△ABC =√[p(p-a)(p-b)(p-c)] 就是著名的海倫公式,在希臘數(shù)學(xué)家海倫的著作《測地術(shù)》中有記載。編輯本段海倫公式在解題中有十分重要的應(yīng)用。
一、海倫公式的證明
證一 勾股定理
如右圖
勾股定理證明海倫公式。
證二:斯氏定理
如右圖。
斯氏定理證明海倫公式
證三:余弦定理
分析:由變形② S = 可知,運用余弦定理 c2 = a2 + b2 -2abcosC 對其進行證明。
證明:要證明S =
則要證S =
=
= ab×sinC
此時S = ab×sinC/2為三角形計算公式,故得證。
證四:恒等式
恒等式證明(1)
恒等式證明(2)證五:半角定理
∵由證一,x = = -c = p-c
y = = -a = p-a
z = = -b = p-b
∴ r3 = ∴ r =
∴S△ABC = r·p = 故得證。
二、海倫公式的推廣
由于在實際應(yīng)用中,往往需計算四邊形的面積,所以需要對海倫公式進行推廣。由于三角形內(nèi)接于圓,所以猜想海倫公式的推廣為:在任意內(nèi)接與圓的四邊形ABCD中,設(shè)p= ,則S四邊形=
現(xiàn)根據(jù)猜想進行證明。
證明:如圖,延長DA,CB交于點E。
設(shè)EA = e EB = f ∵∠1+∠2 =180° ∠2+∠3 =180° ∴∠1 =∠3 ∴△EAB~△ECD ∴ = = =
解得: e = ① f = ②
由于S四邊形ABCD = S△EAB
將①,②跟b = 代入公式變形④,得到: ∴S四邊形ABCD = 所以,海倫公式的推廣得證。
編輯本段例題:
C語言版:
如圖四邊形ABCD內(nèi)接于圓O中,SABCD = ,AD = 1,AB = 1, CD = 2.求:四邊形可能為等腰梯形。解:設(shè)BC = x 由海倫公式的推廣,得:(4-x)(2+x)2 =27
x4-12x2-16x+27 = 0
x2(x2—1)-11x(x-1)-27(x-1)= 0(x-1)(x3+x2-11x-27)= 0 x = 1或x3+x2-11x-27 = 0 當(dāng)x = 1時,AD = BC = 1 ∴ 四邊形可能為等腰梯形。在程序中實現(xiàn)(VBS): dim a,b,c,p,q,s a=inputbox(“請輸入三角形第一邊的長度”)b=inputbox(“請輸入三角形第二邊的長度”)c=inputbox(“請輸入三角形第三邊的長度”)a=1*a b=1*b c=1*c p=(a+b+c)*(a+b-c)*(a-b+c)*(-a+b+c)q=sqr(p)s=(1/4)*q msgbox(“三角形面積為”&s), ,“三角形面積” 在VC中實現(xiàn)
#include
using System;using System.Collections.Generic;using System.Text;namespace CST09078 class Program static void Main(string[] args)
double a, b, c, p, s;
Console.WriteLine(“輸入第一條邊的長度:n”);a = Convert.ToDouble(Console.ReadLine());Console.WriteLine(“輸入第二條邊的長度:n”);b = Convert.ToDouble(Console.ReadLine());Console.WriteLine(“輸入第三條邊的長度:n”);c = Convert.ToDouble(Console.ReadLine());p =(a+b+c)/2;s = Math.Sqrt(p*(pb)*(p-c));Console.WriteLine(“我算出來的面積是{0}”, s);Console.Read();
第三篇:海倫公式的證明
與海倫在他的著作“Metrica”(《度量論》)中的原始證明不同,在此我們用三角公式和公式變形來證明。設(shè)三角形的三邊a、b、c的對角分別為A、B、C,則余弦定理為cosC =(a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]設(shè)p=(a+b+c)/2則p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形ABC面積S=√[p(p-a)(p-b)(p-c)]
第四篇:海倫公式與四邊形面積公式
海倫公式與四邊形面積公式
2007年08月01日 星期三 00:43 我們知道,已知三角形的三條邊長度a,b,c(2p=a+b+c),就可以由海倫公式得到三角形的面積:
所以:已知圓內(nèi)接三角形的三邊長,其面積公式為海倫公式。事實上,對于圓內(nèi)接四邊形,已知其四邊形的四邊長(不妨設(shè)其為a,b,c,d,2p=a+b+c+d),也可以求其面積,而且公式的形式與海倫公式相類似:
證明:
設(shè)圓內(nèi)接四邊形ABCD中,AB=a,BC=b,CD=c,DA=d,設(shè)∠BAD=θ,則∠BCD=180°-θ,設(shè)其對角線BD=x,由余弦定理有:
聯(lián)立兩式解得:
第五篇:高中數(shù)學(xué)必修五《海倫公式探究》
海倫公式探究
背景:海倫公式在數(shù)學(xué)學(xué)習(xí)中使用非常廣泛,它方便了日常數(shù)學(xué)學(xué)習(xí)中三角形的面積計算,使我們只需知道任意三角形的三邊長度,就可以用公式求得三角形的面積大小。但是你知道海倫公式的證明方法嗎?本次探究,著手海倫公式的證明方法、推廣,使同學(xué)們能更深刻地記住海倫公式、容易證明,并且合理使用。
過程:海倫公式 證明 三斜求積術(shù) 推廣 運用 余弦定理
海倫公式又譯作希倫公式、海龍公式、希羅公式、海倫-秦九韶公式,傳說是古代的敘拉古國王 希倫(Heron,也稱海龍)二世發(fā)現(xiàn)的公式,利用三角形的三條邊長來求取三角形面積。但根據(jù)Morris Kline在1908年出版的著作考證,這條公式其實是阿基米得所發(fā)現(xiàn),以托希倫二世的名發(fā)表(未查證)。我國宋代的數(shù)學(xué)家秦九韶也提出了“三斜求積術(shù)”,它與海倫公式基本一樣。
如右圖,假設(shè)有一個三角形,邊長分別為a、b、c,三角形的面積S可由圖下公式求得。
證明Ⅰ:
與海倫在他的著作“Metrica”(《度量論》)中的原始證明不同,在此我們用三角公式和公式變
a2?b2?c2形來證明。設(shè)三角形的三邊a、b、c的對角分別為A、B、C,則余弦定理為:cosC?
2abS?1ab?sinC① 21?ab?1?cos2C② 21(a2?b2?c2)2③ ?ab?1?2224a?b141?41?41?4?4a2b2?(a2?b2?c2)④
(2ab?a2?b2?c2)(2ab?a2?b2?c2)⑤ [(a?b)2?c2][c2?(a?b)2]⑥
(a?b?c)(a?b?c)(a?b?c)(?a?b?b)⑦
a?b?b 2?a?b?ca?b?ca?b?c,p?b?,p?c?, 則p?a?222設(shè)p?上式?(a?b?c)(a?b?c)(a?b?c)(?a?b?c)
16?p(p?a)(p?b)(p?c)
所以,S△ABC?
p(p?a)(p?b)(p?c)
證明Ⅱ:我國著名的數(shù)學(xué)家九韶在《數(shù)書九章》提出了“三斜求積術(shù)”。
秦九韶他把三角形的三條邊分別稱為小斜、中斜和大斜。“術(shù)”即方法。三斜求積術(shù)就是用小斜平方加上大斜平方,送到斜平方,取相減后余數(shù)的一半,自乘而得一個數(shù)小斜平方乘以大斜平方,送到上面得到的那個。相減后余數(shù)被4除馮所得的數(shù)作為“實”,作1作為“隅”,開平方后即得面積。
所謂“實”、“隅”指的是,在方程px 2=qk,p為“隅”,Q為“實”。以△、a,b,c表示三角形面積、大斜、中斜、小斜。
定理:若三角形的三條邊分別是:大斜、中斜、小斜,則三角形面積為:
原文見<數(shù)書九章>卷五第二題: 以小斜冪并大斜冪,減中斜冪,余,半之.同乘于上,以小斜冪并大斜冪,減上.余,四約之為實,開平方,得積.
證明:如 圖,a=u+v,b2=h2+u2,c2=h2+v2 所以,u2-v2=b2-c2
(u+v)(u-v)=(b+c)(b-c)a(u-v)=(b+c)(b-c)(u-v)=(b+c)(b-c)/a 因(u+v)=a,所以22又 h=b-u,三角形面積=a.h/2
此即:,其中c>b>a.將根號下的多項式分解因式,便成為可見,三斜求積術(shù)與古希臘海倫公式是等價的 所以這一公式也被稱為“海倫-秦九韶公式”。
關(guān)于三角形的面積計算公式在解題中主要應(yīng)用的有:
設(shè)△ABC中,a、b、c分別為角A、B、C的對邊,ha為a邊上的高,R、r分別為△ABC外接圓、內(nèi)切圓的半徑,p =
1(a+b+c),則 211S△ABC =aha=ab×sinC = r p 22abc 4R = 2R----2sinAsinBsinC =
=p(p?a)(p?b)(p?c)
p(p?a)(p?b)(p?c)就是著名的海倫公式,在希臘數(shù)學(xué)家海倫的著作《測地術(shù)》中有記其中,S△ABC =載。
海倫公式在解題中有十分重要的應(yīng)用。
一、海倫公式的變形
S=p(p?a)(p?b)(p?c)
(a?b?c)(a?b?c)(a?c?b)(b?c?a)
① [(a?b)2?c2][c2?(a?b)2] ②(a2?b2?c2?2ab)[?(a2?b2?c2?2ab)] ③ 4a2b2?(a2?b2?c2)④ 2a2b2?2a2c2?2b2c2?a4?b4?c4 ⑤ 141 =41 =41 =41 =4 =
證一:根據(jù)勾股定理證明。分析:先從三角形最基本的計算公式S△ABC =導(dǎo)出海倫公式。
1aha入手,運用勾股定理推2
證二:根據(jù)斯氏定理證明。
根據(jù)海倫公式,我們可以將其繼續(xù)推廣至四邊形的面積運算。如下題:
{已知四邊形ABCD為圓的內(nèi)接四邊形,且AB=BC=4,CD=2,DA=6,求四邊形ABCD的面積}
這里用海倫公式的推廣
S圓內(nèi)接四邊形?(p?a)(p?b)(p?c)(p?d)(其中p為周長一半,a,b,c,d,為4邊)
代入解得s?83
海倫公式在解題中有十分重要的應(yīng)用。
二、海倫公式的推廣
由于在實際應(yīng)用中,往往需計算四邊形的面積,所以需要對海倫公式進行推廣。由于三角形內(nèi)接于圓,所以猜想海倫公式的推廣為:在任意內(nèi)接與圓的四邊形ABCD中,設(shè)p==(p?a)(p?b)(p?c)(p?d)
現(xiàn)根據(jù)猜想進行證明。
證明:如圖,延長DA,CB交于點E。
設(shè)EA = e EB = f ∵∠1+∠2 =180○ ∠2+∠3 =180○ ∴∠1 =∠3 ∴△EAB~△ECD
a?b?c?d,則S
2四邊形
S?EABfbb2e∴== = a?ef?cdS四邊形ABCDd2?b2解得: e =b(ab?cd)b(ad?bc)① f = ②
d2?b2d2?b2d2?b2由于S四邊形ABCD =S△EAB
b2b(d2?b2)將①,②跟b =代入公式變形④,得:22d?b
所以,海倫公式的推廣得證。
三、海倫公式的推廣的應(yīng)用
海倫公式的推廣在實際解題中有著廣泛的應(yīng)用,特別是在有關(guān)圓內(nèi)接四邊形的各種綜合題中,直接運用海倫公式的推廣往往事半功倍。
例題:如圖,四邊形ABCD內(nèi)接于圓O中,SABCD =求:四邊形可能為等腰梯形。解:設(shè)BC = x 由海倫公式的推廣,得:
33,AD = 1,AB = 1, CD = 2.4133(1?1?2?x)(1?1?x?2)(2?x?1?1)(2?x?1?1)= 44(4-x)(2+x)2 =27 x4-12x2-16x+27 = 0 x2(x2—1)-11x(x-1)-27(x-1)= 0(x-1)(x3+x2-11x-27)= 0 x = 1或x3+x2-11x-27 = 0 當(dāng)x = 1時,AD = BC = 1 ∴ 四邊形可能為等腰梯形。