久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

英語 專業論文怎么寫

時間:2019-05-15 13:53:20下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《英語 專業論文怎么寫》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《英語 專業論文怎么寫》。

第一篇:英語 專業論文怎么寫

英語專業論文怎么寫

一.關于本專業畢業論文的選題

英語專業本科生畢業論文選題可以在三個大的方向中進行,即英語文學,語言學和翻譯學。各個大方向中又可以選擇小的方向,具體解釋如下:

1.英語文學:選擇英語文學的畢業論文選題可以從三個方向進行:國別文學研究、文學批評理論研究和比較文學研究。

在進行國別文學研究選題時,一般選取英國文學或美國文學中的某一經典作家(如海明威),某一經典作品(如《雙城記》),某一寫作手法(如象征手法的運用)或某一文學思潮(如浪漫主義運動)作深入研究。但在選擇作家或作品時最好選擇在文學史上作為經典的作家或作品。有個別流行作家或作品極富盛名,容易引起學生的興趣,如《飄》或《荊棘鳥》,學生有強烈愿望選擇它們作為研究對象。在不可避免上述情況時,應該盡可能地挖掘作品內在的深刻含義,不能流于膚淺的分析。

文學批評理論的選題一般不太適合英語專業本科生,因為該理論知識的學習在英語專業研究生階段,本科生一般不具備文學批評理論的知識結構。這個方向的選題可以有關某一文學批評理論,一文學批評術語的闡釋或某兩種或以上的文學批評理論的比較。

比較文學研究就是將兩個以上的作家或作品進行比較。這兩個作品或作家可以是同一國別的(如“雪萊與拜倫的詩歌比較”),也可以是不同國別的(如《牡丹亭》與《羅密歐與朱麗葉》)

2.語言學:選擇語言學的畢業論文選題可以在兩個大的方向進行:普通語言學和應用語言學。

普通語言學的研究就是對于英語語言的任何一個方面的研究,如對一種詞性、或一種時態、或拼寫、語調等等方面的研究(如“一般現在時及其交際功能”)。

應用語言學包括教學法的研究和其它一些新興的應用語言學分支的研究。師范專業或本身從事教師職業的學生選擇教學法方向的較多。在這個方向選題,也要避免過大范圍的選題,而應對一個具體問題進行研究,最重要的是要結合教學實踐或實驗。這個方向的好的選題有:“個性與英語教學”,“方言對英語學習的影響”等。

3.翻譯學:翻譯學的選題一般可以在兩個方向上進行:翻譯理論以及翻譯活動。對翻譯理論的研究就是探討某一種翻譯理論等等。相比之下,對翻譯活動的研究更多一些,這些選題可以是對一種語言現象的翻譯、或一種修辭格的翻譯的研究(如“漢語成語的英譯”)。應該注意的是,在對翻譯活動作研究時,往往需要某種翻譯理論支撐,總結規律,并對這一活動作出評價,要避免僅僅時例子的羅列。

二.英語專業畢業論文格式要求

學位論文包括前置、主體、附錄等三個部分。

(一)前置

1.英文封面:由論文英文題目、解釋、作者、指導老師姓名和職稱、時間組成。

2.目錄:由論文的中、英文摘要、篇、章、條、款以及參考書目、附錄等序號、題名和頁碼組成,排在英文封面之后另頁。

3.中、英文內容摘要:摘要是論文的內容不加注釋和評論的簡短陳述,宜以最簡潔的語言介紹論文的概要、作者的突出論點、新見解或創造性成果以及實驗方法、數據或結論,是一篇完整的短文,可以獨立使用,中文摘要一般在200字左右

4關鍵詞:關鍵詞是用以表示全文主題內容信息的單詞或術語。為便于文獻檢索,學位論文應注明三至五個具有代表意義中、外文“關鍵詞”,這些關鍵詞就是論文的中心詞,以顯著的字符另起一行,分別排在中、外文摘要的左下方。各關鍵詞之間用“分號”隔開。外文關鍵詞應與中文關鍵詞相對應。

(二)主體部分

主題部分包括引言(Introduction)、正文(Body)、結論(Conclusion)、參考文獻(Bibliography)。主體部分必須由另頁右頁開始。

1.引言:主要說明研究工作的目的、涉及范圍、相關領域的前人研究成果和知識空白、研究設想、研究方法等方面的概述、理論意義和實用價值等。

2.正文:論文的正文是核心部分,占主要篇幅。一般論文選題需要從幾個方面來論述或論證。要求論據充分,論點明確。行文必須實事求是,客觀真切,準確完備,合乎邏輯,層次分明,簡練可讀。正文部分要有分級標題,章、條、款、項的序號編碼方法,采用阿拉伯數分級系列編號法,論文中的章、條、款、項依次排列,依次從1開始,連續編號,中間用“.”相隔,最末級編號之后不加點。示例:

1.2.…… 2.12.2…… 2.2.1

2.2.22.2.3.… 2.2.3.1

3.結論:學位論文的結論是最終的、總體的結論,它是對正文部分的論述的概述,也可以在結論或討論中提出建議、研究設想、尚待解決的問題等。

4.參考文獻:寫作學位論文過程中,閱讀或運用過某些文獻所列出的書目清單,置于正文之后,另頁開始。參考文獻的著錄按原文獻語種為原則。

(1)文獻目錄應另頁書寫,外文文獻排前,中文文獻排后。外文文獻書名須用斜體。

(2)文獻目錄一律按作者姓氏漢語拼音或外文字母順序排列。

(3)每條文獻必須頂格寫,回行時空兩字或五個英語字母。

(4)將各文獻的類型代號(即文獻英文名的首字母)注明在文獻之后:

專著[M] 學位論文[D]論文集〔C〕 報紙文章〔N〕期刊文章〔J〕報告[R]

專利 [P]專著、論文集的析出文獻[A]其他未說明文件 〔Z〕

電子文獻中光盤圖書 [M/CD](MONOGRAPH ON CD)

網上期刊〔J/OL〕(serial online)

5.文內所引文獻:要求附夾注,應在引文后加括號注明作者姓名(英文只注姓),出版年和引文頁碼。若為轉引文獻,則加quoted in 字樣。

例:(王佐良,1982:38)

(Newmark,8:26-33)

6.文獻中列出的文獻應該與正文中標注的文獻一一對應。正文中沒有出現的,不應出現在參考文獻中。

(三)附錄部分

附錄包括所有與論文有關的補充材料,如圖表或照片等。

第二篇:英語專業論文

英語專業文學方向本科畢業論文寫作問題探究

[摘 要]英語畢業論文由于從事英美文學教學的教師理論水平參差不齊、教師對學生文藝理論接受能力的懷疑、商品經濟時代文學和文藝理論曲高和寡等因素,造成文學學習和文學方向畢業論文寫作中缺乏科學的分析方法。本研究將探索將文藝理論引入本科畢業生的論文寫作課程中的必要性和可行性,從而建構以文藝理論為中心的英語專業文學方向畢業論文寫作的新模式。

[關鍵詞]文學理論;讀者反映理論;認知教學法

依據《高等教育法》(1998)的本科教育學業標準,學生應比較系統地掌握本專業所必需的基礎理論知識、基本技能和相關知識,并“具有從事本專業實際工作和研究工作的初步能力”。這一標準強調了研究性教學(research-oriented teaching)的重要性,無疑為英美文學教學中理論研究與實踐的有機融合提出了要求,而這種融合往往體現在學生文學論文寫作的能力之中。然而,高校中實用主義風氣、急功近利思想和“重技能,輕人文”弊端的集中體現沖擊著文學課教學,助長了學生輕視與人文修養有關的課程,助長了他們對文學作品敬而遠之的傾向(馬愛華, 2006)。作為全面考核畢業生綜合素質的有效途徑,畢業論文寫作是本科學生畢業前必須經受的考驗關口,是師生教學相長的過程。本文將從文學課教學的現狀出發,通過畢業論文寫作的過程,在揭示現象、總結經驗的基礎上,提出重視文藝理論的教學,提高學生的文學素養,培養研究性學習能力的意義。

一、研究現狀

部分專家認為英語專業(張沖, 2003)是“英語語言技能的專業訓練和對英語語言文化的專門研究”,其特征為“技能加專業,復合而開放”,其培養目標為“純熟的語言能力,深度的專題研究”。這一專業定位除了強調語言技能之外,著重強調了“文化”和“研究”。文化理解和專題研究的基礎在于學生文學課程的給養過程,其中,文學理論分析則既指導了文學課程的學習,又加深了學生對文學作品的理解。文學作品的學習與文藝理論的關系好比材料和工具的關系,“工欲善其事,必先利其器”,如果學生沒有相關的文藝理論的學習,就好比一個沒有工具的工匠,只能望天興嘆。

二、問題成因

文藝理論是學習英美文學的分析和鑒賞工具,研究生階段的文藝理論教學已經有了一定的歷史,但在英語專業本科教學中文藝理論的教學目前尚未展開。這直接導致學生的文學畢業論文的寫作難度增大,出現了許多亟待解決的問題。主要成因如下:

1.從事英美文學教學的教師理論水平參差不齊。部分教師講授英美文學,而其自身很少涉及文藝理論的使用,或者說自己的文學批評理論知識匱乏,因此不可能在授課時有意識地將文藝理論融入到教學中去。

2.輕視或放低對學生的人文素質和評析能力的生成要求。有些教師擔心學生的接受能力,甚至害怕因為學生不能正確理解文藝理論的精髓而將其誤用或者濫用。《高等學校英語專業英語教學大綱》(2000)明確規定了文學課程的教學目的“在于培養學生閱讀、欣賞、理解英語文學原著的能力,掌握文學批評的基本知識和方法。通過閱讀和分析英美文學作品,促進學生語言基本功和人文素質的提高,增強學生對西方文學及文化的了解”,顯而易見,加大文學批評理論的講授和研討是符合《大綱》要求的。

3.所學知識與研究性寫作存在三個“不和諧”關系:文學課的教與學脫節;文學課與語言實踐脫節;文學教學理論的研究與外語教學實踐脫節(馬愛華, 2006)。學生習得的知識孤立于其寫作實踐之外。人才培養目標不明確,學生急功近利,一成不變的文學課程教學脫離實際人才

培養模式。學生將文藝理論視為紙上談兵。因而,導致“文學理論教材和教學實踐逐漸偏離當今消費時代的審美精神”以及“文學理論的教學被大學生們冷落”(李迪江, 2002)。

三、文藝理論在文學論文寫作中的意義

1.文學理論的專業知識學習,鋪墊了文學論文的研究能力。“文學理論教學應該優先地培養大學生的理論素養,更多地培養大學生的應用能力,如從文學作品的分析討論中,來培養大學生的理解能力、分析能力和表達能力等(李迪江, 2002)”。本科學生已經有了一定的文學常識,至少對于著名作品的情節有了一定程度的了解,文學名著選讀課使用文學名著的原版書籍作為教材,使得學生有機會對文學文本進行仔細研讀,為文藝理論的學習奠定了基礎。

2.畢業論文寫作,完成學生從讀者到理論分析的升華。Guerin認為,“讀者參與在文本的創作中”。作品的意義是文本和讀者相互作用的結果,它強調讀者在閱讀過程中的不同參與方式。這一理論代表人物之一伊瑟爾指出,所有文學篇章都有“空白”或“缺口”,這些空白和缺口必須由讀者在解讀過程中填補或具體化(劉辰誕, 1999)。文學作品須由接受者內化和心靈化,即需要接受者的理解、體驗、加工、補充和創造,融入接受者的思想和情感、傾向和評價,只有這樣,作品中的時間、人物形象等才會活生生地呈現在自己的頭腦中(郭宏安, 1997)。從這個角度暴露了英語專業教育中一貫的“知識單一和技能單一”問題,帶來的思考是應該如何培養學生多種語言技能,滿足其獨立學習的需要。

3.文學史學習為文藝理論的學習奠定基礎。心理學、原型批判、女權主義、馬克思主義的文學評論等可將傳統文學史中作家、作品按照時間排序的方式打破。從各種文藝理論的角度對作家、作品重新排序,不同的文學作品可以用相同的文藝理論進行分析,既起到梳理文學史和文學作品的目的,又使學生對文學作品甚至文學史的認識提升到一個新的高度。如:莎士比亞的《哈姆雷特》,尤金?奧尼爾《榆樹下的欲望》,勞倫斯的《兒子與情人》等作品中都蘊含著戀母情結的心理學分析。以此為基礎,給學生補充講述古希臘劇作家索福克里斯的著名悲劇作品《俄狄浦斯王》,能幫助學生探究作品人物的內心世界,為論文寫作奠定基礎的同時,也有助于選擇一個更為可行的題目。

4.結合文本與文藝理論,豐富學生的論文選題。學生文學專業畢業論文選題往往單一,如選擇:《偉大的蓋茨比》中美國夢破滅的主題或美國夢的悲劇一類的主題;《呼嘯山莊》、《傲慢與偏見》中的愛情主題等。選擇經典作家的代表作品為研究對象并不是不可以,但對于一般本科生而言,要就這些作品的某一方面進行較為深入、有創意的探討,還是有相當難度的。因為,對于某一經典文本的某些問題,國內外評論界可能早有定論,而一般的學生“尚不能用當代文論的新視角去解讀,很難提出自己的新解”(杜志卿, 2005)。

5.研讀詩歌,理論先行。在歷屆本科英語專業畢業生的論文中,有關詩歌的論文很少有人涉及。究其成因,主要是在較短篇幅的詩歌中大量運用意象和象征等寫作手法,再加上詩人用特有的音韻感和

第三篇:愛麗絲夢游仙境英語專業論文

Alice adventures in wonder land 主要內容

《愛麗絲奇境歷險記》講述了小姑娘愛麗絲追趕一只揣著懷表、會說話的白兔,掉進了一個兔子洞,由此墜入了神奇的地下世界。在這個世界里,喝一口水就能縮得如同老鼠大小,吃一塊蛋糕又會變成巨人,在這個世界里,似乎所有吃的東西都有古怪。她還遇到了一大堆人和動物:渡渡鳥、蜥蜴比爾、柴郡貓、瘋帽匠、三月野兔、睡鼠、素甲魚、鷹頭獅、丑陋的公爵夫人。兔子洞里還另有乾坤,她在一扇小門后的大花園里遇到了一整副的撲克牌,牌里粗暴的紅桃王后、老好人紅桃國王和神氣活現的紅桃杰克(J)等等。在這個奇幻瘋狂的世界里,似乎只有愛麗絲是唯一清醒的人,她不斷探險,同時又不斷追問“我是誰”,在探險的同時不斷認識自我,不斷成長,終于成長為一個“大”姑娘的時候,猛然驚醒,才發現原來這一切都是自己的一個夢境。

《愛麗絲穿鏡奇幻記》講述的是小姑娘愛麗絲剛下完一盤國際象棋,又對鏡子里反映的東西好奇不已,以致穿鏡而入,進入了鏡子中的象棋世界。在這里,整個世界就是一個大棋盤,愛麗絲本人不過是這個棋盤中的一個小卒。小姑娘從自己所處的棋格開始,一步一步向前走,每一步棋都有奇妙的遭遇:愛麗絲會腳不沾地地飛著走路,那里的花朵和昆蟲都會說話,白王后變成了綿羊女店主,她手中的編織針變成劃船的槳,等等。鏡中的故事大多取材于英國傳統童謠,作者通過自己的想象加以展開,并詳細敘述,童謠里的人和物活靈活現地呈現在讀者面前:為一丁點兒小事打架的對頭兄弟,行止傲慢的憨蛋和為爭奪王冠而戰的獅子和獨角獸。看來只有發明家兼廢品收藏家白騎士無法歸類,但他恰好是作者本人的化身。等到愛麗絲終于走到第八格,當了王后之后,為所有這些人準備了一次盛大的宴會,宴會上的烤羊腿會鞠躬,布丁會說話,盛宴最終變成了一片混亂,忍無可忍的愛麗絲緊緊捉住搖晃的紅后最后變成了一只小黑貓,愛麗絲也在搖晃中醒來,開始追問這到底是自己的夢呢,還是紅國王的夢? 作者介紹

劉易斯·卡羅爾(Lewis Carroll),原名查爾斯·路德維希·道奇遜,與安徒生、格林兄弟齊名的世界頂尖兒童文學大師。原名查爾斯·路德維希·道奇遜。1832年1月出生于英國柴郡的一個 牧師家庭,1898年卒于薩里。曾在牛津大學基督堂學院任教達30年之久,業余愛好非常廣泛,尤其喜愛兒童肖像攝影。他的第一本童書《愛麗絲奇境歷險記》于1865年出版,當時就引起了巨大轟動,1871年又推出了續篇《愛麗絲穿鏡奇幻記》,更是好評如潮。兩部童書旋即風靡了整個世界,成為一代又一代孩子們乃至成人最喜愛的讀物。

如果說劉易斯·卡羅爾因為這兩部童書而被稱為現代童話之父,絲毫沒有夸大的成分。至少他的兩部《愛麗絲》一改此前傳統童話(包括《安徒生童話》、《格林童話》)充斥著殺戮和說教的風格,從而奠定了怪誕、奇幻的現代童話基調。僅從這點來說,就堪稱跨時代的里程碑。故事簡介

Alice, sitting with her sister, is bored.A White Rabbit scurries by, muttering to himself and pulling a watch from his waistcoat pocket.Curious, Alice follows the animal down a rabbit hole, the first of many instances in which she is propelled by her curiosity.Alice falls, landing in a pile of leaves.She finds herself in a hall and discovers a tiny key to a tiny door leading to a garden.She drinks from a bottle labeled DRINK ME, and shrinks down to ten inches tall.Too short to unlock the garden door, Alice begins to cry.She eats some cake, grows unusually tall, then fans herself and becomes exceedingly small.She finds herself swimming in a pool of her own giant tears.A group of animals gathers around her on the shore.A Mouse gives a speech and then a foot race ensues.Alice is soon left alone and begins to cry again.The White Rabbit approaches.Thinking Alice is his housemaid, he sends her on an errand to fetch some things from his house.Alice drinks from a bottle she finds inside and grows until she fills the house, spilling out windows and bumping her head against the ceiling.Frightened, the Rabbit and his friends throw pebbles at Alice.The pebbles become cakes, which Alice eats to shrink.She escapes and meets a Caterpillar sitting on a mushroom, smoking.While he questions her identity and learning, Alice experiments with eating parts of the mushroom to alter her height.After a brief conversation with a Pigeon, she visits the highly

peppered house of the ill-tempered Duchess and encounters the Cheshire Cat, traveling next to the house of the March Hare.Here the Hare, the Mad Hatter, and the Dormouse have tea.Confused, she leaves the party in disgust and finds her way to the garden she could not reach earlier.In the garden, Alice encounters a very curious croquet game and a Queen of Hearts who threatens to chop off everyone's heads.Alice talks with the moralizing Duchess until the Queen threatens to execute the woman.At the Queen's orders, a Gryphon leads Alice to the Mock Turtle.She listens to his life story and his instructions for dancing the Lobster

Quadrille.The two creatures ask Alice to recount her own adventures, which she does, until a Trial is announced in the distance.The Trial concerns some tarts stolen from the Queen.When she is called to the witness stand, Alice begins to grow again and knocks over the jury box.The King orders her to leave the court because of her height.She refuses and continues to grow as the White Rabbit introduces more evidence.The Queen threatens to chop off Alice's head.Having grown to her full size, Alice calls the Queen and her soldiers a mere deck of cards, at which point the entire pack of them rises up and flies down upon her.Alice awakes.Her sister is brushing off some leaves from Alice's face.She recounts her Adventures and runs off.Her sister watches Alice and begins to dream herself, imagining that the White Rabbit rushes by through the grass.梗概:Alice's Adventures in Wonderland(commonly shortened to Alice in Wonderland)is an 1865 novel written by English author Charles Lutwidge Dodgson under the pseudonym LewisCarroll。[1]It tells of a girl named Alice who falls down a rabbit hole into a fantasy world(Wonderland)populated by peculiar, anthropomorphic creatures.The tale plays with logic, giving the story lasting popularity with adults as well as children.[2] It is considered to be one of the best examples of the literary nonsense genre,[2][3] and its narrative course and structure have been enormously influential,[3] especially in the fantasy genre.

第四篇:英語專業論文翻譯

A smart copper(II)-responsive binucleargadolinium(III)complex-based magnetic resonanceimaging contrast agent?

Yan-meng Xiao,ab Gui-yan Zhao,ab Xin-xiu Fang,ab Yong-xia Zhao,ab Guan-hua Wang,c Wei Yang*a and Jing-wei Xu*a A novel Gd-DO3A-type bismacrocyclic complex, [Gd2(DO3A)2BMPNA], with a Cu2+-selective binding unitwas synthesized as a potential “smart” copper(II)-responsive magnetic resonance imaging(MRI)contrast agent.The relaxivity of the complex was modulated by the presence or absence of Cu2+;in the absence of Cu2+, the complex exhibited a relatively low relaxivity value(6.40 mM1 s1), while the addition of Cu2+ triggered an approximately 76% enhancement in relaxivity(11.28 mM1 s1).Moreover, this Cu2+-responsive contrast agent was highly selective in its response to Cu2+ over other biologically-relevant metal ions.The influence of some common biological anions on the Cu2+-responsive contrast agent and the luminescence lifetime of the complex were also studied.The results of the luminescence lifetime measurements indicated that the enhancement in relaxivity was mainly ascribed to the increased number of inner-sphere water molecules binding to the paramagnetic Gd3+ core upon the addition of Cu2+.In addition, the visual change associated with the significantly enhanced relaxivity due to the addition of Cu2+ was observed from T1-weighted phantom images.Introduction Copper(II)ion is a vital metal nutrient for the metabolism of life and plays a critical role in various biological processes.1,2 Its homeostasis is critical for the metabolism and development of living organisms.3,4 On the other hand, the disruption of its homeostasis may lead to a variety of physical diseases and neurological problems such as Alzheimer's disease,5 Menkes and Wilson's disease,6 amyotrophic lateral sclerosis,7,8 and prion disease.9,10 Therefore, the assessment and understanding of the distribution of biological copper in living systems by noninvasive imaging is crucial to provide more insight into copper homeostasis and better understand the relationship between copper regulation and its physiological function.A wide variety of organic uorescent dyes have been exploited for the optical detection of ions in the last few decades.11–13However, optical imaging using organic uorescent dyes hasseveral limitations such as photobleaching, light scattering,limited penetration, low spatial resolution and the disturbance of auto uorescence.14 By comparison, magnetic resonance imaging(MRI)is an increasingly accessible technique used as a noninvasive clinical diagnostic modality for medical diagnosis and biomedical research.15 It can provide high spatial resolution three-dimensional anatomical images with information about physiological signals and biochemical events.16 As a powerful diagnostic imaging tool in medicine, MRI can distinguish normal tissue from diseased tissue and lesions in a noninvasive manner,17–19 which avoids diagnostic thoracotomy or laparotomy surgery for medical diagnoses and greatly improves the diagnostic efficiency.Multiple MRI imaging parameters can provide a wealth of diagnostic information.In addition, the desired cross-section for acquiring multi-angle and multi-planar images of various parts of the entire body can be freely chosen by adjusting the MRI magnetic eld;this ability makes medical diagnostics and studies of the body's metabolism and function more and more effective and convenient.Contrast agents are often used in MRI examinations to improve the resolution and sensitivity;the image quality can be signicantly improved by applying contrast agents which enhance the MRI signal intensity by increasing the relaxation rates of the surrounding water protons.20 Due to the high magnetic moment(seven unpaired electrons)and slow electronic relaxation of the

paramagnetic gadolinium(III)ion, gadolinium(III)-based MRI contrast agents are commonly employed to increase the relaxation rate of the surrounding water protons.16,21 However, most of these contrast agents are nonspecific and provide only anatomical information.On the basis of Solomon–Bloembergen–Morgan theory,22–24 several parameters can be manipulated to alter the relaxivity of gadolinium(III)-based MRI contrast agents.These parameters include the number of coordinated water molecules(q), the rotational correlation time(sR)and the residence lifetime of coordinated water molecules bound to the paramagnetic Gd3+ center(sM).Adjusting any of these three factors provides the opportunity to design “smart” MRI contrast agents for specific biochemical events.25–27 In recent years, there have been many studies on the development of responsive gadolinium(III)-based MRI contrast agents;most of them have focused on the development of targeted, high relaxivity and bioactivated contrast agents.These responsive gadolinium(III)-based MRI contrast agents can be modulated by particular in vivo stimuli including pH,28–35 metal ion concentration36–43 and enzyme activity.44–50 Notably, a number of copper-responsive MRI contrast agents have been reported to detect uctuations of copper ions in vivo.51–58 These activated contrast agents exploit the modulation of the number of coordinated water molecules to generate distinct enhancements in longitudinal relaxivity in response to copper ions(Cu+ or Cu2+).In this study, we designed and synthesized a binuclear gadolinium-based MRI contrast agent, [Gd2(DO3A)2BMPNA], that is specically responsive to Cu2+ over other biologicallyrelevant metal ions.The new copper-responsive MRI contrast agent comprises two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold59,60(BMPNA), which functions as a receptor for copper-induced relaxivity switching.The synthetic strategy for [Gd2(DO3A)2BMPNA] is depicted in Scheme 1.Subsequently, the T1 relaxivity of [Gd2(DO3A)2BMPNA] was studied at 25 C and 60 MHz in the absence or presence of Cu2+.Experiments to determine the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+ over other biologically-relevant ions were carried out as well.Luminescence lifetime was measured to determine the number of coordinated water molecules(q)of [Gd2(DO3A)2BMPNA] in the absence or presence of Cu2+.In addition, T1-weighted phantom images were collected to visualize the relaxivity enhancement caused by Cu2+, suggesting potential in vivo applications.Experimental section

Materials and instruments

All materials for synthesis were purchased from commercial suppliers and used without further purication.1H and 13C NMR spectra were taken on an AMX600 Bruker FT-NMR spectrometer with tetramethylsilane(TMS)as an internal standard.Luminescence measurements were performed on a Hitachi Fluorescence spectrophotometer-F-4600.The time-resolved luminescence emission spectra were recorded on a Perkin-Elmer LS-55 uorimeter with the following conditions: excitation wavelength, 295 nm;emission wavelength, 545 nm;dela time, 0.02 ms;gate time, 2.00 ms;cycle time, 20 ms;excitation slit, 5 nm;emission slit, 10 nm.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Mass spectra(MS)were obtained on an auto ex III TOF/TOF MALDI-MS and anIonSpec ESI-FTICR mass spectrometer.Elemental analyses were performed on a Vario EL Element Analyzer.Synthesis Synthesis of compound 3.Methyl 2,6-bis(3-(bromomethyl)-1H-pyrazol-1-yl)isonicotinate(Compound1)59,60 and 4,7,10-tris(2-(tert-butoxy)-2-oxoethyl)-4,7,10-triaza-azoniacyclododecan-1-ium bromide(Compound 2)61 were prepared following thereported methods.Compound 2(0.25 g, 0.296 mmol)was suspended in 2 ml anhydrous acetonitrile with 6 equivalents of NaHCO3(0.1492 g)and the mixture was stirred at room temperature for 0.5 h.Compound 1(0.0675 g, 0.148 mmol)was added, and the mixture was slowly heated to reflux(80 C)and stirred overnight.After the reaction was terminated, the mixture was cooled to room temperature, and the solution was ltered.The precipitate was washed several times with anhydrous acetonitrile, and the collected ltrate solution was evaporated under reduced pressure.The residue was puried using silicagel column chromatography eluted with CH2Cl2–n-hexane–CH3OH(10 : 3 : 1, v/v/v)to afford Compound 3(0.1038 g, 53%)as a pale yellow solid.1H NMR(600 MHz, DMSO): 8.22(s, 2H), 8.15(s, 2H), 6.62(s, 2H), 4.53(s, 4H), 3.82(s, 3H), 3.42(m, 4H), 2.98(m, 8H), 2.85(s, 8H), 2.71(m, 24H), 1.33(s, 54H)(Fig.S1?).13C NMR(151 MHz, CDCl3): d 173.21, 172.44, 163.99, 152.38, 150.11, 143.13, 128.07, 109.83, 108.36, 82.59, 57.84, 56.52, 56.06, 55.56, 52.98, 50.55, 48.91, 47.30, 27.96(Fig.S2?).HRMS(ESI): m/z calc.for C67H111N13O14 [M + 2H]2+ 661.92650, [M + H + Na]2+ 672.91747, [M + 2Na]2+ 683.90844, found [M + 2H]2+ 661.92584, [M+ H + Na]2+ 672.91690, [M + 2Na]2+ 683.90682(Fig.S3?).Synthesis of compound 4.Compound 3(0.1 g, 0.0756 mmol)was stirred with triuoroacetic acid in methylene chloride solution(2 ml)at room temperature for 24 h.The solvent was then evaporated under reduced pressure, and the residue was washed three times in CH3OH and CH2Cl2 to eliminate excess acid.The obtained residue was dissolved with a minimum volume of CH3OH and precipitated with cold Et2O.The precipitate was ltered to afford a brown yellow solid(0.1022 g).1H NMR(600 MHz, DMSO): 9.06(s, 2H), 8.17(s, 2H), 6.84(s, 2H), 4.33(s, 4H), 3.98(s, 3H), 3.56(b, 20H), 3.09(m, 24H)(Fig.S4?).13C NMR(151 MHz, D2O): d 174.11, 169.13, 164.64, 150.75, 148.85, 142.10, 129.88, 109.75, 107.99, 55.69, 54.01, 53.10, 52.43, 51.15, 49.59, 48.22, 47.69(Fig.S5?).MALDI-TOFMS spectrum(CH3OH): m/z calc.for C43H63N13O14 [M H] 984.46, found 984.7(Fig.S6?).Anal calc.for C43H63N13O14-$3CF3COOH$2H2O: C, 43.14;H, 5.17;N, 13.35;found C, 42.34;H, 4.999;N, 13.29%.Preparation of [Gd2(DO3A)2BMPNA] and [Tb2(DO3A)2-BMPNA].Compound 4(0.05 mmol)was dissolved in 2 ml of highly-puried water.GdCl3 or TbCl3(0.1 mmol)was added dropwise.The pH was maintained at 6.5–7.0 with NaOH during the whole process.The solution was then stirred at 75 C for 24 h.MALDI-MS(H2O): m/z calc.for C42H55N13O14Gd2 [M + H]+ 1281.46, found 1281.4(Fig.S7?).MALDI-MS(H2O): m/z calc.for C42H55N13O14Tb2 [M + H]+ 1284.3, found 1284.4(Fig.S8?).T1 measurements.The longitudinal relaxation times(T1)of aqueous solutions of [Gd2(DO3A)2BMPNA] were measured on an HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd)at 1.5 T.All of the tested samples were prepared in HEPES-buffered aqueous solutions at pH 7.4.All of the metal ions(Na+, K+, Ca2+, Mg2+, Cu2+, Zn2+, Fe3+, Fe2+)were used as chloride salts.Concentrations of Gd3+ were determined by ICP-OES.Relaxivities were determined from the slope of the plot of 1/T1 vs.[Gd].The data were tted to the following eqn(1),20

(1/T1)obs ?(1/T1)d + r1[M](1)

where(1/T1)obs and(1/T1)d are the observed values in the presence and absence of the paramagnetic species, respectively, and [M] is the concentration of paramagnetic [Gd].Luminescence measurements.Luminescence emission spectra were collected on a Hitachi uorescence spectrophotometer-F-4600.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Samples were excited at 290 nm, and the emission maximum(545 nm)was used to determine luminescence lifetimes.The Tb(III)-based emission spectra were measured using 0.1 mM solutions of Tb complex analog in 100 mM HEPES buffer at pH 7.4 in H2O and D2O in the absence and presence of Cu2+.The number of coordinated water molecules(q)was calculated according to eqn(2):62,63 q= ? 5(sH2O1 sD2O1 0.06)(2)T1-weighted MRI phantom images.Phantom images were collected on a 1.5 T HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd).Instrument parameter settings were as follows: 1.5 T magnet;matrix =256 256;slice thickness =1 mm;TE= 13 ms;TR= 100 ms;and number of acquisitions =1.Results and discussion Longitudinal relaxivity of [Gd2(DO3A)2BMPNA] in response to copper(II)ion To investigate the inuence of Cu2+ on the relaxivity of [Gd2(DO3A)2BMPNA], the longitudinal relaxivity r1 for the [Gd2(DO3A)2BMPNA] contrast agent was determined using T1 measurements in the absence or presence of Cu2+ at 60 MHz and 25 C using a 0.2mMGd3+ solution of [Gd2(DO3A)2BMPNA] in 100 mM HEPES buffer(pH 7.4)under simulated physiological conditions.The concentrations of Gd3+ were determined by ICP-OES.The relaxivity r1 was calculated from eqn(1).In the absence of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] was 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).64 Upon addition of up to 1 equiv.of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] increased to 11.28 mM1 s1(76% relaxivity enhancement).As shown in Fig.1, the relaxivity gradually increased with the copper ion concentration, reaching a maximum value of approximately 1.2 equivalents of Cu2+.Due to the use of triuoroacetic acid in the synthesis of Compound 4, triuoroacetic acid residues produced CF3COO in the [Gd2(DO3A)2BMPNA] solution, allowing CF3COO to partially coordinate with Cu2+ to form “Chinese lantern” type structure complexes.65 When the amount of added copper ions was further increased to above 1.2 equiv., the relaxivity was maintained at the same level.The observed difference in Cu2+-triggered relaxivity enhancement demonstrated the ability of this contrast agent to sense Cu2+ in vivo by means of MRI.Our designed contrast agent not only exhibited a higher relaxivity, but also displayed a Cu2+-responsive relaxivity enhancement.Selectivity studies The relaxivity response of [Gd2(DO3A)2BMPNA] exhibited excellent selectivity for Cu2+ over a variety of other competing, biologically-relevant metal ions at physiological levels.As depicted in Fig.2(white bars), the addition of alkali metal cations(10 mM Na+, 2 mM K+)and alkaline earth metal cations(2 mM Mg2+, 2 mM Ca2+)did not generate an increase in relaxivity compared to the copper ion turn-on response;even the introduction of d-block metal cations(0.2 mM Fe2+, 0.2 mM Fe3+, 0.2 mM or 2 mM Zn2+)did not trigger relaxivity enhancements.We noted that Zn2+ is also known to replace Gd3+ in transmetalation experiments;however, studies with analogous Gd3+-DO3A complexes demonstrated that this ligand is more kinetically inert to metal-ion exchange.66 To ensure the kinetic stability of the complex, we used MS to monitor [Gd2(DO3A)2BMPNA] in the presence of 1 equiv.of Zn2+.No metal-ion exchange was observed at room temperature after 7 days(Fig.S13?).Relaxivity interference experiments for [Gd2(DO3A)2BMPNA] in the presence of both Cu2+(0.2 mM)and other biologically-relevant metal ions were also conducted;the results are shown as black bars in Fig.2, indicating that these biologically-relevant metal ions(Na+, K+, Mg2+, Ca2+, Fe2+, Fe3+, Zn2+)had no interference on the Cu2+-triggered relaxivity enhancement.In addition, we also tested the Cu2+ response for [Gd2(DO3A)2BMPNA] in the presence of physiologically-relevant concentrations of common biological anions to determine whether the Cu2+-triggered relaxivity enhancement was affected by biological anions at physiological levels.As previously mentioned, Cu2+ binding induced an enhancement in relaxivity from 6.40 mM1 s1 to 11.28 mM1 s1(a 76% increase).As shown in Fig.3, in the presence of citrate(0.13 mM), lactate(0.9 mM), H2PO4(0.9 mM), or HCO3(10 mM), the Cu2+-triggered relaxivity enhancement was approximately 61%(from 6.01 mM1 s1 to 9.66mM1 s1), 66%(from 6.13mM1 s1 to 10.16 mM1 s1), 20%(from 5.88 mM1 s1 to 7.02 mM1 s1), or 55%(from 6.15 mM1 s1 to 9.55 mM1 s1), respectively.Additionally, 100 mM NaCl had almost no effect(an approximately 75% increase), and a simulated extracellular anion solution(EAS, contain 30 mM NaHCO3, 100 mM NaCl, 0.9 mM KH2PO4, 2.3 mM sodium lactate, and 0.13 mM sodium citrate, pH =7),67 resulted in a Cu2+-triggered relaxivity enhancement of approximately 26%(from 6.02 mM1 s1 to 7.56 mM1 s1).Generally, the results revealed that lactate, citrate, and HCO3 had slight impacts on the Cu2+-triggered relaxivity enhancement, while H2PO4 and EAS influenced the enhancement to a greater degree.As shown in Scheme 2, [Gd2(DO3A)2BMPNA] possessed two water molecules after the addition of 1 equiv.Of Cu2+.According to the work of Dickins and coworkers, in lanthanide complexes with two water molecules, the waters can be partially displaced by phosphate, carbonate, acetate, carboxylate, lactate and citrate at different levels.68–70 The influence of these anions on the Cu2+-triggered relaxivity enhancement may be attributed to the partial replacement of coordinated water molecules by these anions.The relatively high concentration of phosphate could likely replace coordinated water molecules to reduce the increased number of water molecules surrounding the paramagnetic Gd3+ centre induced by Cu2+.As shown in Table 1, we measured the number of water molecules in the rst coordination sphere of Tb3+ in the presence of phosphate;the number of coordinated water molecules(q)decreased from 1.5 to 0.8.Coordination features Luminescence lifetime experiments were performed to explore the mechanism of the Cu2+-triggered relaxivity enhancement.Luminescence lifetime measurements of lanthanide complexes have been widely used to quantify the number of inner-sphere water molecules.71 In particular, Tb3+ and Eu3+ have commonly been applied for lifetime measurements because their emission spectra are in the visible region when their 4f electrons are relaxed from higher energy levels to the lowest energy multiplets.72,73 Therefore, the Tb3+ analogue of [Gd2(DO3A)2BMPNA], [Tb2(DO3A)2BMPNA], was prepared according to a similar method, and the luminescence lifetimes of the Tb3+ analogue in HEPES-buffered H2O and D2O in the absence and presence of Cu2+ were measured.As shown in Fig.S9,? the luminescence decay curve of [Tb2(DO3A)2BMPNA] was tted to obtain the luminescence lifetimes74(Table 1), and the number of coordinated water molecules(q)was calculated by eqn(2).The analysis results(Table 1)for [Tb2(DO3A)2BMPNA] in HEPES-bufferedH2OandD2O in the absence and presence of Cu2+ indicated that q increased from 0.6 to 1.5 upon the addition of 1 equiv.of Cu2+;this result indicated that the Cu2+-triggered relaxivity enhancement for [Gd2(DO3A)2BMPNA] was most likely due to the increased number of coordinated water molecules around the Gd3+ ion upon Cu2+ binding to the pyrazole centre(Scheme 2).Aer the addition of Cu2+, Cu2+ removed the pyrazole centre N atom from the paramagnetic Gd3+ ion to generate an open coordination site available for a water molecule.Luminescence emission titrations of [Tb2(DO3A)2BMPNA] towards Cu2+ were also performed to investigate the binding properties of the contrast agent towards Cu2+.Upon addition of 1 equiv.Cu2+, the luminescence of [Tb2(DO3A)2BMPNA] at 545 nm decreased gradually and reached a minimum due to the quenching nature of the paramagnetic Cu2+(Fig.S10?).The titration data indicated a 1 : 1 binding stoichiometry(Scheme 2)Copper-responsive T1-weighted phantom MRI in vitro To demonstrate the potential feasibility of this Cu2+-responsive [Gd2(DO3A)2BMPNA] for copper-imaging applications, T1-weighted phantom images of [Gd2(DO3A)2BMPNA] were acquired in the absence and presence of copper ions.The phantom images depicted in Fig.4 displayed distinct increases in image intensity in the presence of 1 equiv.Cu2+ compared with those without Cu2+(Fig.4D).Moreover, some of the other competing metal ions were also tested to further verify the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+.Discernible differences were not observed upon the addition of Mg2+(Fig.4C), Zn2+(Fig.4E), or Ca2+(Fig.4F).In addition, we also tested the clinical contrast agent Magnevist(Fig.4G);the image intensity was a bit darker than that of our contrast agent.Conclusions

In conclusion, we designed and synthesized a novel bismacrocyclic DO3A-type Cu2+-responsive MRI contrast agent, [Gd2(DO3A)2BMPNA].The new Cu2+-responsive MRI contrast agent comprised two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold(BMPNA)that functioned as a Cu2+ receptor switch to induce a distinct relaxivity enhancement in response to Cu2+;the relaxivity was increased up to 76%.Importantly, the complex exhibited high selectivity for Cu2+ over a range of other biologically-relevant metal ions at physiological levels.Luminescence lifetime experiment results showed that the number of inner-sphere water molecules(q)increased from 0.6 to 1.5 upon the addition of 1 equiv.Cu2+.When Cu2+ was coordinated in the central part of the complex, the donor N atom of the pyrazole centre was removed from the paramagnetic Gd3+ ion and replaced by a water molecule(Scheme 2).Consequently, the Cu2+-triggered relaxivity enhancement could be ascribed to the increase in the number of inner-sphere water molecules.The designed contrast agent had a longitudinal relaxivity of 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).In addition, the visual change associated with the signicantly enhanced relaxivity from the addition of Cu2+ was observed in T1-weighted phantom images.Acknowledgements We are grateful to the State Key Laboratory of Electroanalytical Chemistry for nancial support.Notes and references 1 S.Puig and D.J.Thiele, Curr.Opin.Chem.Biol., 2002, 6, 171.2 S.C.Leary, D.R.Winge and P.A.Cobine, Biochim.Biophys.Acta, Gen.Subj., 2009, 146, 1793.3 D.D.Agranoff and S.Krishna, Mol.Microbiol., 1998, 28, 403.4 H.Kozlowski, A.Janicka-Klos, J.Brasun, E.Gaggelli, D.Valensin and G.Valensin, Coord.Chem.Rev., 2009, 253, 2665.5 K.J.Barnham, C.L.Masters and A.I.Bush, Nat.Rev.Drug Discovery, 2004, 3, 205.6 D.J.Waggoner, T.B.Bartnikas and J.D.Gitlin, Neurobiol.Dis., 1999, 6, 221.7 J.S.Valentine and P.J.Hart, Proc.Natl.Acad.Sci.U.S.A., 2003, 100, 3617.8 L.I.Bruijn, T.M.Miller and D.W.Cleveland, Annu.Rev.Neurosci., 2004, 27, 723.9 G.L.Millhauser, Acc.Chem.Res., 2004, 37, 79.10 D.R.Brown and H.Kozlowski, Dalton Trans., 2004, 1907.11 A.W.Czarnik, Acc.Chem.Res., 1994, 27, 302.12 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.13 H.N.Kim, M.H.Lee, H.J.Kim, J.S.Kim and J.Yoon, Chem.Soc.Rev., 2008, 37, 1465.14 M.Mahmoudi, V.Serpooshan and S.Laurent, Nanoscale, 2011, 3, 3007.15 P.A.Rinck, Magnetic Resonance Imaging, Blackwell Science, Berlin, 4th edn, 2001, p.149.16 A.E.Merbach and ′E.T′oth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Ltd., New York, 2001.17 S.Aime, E.Terreno, D.D.Castelli and A.Viale, Chem.Rev., 2010, 110, 3019.18 S.Aime, M.Fasano and E.Terreno, Chem.Soc.Rev., 1998, 27, 19.19 M.Woods, D.E.Woessner and A.D.Sherry, Chem.Soc.Rev., 2006, 35, 500.20 R.B.Lauffer, Chem.Rev., 1987, 87, 901.21 J.Kowalewski, D.Kruk and J.Parigi, Adv.Inorg.Chem., 2005, 57, 42.22 I.Solomon, Phys.Rev., 1955, 99, 559.23 N.Bloembergen, J.Chem.Phys., 1957, 27, 572.24 N.Bloembergen and L.O.Morgan, J.Chem.Phys., 1961, 34, 842.25 E.L.Que and C.J.Chang, Chem.Soc.Rev., 2010, 39, 51.26 C.S.Bonnet and ′E.T′oth, Future Med.Chem., 2010, 2, 367.27 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.28 S.Aime, S.G.Crich, M.Botta, G.Giovenzana, G.Palmisano and M.Sisti, Chem.Commun., 1999, 1577.29 J.Hall, R.Haner, S.Aime, M.Botta, S.Faulkner, D.Parker and A.S.de Sousa, New J.Chem., 1998, 22, 627.30 M.P.Lowe and D.Parker, Chem.Commun., 2000, 707.31 S.Aime, A.Barge, M.Botta, D.Parker and A.S.De Sousa, J.Am.Chem.Soc., 1997, 119, 4767.32 S.Aime, F.Fedeli, A.Sanino and E.Terreno, J.Am.Chem.Soc., 2006, 128, 11326.33 M.P.Lowe, D.Parker, O.Reany, S.Aime, M.Botta, G.Castellano, E.Gianolio and R.Pagliarin, J.Am.Chem.Soc., 2001, 123, 7601.34 R.Hovland, C.Glogard, A.J.Aasen and J.Klaveness, J.Chem.Soc., Perkin Trans.2, 2001, 929.35 ′E.T′oth, R.D.Bolskar, A.Borel, G.Gonz′alez, L.Helm, A.E.Merbach, B.Sitharaman and L.J.Wilson, J.Am.Chem.Soc., 2004, 127, 799.36 W.H.Li, S.E.Fraser and T.J.Meade, J.Am.Chem.Soc., 1999, 121, 1413.37 K.Dhingra, M.E.Maier, M.Beyerlein, G.Angelovski and N.K.Logothetis, Chem.Commun., 2008, 3444.38 H.Hifumi, A.Tanimoto, D.Citterio, H.Komatsu and K.Suzuki, Analyst, 2007, 132, 1153.39 L.M.De Le′on-Rodr′?guez, A.J.M.Lubag, J.A.L′opez, G.Andreu-de-Riquer, J.C.Alvarado-Monz′on and A.D.Sherry, MedChemComm, 2012, 3, 480.40 R.Trokowski, J.Ren, F.K.Kalman and A.D.Sherry, Angew.Chem., Int.Ed., 2005, 44, 6920.41 W.S.Li, J.Luo, F.Jiang and Z.N.Chen, Dalton Trans., 2012, 41, 9405.42 K.Hanaoka, K.Kikuchi, Y.Urano and T.Nagano, J.Chem.Soc., Perkin Trans.2, 2001, 1840.43 R.Ruloff, G.v.Koten and A.E.Merbach, Chem.Commun., 2004, 842.44 M.Giardiello, M.P.Lowe and M.Botta, Chem.Commun., 2007, 4044.45 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.46 W.Xu and Y.Lu, Chem.Commun., 2011, 47, 4998.47 R.A.Moats, S.E.Fraser and T.J.Meade, Angew.Chem., Int.Ed., 1997, 36, 726.48 A.Y.Louie, M.M.Huber, E.T.Ahrens, U.Rothbacher, R.Moats, R.E.Jacobs, S.E.Fraser and T.J.Meade, Nat.Biotechnol., 2000, 18, 321.49 B.Yoo and M.D.Pagel, J.Am.Chem.Soc., 2006, 128, 14032.50 Q.Wei, G.K.Seward, P.A.Hill, B.Patton, I.E.Dimitrov, N.N.Kuzma and I.J.Dmochowski, J.Am.Chem.Soc., 2006, 128, 13274.51 E.L.Que and C.J.Chang, J.Am.Chem.Soc., 2006, 128, 15942.52 E.L.Que, E.Gianolio, S.L.Baker, A.P.Wong, S.Aime and C.J.Chang, J.Am.Chem.Soc., 2009, 131, 8527.53 E.L.Que, E.Gianolio, S.L.Baker, S.Aime and C.J.Chang, Dalton Trans., 2010, 39, 469.54 W.S.Li, J.Luo and Z.N.Chen, Dalton Trans., 2011, 484.55 E.L.Que, E.J.New and C.J.Chang, Chem.Sci., 2012, 3, 1829.56 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.57 D.Kasala, T.S.Lin, C.Y.Chen, G.C.Liu, C.L.Kao, T.L.Cheng and Y.M.Wang, Dalton Trans., 2011, 5018.58 D.Patel, A.Kell, B.Simard, B.Xiang, H.Y.Lin and G.Tian, Biomaterials, 2011, 32, 1167.59 E.Brunet, O.Juanes, R.Sedano and J.C.Rodr′?guez-Ubis, Photochem.Photobiol.Sci., 2002, 1, 613.60 Z.Q.Ye, G.L.Wang, J.X.Chen, X.Y.Fu, W.Z.Zhang and J.L.Yuan, Biosens.Bioelectron., 2010, 26, 1043.61 S.Mizukami, K.Tonai, M.Kaneko and K.Kikuchi, J.Am.Chem.Soc., 2008, 130, 14376.62 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.63 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.64 P.Caravan, J.J.Ellison, T.J.McMurry and R.B.Laufer, Chem.Rev., 1999, 99, 2293.65 O.G.Polyakov, B.G.Nolan, B.P.Fauber, S.M.Miller, O.P.Anderson and S.H.Strauss, Inorg.Chem., 2000, 39, 1735.66 M.F.Tweedle, J.J.Hagan, K.Kumar, S.Mantha and C.A.Chang, Magn.Reson.Imaging, 1991, 9, 409.67 D.Parker, Coord.Chem.Rev., 2000, 205, 109.68 R.S.Dickins, T.Gunnlaugsson, D.Parker and R.D.Peacock, Chem.Commun., 1998, 1643.69 J.I.Bruce, R.S.Dickins, L.J.Govenlock, T.Gunnlaugsson, S.Lopinski, M.P.Lowe, D.Parker, R.D.Peacock, J.J.B.Perry, S.Aime and M.Botta, J.Am.Chem.Soc., 2000, 122, 9674.70 R.S.Dickins, S.Aime, A.S.Batsanov, A.Beeby, M.Botta, J.I.Bruce, J.A.K.Howard, C.S.Love, D.Parker, R.D.Peacock and H.Puschmann, J.Am.Chem.Soc., 2002, 124, 12697–12705.71 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.72 C.C.Bryden and C.N.Reilley, Anal.Chem., 1982, 54, 610.73 K.Binnemans, Chem.Rev., 2009, 109, 4283.74 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.This journal is ? The Royal Society of Chemistry 2014 RSC Adv., 2014, 4, 34421–34427 | 34427

第五篇:英語專業論文選題

從中英禮貌原則的角度談論跨文化交際的失誤 如何處理廣告英譯中的跨文化英譯失誤 試論中西文化習慣在商務談判中的作用 淺析中美家庭教育的差異 翻譯研究參考選題

翻譯中語法關系之變換

論翻譯的層次

翻譯過程中原作者一譯者一譯文讀者的三元關系

論譯者在翻譯活動中的身份

翻譯中的不確定性問題

英漢思維差異對翻譯的影響

對翻譯等值問題的思考

導游翻譯中的文化背景和心理因素

法律英語的文體特點及英譯技巧

論中國酒類名稱的翻譯

翻譯:對外來文化的闡釋

文化語境與翻譯——尋求文化的共生與融合 文學翻譯與節奏美學

諺語、外來語和俗語的翻譯技巧 探討科技翻譯中詞義的確定 論奈達的翻譯觀

談英語電影名漢譯

評《簡?愛》的五種漢譯本 中國古典詩歌標題英譯

論機器翻譯的準確度與可讀性

外國文學研究參考選題

論勞倫斯?斯特恩敘述模式

論《青年藝術家的肖像》的文體風格

評福克納《獻給愛米麗的玫瑰》中的時間關系

論伊夫林?沃的反諷

《喧嘩與騷動》中變異時空的美學價值

論《印度之行》中的文化取向

《尤利西斯》中的神話與歷史

福克納作品中的黑人形象

威廉?華茲華斯詩歌中的生態意識

雪萊與柏拉圖哲學思想

論美國華裔文學的多樣性

民族主義和本土主義的錯置——華裔美國文學中的男性沙文主義解釋

析勞倫斯的《虹》的象征意義

《黑暗的心臟》,對西方殖民主義的反思

T.S.艾略特的象征主義理論

多麗斯?萊辛筆下的兩性世界

世界華文文學中的“中國形象”論析

談《女勇士》中的兩種文化沖突與交融

透析譚恩美《靈感女孩》中的迷信現象

從“斑點”到“燈塔”:弗?沃爾芙小說結構管窺

邊緣對中心的解構:伍爾夫《到燈塔去》的另一種闡釋視角

鄭聲衡(574383061)22:43:51 外語教學研究參考選題

課堂口頭練習中學生的錯誤及其糾正 教師反饋形式對學生書面表達的影響 研究中國學生英文書信請求策略的語用研究 母語對英語句子結構習得影響的研究 學生聽力理解中推理能力的調查研究

背景知識對聽力理解的影響

研究詞匯學習策略和詞匯習得結果關系的研究 英語閱讀與詞匯偶得研究

認知語義學理論在英語詞匯教學中的應用 以學生為中心的英語詞匯教學研究 背景知識對閱讀理解的影響研究

大學生閱讀中語用推理能力的調查研究

篇章分析在中學英語閱讀教學中的應用研究

Krashen的“輸入假設”理論在英語閱讀教學的應用 回譯法在英漢翻譯教學中運用的效果研究 測試對英語教學的反撥研究 提問在課堂教學中的作用

文化研究參考選題

德里達的解構主義

威廉姆斯的大眾文化研究

大眾文化的商業特性

英語語法結構的文化成因

英漢互譯中的文化傳遞

文化傳遞中的誤讀

莎士比亞悲劇的文化基礎

英美文化的實用主義傾向

啟蒙時期英國文學中的中國文化

中國文化對意象派的影響

福克納作品中的南方文化

好萊塢電影批判

麥當勞的文化批判

全球化與本土化的關系

后現代主義的多元化傾向

網絡文化批判

網絡文化對傳統倫理的挑戰

網絡文學的特性

校園文化的最新動向 馬可?波羅的中國文化觀

語言學研究參考選題

英語的書面語或口頭語特征研究

漢語方言對英語發音的影響

談英語語調的特點及其用途

從語音學角度對英語VI語中常見錯誤的嘗試性分析

英語的語義,語法或語音語調特征研究

英語的言語表達與語境關系研究

英或美標準語與方言,黑人英語或其他移民英語語法,語音對比研究

淺談英國英語與美國英語的語法差異

英語典故和英語學習

英漢詞匯對比

英語詞語的接應關系

英語語篇中的詞匯銜接手段

中英諺語比較研究

英語修辭手法研究

美國俗語與現代語言的區別

論英語專有名詞普通化

英語擬聲詞淺談 論英語中的歧義 論英語否定句 談英語無動詞句

英漢定語和狀語的位置比較

英語的含蓄條件句

中英省略比較研究

英語新詞構詞分析

英語因果復合句與漢語因果復句的對比研究

英語中來源于希臘羅馬神話詞匯的研究。

語篇連貫的無形網絡

從功能語言學角度對摘要的體裁分析

英漢語篇詞匯銜接模式

英漢指示代詞的功能對比研究

隱喻中的語義遷移問題研究

英漢情態對比研究及其在語篇中的反映

言語行為中的禮貌策略

中國英語課堂言語行為的習得

中國學生對英語被動結構的習得

隱喻的認知功能

從認知的角度分析比較英漢空間隱喻

跨文化交際中的語用失誤

新聞英語的文體學分析

禮貌原則的普遍性和特殊性

專門用途英語參考選題

商務翻譯的語用分析

法律語言與法律文體翻譯

廣播新聞英語的詞匯特點

英語廣播新聞與報刊新聞文體對比

英語新聞標題的特色與文體風格

廣播新聞英語的詞匯特點

網絡廣告英語與報紙雜志廣告英語的詞匯量化比較

科技英語中wh—words的分析

科技英語中時間狀語從句的量化分析

語言在談判中的作用——威脅

英漢法規中的詞匯復現

論廣告英語的語言特點

廣告人的目標在英文廣告中的體現

廣告英語中的雙關語

廣告語中對讀者的心理順應

報紙雜志廣告中用面子技巧進行社會距離操縱的分析

間接表達策略在國際商務淡判中的運用

專門用途英語透視——專門用途英語課程設計中以學習者為中心的套路 出口商標說明中漢英研究 外貿函電英語特點 科技英語中的代用式

系動詞在科技英語中的量化分析

經濟類英文期刊中隱喻理解的有效途徑

商務英語的語言特征

國際貿易書信文體的量化分析

論網絡聊天室縮略語及其原詞語的特點

公務語境下的電話語篇分析

學術論文提要研究

試論法律英語文獻的修辭

矛盾修辭中的對立與統一及其在商務英語中的應用

以上選題供大家參考

下載英語 專業論文怎么寫word格式文檔
下載英語 專業論文怎么寫.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    師范大學英語專業論文(5篇)

    福建師范大學 現代遠程教育畢業論文 裝 題訂線 目:培養中學生學習英語興趣的有效方法 專業:英語教育 學號:200908575652 學生姓名:高樹枝 導師姓名:邱志芳 2012年2月20......

    英語專業99級論文工作總結

    英語專業99級論文工作總結 英語專業99級的畢業論文工作是從第七學期的第八周開始,到第八學期期末結束,整個程序按先后進行順序包括:畢業論文動員工作、指導教師給出參考題目和......

    英語專業論文排版要求

    注意以下事項: 1、封面標題用英文書寫。 2、所在學院一欄填寫“西南財大天府學院”,不要簡單填寫“天府學院”。 3、開題報告論文名稱處應填寫論文中文名字和英文名字。 4、中......

    2014屆英語專業論文選題

    文化: 從《喜福會》中母女沖突看中美文化差異 論電影中同性戀現象反映的中美文化差異 淺談商務禮儀中的中美文化差異 由電影《刮痧》分析中美文化價值觀差異 從英漢親屬稱謂......

    職業生涯規劃論文(英語專業)★

    職業生涯規劃論文 生命是舟,我們每一個人都注定要在生活的河流里破浪航行。在生活的河流里,有碧波蕩漾也有逆浪翻卷,有水緩沙白的平川也有礁石林立的急彎險灘。沒有人能將日子......

    英語專業畢業生論文選題

    英語專業畢業生論文選題 Thesis Topics for Graduates of English Majors in Hangzhou Dianzi UniversityEnglish and American Literature1. The comparison between Words......

    商務英語專業論文選題

    商務英語專業論文選題 The Thesis Titles of Business English Graduates 一、商務英語方向Business English Direction 1.成功的商務談判戰略The Strategies of Successful......

    商務英語專業論文選題

    商務英語專業論文選題.txt6寬容潤滑了彼此的關系,消除了彼此的隔閡,掃清了彼此的顧忌,增進了彼此的了解。www.tmdps.cn 論文是商務英語專業教學計劃的最后一個環節,也是......

主站蜘蛛池模板: 狠狠噜天天噜日日噜视频跳一跳| 亚洲日本香蕉视频观看视频| 久久亚洲a片com人成| 精品亚洲成在人线av无码| 高潮又爽又无遮挡又免费| 国产播放隔着超薄丝袜进入| 最新永久无码av网址亚洲| 国产乱子伦精品无码码专区| 老妇女性较大毛片| 麻豆国产精品va在线观看| 国产一区二区精品久久岳| 国产欧美久久一区二区三区| h番动漫福利在线观看| 国内精品一区二区三区在线观看| 丰满人妻精品国产99aⅴ| 一区二区三区在线观看亚洲电影| 最新网站亚洲人成无码| 99久久精品国产自在首页| 亚洲伊人久久精品酒店| 无码少妇一区二区浪潮av| 特黄特色大片免费播放器图片| 777精品出轨人妻国产| 亚洲国产成人久久综合| 亚洲成熟女人毛毛耸耸多| 亚洲日韩成人av无码网站| 俄罗斯老熟妇色xxxx| 亚洲熟妇无码av在| 囯产精品久久久久久久久久| 精品国产三级a在线观看| 亚洲欧美国产另类va| 国产亚洲精品久久久久久无亚洲| 国色天香成人网| 日韩人妻熟女中文字幕| 国产在线98福利播放视频| 熟妇女人妻丰满少妇中文字幕| 亚洲精品97久久中文字幕无码| 亚洲人成无码网www电影榴莲| 强行交换配乱婬bd| 黄网站色成年片大免费高清| 国产亚洲综合欧美视频| 国产老师开裆丝袜喷水视频|