久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

師范大學英語專業論文(5篇)

時間:2019-05-14 06:34:07下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《師范大學英語專業論文》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《師范大學英語專業論文》。

第一篇:師范大學英語專業論文

福建師范大學

現代遠程教育畢業論文

目:培養中學生學習英語興趣的有效方法

業:英語教育

號:200908575652

學生姓名:高樹枝

導師姓名:邱志芳

2012年

2月日

福建師范大學網絡教育學院本科畢業論文(設計)作者承諾保證書

本人鄭重承諾: 本篇畢業論文(設計)的內容真實、可靠。如果存在弄虛作假、抄襲的情況,本人愿承擔全部責任。

學員簽名:

月 日

摘要: 培養中學生對英語學習的興趣是提高中學英語教學質量的關鍵。愛因斯坦曾說過:“興趣是最好的老師”。如果他們對學習感興趣的話,學生們不會覺得學習是一種負擔, 他們就會積極地將他們的心放在學習上。因此激發同學們的興趣是成功學好英語的關鍵, 從而提升學生的學習興趣, 投身于英語學習。它還可以豐富學生知識, 打開學生的心靈, 并且彌補智能發展的弱點。但是如何培養學生的學習興趣?但學生的學習興趣不能自發地產生,各種社會因素也會影響著學生的學習情況。教師需要從家庭、社會和學校方面充分調動學生的學習計劃和目的,從而使學生學習興趣得到轉變。

關鍵詞: 興趣;

關鍵;

培養;

英語學習

Abstract:Training students' interest in English learning is the key to improving the quality of English teaching.Einstein once said: “Interest is the best teacher”.The students will not feel that learning is a kind of burden, if they are interested in learning, they will actively put their hearts into his study.So to arouse the students' interest is the key to success in learning English well, so as to promote the students' interest in study, participate in English learning.It can also enrich the students' knowledge, open the students' mind and make up for the weakness of intelligent development.But, how can we cultivate the students' interest in English learning? The students’ learning interest can't spontaneously emerge.Varieties of social factors may also affect student learning.Teachers need to fully mobilize students' plan and purpose to make the students interest in learning changed from family, society and school.Key words: interest;key;train;learning English

隨著科學技術的飛速發展, 知識在我們的日常生活中越來越重要。目前, 學生必須成為終身學習者以適應知識爆炸的時代。而且, 正如我們所知, 英語是我們第二門重要的語言, 所以教師應采取相應有效的教學方法, 以激發學生的學習興趣, 使學生在課堂教學中更為活躍、更有吸引力。但事實上, 在一些中學, 一些無聊的語法學習通常降低了學生的學習興趣。由于缺乏興趣, 他們在大學入學考試中不能取得很好的成績。盡管老師的辛勤工作,最終他們還會失去興趣并放棄它。總之,“興趣是最好的教師。”老師激發培養學生學習英語的興趣是有必要的, 但是教師應該如何做呢? 本人有一些如下建議:

一、創設活潑有趣的教學環境, 培養學生的英語學習興趣

“在課堂上、學生之間、各種活動中、語言材料和學生之間創設交際過程。”[1]如果一個老師在課堂上善于激發學生學習興趣, 并具有豐富的教學經驗, 他一定是一個出色的教師。現在在對最新版本的英語教科書的介紹中,每一個單元都由熱身、聽、說、預讀、讀后、語法、整合能力和寫作等各部分組成。根據上述部分, 老師應該培養激發學生學習英語的興趣, 通過創造生動有趣的教學環境, 激發他們的學習欲望。

(一)、每單位分成五小快, 并在每一節運用不同的教學策略

熱身、聽、說形式一節。根據上下文不同的特點, 教師可以搭配音樂教學、多媒體教學、感官教學刺激興趣, 培養他們的英語學習習慣。這是一個很好的方式,并能避免單一的的教學模式。用這種方法可以迅速培養、激發學生學習的興趣。

2、讀前和讀后屬于第二部分。

在這個過程中, 教師的主要任務是發現問題、提出問題、分析問題、解決問題。在這部分, 可以培養、激發學生的創新能力。

除此之外, 它還能刺激學生認真思考, 善于觀察問題與實踐的能力, 讓他們充分發揮其作用, 在英語學習的過程中培養學生探索的精神。

在這種激勵情況下的課堂教學中, 可以激發創造力。教師應給或讀一些相關問題的文本, 當然, 這些問題應該是任意的、思考性的和鼓舞性的, 旨在激發、培養學生的求知欲。我們可以以“項鏈”作為一個例子。在語境中, 這些問題可以包括:(1)、你這樣做, 你會被邀請參加舞會嗎?(2)、什么飾品, 你知道嗎?

(3)、如果你沒有任何的珠寶你會怎么做呢?(4)、你認為借飾品合適嗎?

在post-reading部分, 學生可以討論這些問題:(1)你怎么學習“項鏈”的?(2)你認為接著會發生什么?(3)你認為瑪蒂爾德知道了真相后會是什么樣的感覺? 上述問題不僅是上下文相關, 而且還能幫助學生拓寬思路。

3、單詞學習和語法為第三部分。

面對一些乏味的單詞和無聊的語法, 教師應該根據現實意義建立這兩個詞之間的關系。現在舉一個例子: 當談到“被動語態”教學、交際性語法教學時, 注重提高學生觀察能力可以取代傳統教學模式。例如, 在黑板上有兩張圖片, 老師讓全班來仔細觀察, 對圖片間的不同發表觀點和看法, 然后學生們嘗試找到這個問題的答案:“What has been changed in these two questions?“根據這個觀察, 可以提高學生的觀察能力, 并且對被動語態將有一個很好的掌握。

4、第四部分由綜合能力和寫作構成。

在寫作部分中, 因為它不是那么容易掌握的部分, 所以老師應該作為一個向導, 指導他們如何寫。我們可以設置“ The sound of the world ”作為一種寫作話題,并回答下列問題:

(1)、流行音樂和搖滾音樂屬于哪種音樂?(2)、除現代音樂以外, 還有什么別的類型的音樂, 你知道嗎?(3)、中國傳統與現代的音樂有什么不同? 在教師的指導下, 他們的寫作會越來越好。如果沒有足夠的時間在課堂上寫, 老師可以允許他們用業余時間來做。此外, 錯誤可以通過teamwork查到。這樣, 他們發現他們各自的錯誤并及時改正。同時, 教師要引導他們擴大閱讀量,并把寫作作為作業。如寫日記或寫一篇社會熱點問題的評論等。用這種方法, 可以日益提高他們的寫作能力。

5、第五部分是由課后作業及相關練習組成。

在這個過程中, 學生的學習能力能夠逐漸被提升, 并能使他們能夠更好地學好英語。畢竟, 枯燥的語法學習如果沒有更多的實踐就不能夠更好的掌握。否則, 學生的主動性可能很快會減弱的。

(二)、找準角色,尋找合適的教材,激發英語學習的興趣。

成就感是快樂學習的源泉。在教學過程中, 保證正常教學是非常必要的;而且, 老師可以首先選擇讓學生準備更容易的部分,這種方法能使學生有機會品嘗到快樂的成就感。針對這一特殊的活動, 學生可以有機會與教師溝通交流,從而加深對知識的掌握程度并且也能激發學生的學習興趣。

(三)、實行競爭機制, 培養激發學生英語學習的興趣。

在此過程中, 老師要求學生玩個游戲:在有限的時間里背單詞和課文,以使學生記住所學內容。“誰做的最好,誰就會贏獎”。在獎品的“誘惑”下,學生們將竭盡全力背課文和單詞。因此, 學生的學習效率在生動、競爭的氛圍中得以提高。

(四)、借助音樂教學, 激發學生學習興趣。

如今英文歌曲深受大多數的學生喜歡, 這也可以是一個比較好的,可以提高英語聽力能力的有效方 4

法。老師如能教學生一些流行歌曲,例如 “紅河谷”、“我心永恒”、“檸檬樹”等等。這樣, 學生不僅能夠記住在這首歌中的新單詞, 還能促使他們上網學習英語。高中英語教科書“the sound of the world”中包含許多音樂片段, 在聽的過程中, 學生會對生活產生美好的感覺, 同時他們還能學習到新鮮事物。

二、提供相關閱讀資料,激發學生閱讀興趣

(一)、閱讀能有效擴大詞匯量。

作為一個英語老師, 他應該幫助學生擴大他們的閱讀量,并選擇一些具有教育性和有趣的材料來供他們閱讀。

當引導學生閱讀書籍時, 應遵循下列原則:(1)、難度中等的原則。

(2)、the-more-the-better的原則。(3)、內容合適、適應的原則。(4)、多樣性的原則。(5)、語言真實性的原則。(6)、學與得相結合的原則。(7)、成就感的原則。

閱讀材料的選擇要確保適當的難度,這是必要的。他們不應該太難, 也不能太容易。從某種意義上說, 閱讀材料越多、越好。只有通過閱讀大量的語言材料才可以做到量變到質變的實現, 學生的閱讀能力才能被提高。更重要的是, 閱讀的材料應該是多種多樣, 不僅可以滿足大多數的學生, 可以還可以使學生獲得成就感。只有用這種方法才能使學生更容易集中精力去閱讀。

總之, 閱讀材料的選擇, 必須從實際出發, 還要針對學生的全面發展和長遠利益。

(二)、閱讀英文報紙, 掌握閱讀技巧, 提高閱讀能力,激發學生學習興趣

長期的閱讀英語報紙和期刊也可以提高學生的閱讀技巧和閱讀理解能力。一個新聞故事是由標題、主體和結尾組成的。標題是刊登在報紙上面的以大體字出現的, 但是它必須要能夠吸引讀者, 所以我們說一個標題通常滿足兩個要求:抓住事情本質和吸引讀者。而內容提要通常是新聞故事的前一、二段, 要捕捉本質的事件, 誘使讀者進入這個故事。

(三)、通過閱讀電子書籍,激發學生學習英語興趣

國內和國外一些主要的報紙和雜志的網站, 都是些免費的資源,是可以隨時瀏覽的: China Daily:

http://www.tmdps.cnN等)也是練習英語口語的最佳選擇。

(三)、通過瀏覽因特網學習,全方位練習英語口語

我們都知道, 有許多網站提供聊天室供學習英語的學生練習口語。通過skype軟件可以用英語交談。還有新浪UC,下載安裝并登陸客戶端,進入外語天地-初級英語口語房間,在那里可以聽,也可以上麥就某個話題和麥友用英語交流溝通。

然后, 你可以申請做管理, 并可以設定熱門話題供麥友們討論。那些想提高英語口語和喜歡用英語交流的朋友可以參加你組建的組或群并展開討論,這對練習英語口語非常有效。通過網上英語聊天, 學生的英語口語進步了,也激發了他們學習英語的興趣。

七、貫穿英美文化教學, 激發、培養學生學習英語

當談到英美文化習俗時, 許多學生對此不甚了解。那么老師怎樣做來解決該問題嗎? 最好的辦法是用知識來豐富自己的文化知識, 這能有效地促進外語教學。在文化教學中, 老師可以介紹一些關于這個話題的文化背景, 并介紹一些西方習俗來激發學生的好奇心, 以及他們對學習英語的興趣。然后學習者的主動性就會慢慢的培養出來。此外, 組織學生看一些有關英、美國文化的電影。“文化教學以培養學生的文[10]化意識為主要目的。”根據來自現實生活中有意義的文化背景知識, 學生對英語學習將會產生濃厚的興趣,這將極大促進學生學習英美文化和英語口語教學。

眾所周知, 語言本身蘊涵著豐富的文化內涵。學習英語沒有文化就不能得以提高, 所以從另一個角度來說, 文化意識對學習一門外語的學生來說是至關重要的, 學習時了解文化背景知識還具有重要的意義, 它還可以提高英語教學的質量和培養激發學生的學習興趣。如果老師把上述的步驟運用在課堂上, 學生的知識范圍就會擴大, 他們對英語學習的興趣就會慢慢被培養出來。

八、結論

也許還有許多其他好的方法策略, 但上面提到的都是有效的、可接受的,且幾乎足以教師們解決教學中所出現的所有問題。

在教學過程中, 興趣在英語教學中擔當著不可缺少的角色。“把學習過程看成一個由學生親自參與的、生動活潑的、主動的和富有個性的過程。”[11]作為一名教師, 他不僅要采取有效的教學方法, 激發閱讀興趣,選擇有吸引力的話題來討論、組織各種各樣的教學活動、建立和諧師生關系、英語口語及文化教學, 來激發培養學生學習興趣。更重要的是, 應把課堂教學搞得更具吸引力、更活躍, 培養、激發學生學習的主動性,從而提高英語教學質量。老師不僅應該在教學過程中耐心和負責,而且還要做到勤學、多學、鉆研教材教法,博采眾家之長。

我們都應該承認這樣一個事實: 如果沒有任何興趣存在的話,沒有任何一個班級的教學可以做到生動,活潑。毫無疑問, 學生感興趣的一堂課才是真正成功的一堂課。一旦學生感興趣, 那么沒有什么是不可能的, 更不用說英語學習了。

參考文獻:

[1] 馬相明.現代外語教學方法研究[M].北京:經濟管理出版社,2001,86-87.[2] 謝云錦,王萱.中學英語典型課示例[M].長春:東北師范大學出版社,2000,186-187.[3] 陳旭遠.新課程新理念[M].長春:東北師范大學出版社,2002,140-141.[4] 劉秋云.高中英語校本教研的構建與實施[M].廣東:英禾多媒體工作室,2007,158-159.[5] 侯渝生.新課程理念下的創新教學設計[M].長春:東北師范大學出版社,2003,11-12.[6] 孫凡哲.上好課[M].長春:東北師范大學出版社,2002,144-145.[7] 李廣.評好課:應知應會[M].長春:東北師范大學出版社,2010,10-11.[8] 魯子問,王篤芹.新編英語教學論[M].上海:華東師范大學出版,2007,14-15.[9] 靳玉樂.探究教學的學習與輔導[M].北京:中國人事出版社,2002,38-39.[10] 魯子問,王篤芹.新編英語教學論[M].上海:華東師范大學出版,2007,86-87.[11] 劉小明,馮墨女,劉虹,吳世蘊.評好課與師德行為[M].長春:東北師范大學出版社,2010,40-41.

第二篇:英語專業論文

英語專業文學方向本科畢業論文寫作問題探究

[摘 要]英語畢業論文由于從事英美文學教學的教師理論水平參差不齊、教師對學生文藝理論接受能力的懷疑、商品經濟時代文學和文藝理論曲高和寡等因素,造成文學學習和文學方向畢業論文寫作中缺乏科學的分析方法。本研究將探索將文藝理論引入本科畢業生的論文寫作課程中的必要性和可行性,從而建構以文藝理論為中心的英語專業文學方向畢業論文寫作的新模式。

[關鍵詞]文學理論;讀者反映理論;認知教學法

依據《高等教育法》(1998)的本科教育學業標準,學生應比較系統地掌握本專業所必需的基礎理論知識、基本技能和相關知識,并“具有從事本專業實際工作和研究工作的初步能力”。這一標準強調了研究性教學(research-oriented teaching)的重要性,無疑為英美文學教學中理論研究與實踐的有機融合提出了要求,而這種融合往往體現在學生文學論文寫作的能力之中。然而,高校中實用主義風氣、急功近利思想和“重技能,輕人文”弊端的集中體現沖擊著文學課教學,助長了學生輕視與人文修養有關的課程,助長了他們對文學作品敬而遠之的傾向(馬愛華, 2006)。作為全面考核畢業生綜合素質的有效途徑,畢業論文寫作是本科學生畢業前必須經受的考驗關口,是師生教學相長的過程。本文將從文學課教學的現狀出發,通過畢業論文寫作的過程,在揭示現象、總結經驗的基礎上,提出重視文藝理論的教學,提高學生的文學素養,培養研究性學習能力的意義。

一、研究現狀

部分專家認為英語專業(張沖, 2003)是“英語語言技能的專業訓練和對英語語言文化的專門研究”,其特征為“技能加專業,復合而開放”,其培養目標為“純熟的語言能力,深度的專題研究”。這一專業定位除了強調語言技能之外,著重強調了“文化”和“研究”。文化理解和專題研究的基礎在于學生文學課程的給養過程,其中,文學理論分析則既指導了文學課程的學習,又加深了學生對文學作品的理解。文學作品的學習與文藝理論的關系好比材料和工具的關系,“工欲善其事,必先利其器”,如果學生沒有相關的文藝理論的學習,就好比一個沒有工具的工匠,只能望天興嘆。

二、問題成因

文藝理論是學習英美文學的分析和鑒賞工具,研究生階段的文藝理論教學已經有了一定的歷史,但在英語專業本科教學中文藝理論的教學目前尚未展開。這直接導致學生的文學畢業論文的寫作難度增大,出現了許多亟待解決的問題。主要成因如下:

1.從事英美文學教學的教師理論水平參差不齊。部分教師講授英美文學,而其自身很少涉及文藝理論的使用,或者說自己的文學批評理論知識匱乏,因此不可能在授課時有意識地將文藝理論融入到教學中去。

2.輕視或放低對學生的人文素質和評析能力的生成要求。有些教師擔心學生的接受能力,甚至害怕因為學生不能正確理解文藝理論的精髓而將其誤用或者濫用。《高等學校英語專業英語教學大綱》(2000)明確規定了文學課程的教學目的“在于培養學生閱讀、欣賞、理解英語文學原著的能力,掌握文學批評的基本知識和方法。通過閱讀和分析英美文學作品,促進學生語言基本功和人文素質的提高,增強學生對西方文學及文化的了解”,顯而易見,加大文學批評理論的講授和研討是符合《大綱》要求的。

3.所學知識與研究性寫作存在三個“不和諧”關系:文學課的教與學脫節;文學課與語言實踐脫節;文學教學理論的研究與外語教學實踐脫節(馬愛華, 2006)。學生習得的知識孤立于其寫作實踐之外。人才培養目標不明確,學生急功近利,一成不變的文學課程教學脫離實際人才

培養模式。學生將文藝理論視為紙上談兵。因而,導致“文學理論教材和教學實踐逐漸偏離當今消費時代的審美精神”以及“文學理論的教學被大學生們冷落”(李迪江, 2002)。

三、文藝理論在文學論文寫作中的意義

1.文學理論的專業知識學習,鋪墊了文學論文的研究能力。“文學理論教學應該優先地培養大學生的理論素養,更多地培養大學生的應用能力,如從文學作品的分析討論中,來培養大學生的理解能力、分析能力和表達能力等(李迪江, 2002)”。本科學生已經有了一定的文學常識,至少對于著名作品的情節有了一定程度的了解,文學名著選讀課使用文學名著的原版書籍作為教材,使得學生有機會對文學文本進行仔細研讀,為文藝理論的學習奠定了基礎。

2.畢業論文寫作,完成學生從讀者到理論分析的升華。Guerin認為,“讀者參與在文本的創作中”。作品的意義是文本和讀者相互作用的結果,它強調讀者在閱讀過程中的不同參與方式。這一理論代表人物之一伊瑟爾指出,所有文學篇章都有“空白”或“缺口”,這些空白和缺口必須由讀者在解讀過程中填補或具體化(劉辰誕, 1999)。文學作品須由接受者內化和心靈化,即需要接受者的理解、體驗、加工、補充和創造,融入接受者的思想和情感、傾向和評價,只有這樣,作品中的時間、人物形象等才會活生生地呈現在自己的頭腦中(郭宏安, 1997)。從這個角度暴露了英語專業教育中一貫的“知識單一和技能單一”問題,帶來的思考是應該如何培養學生多種語言技能,滿足其獨立學習的需要。

3.文學史學習為文藝理論的學習奠定基礎。心理學、原型批判、女權主義、馬克思主義的文學評論等可將傳統文學史中作家、作品按照時間排序的方式打破。從各種文藝理論的角度對作家、作品重新排序,不同的文學作品可以用相同的文藝理論進行分析,既起到梳理文學史和文學作品的目的,又使學生對文學作品甚至文學史的認識提升到一個新的高度。如:莎士比亞的《哈姆雷特》,尤金?奧尼爾《榆樹下的欲望》,勞倫斯的《兒子與情人》等作品中都蘊含著戀母情結的心理學分析。以此為基礎,給學生補充講述古希臘劇作家索福克里斯的著名悲劇作品《俄狄浦斯王》,能幫助學生探究作品人物的內心世界,為論文寫作奠定基礎的同時,也有助于選擇一個更為可行的題目。

4.結合文本與文藝理論,豐富學生的論文選題。學生文學專業畢業論文選題往往單一,如選擇:《偉大的蓋茨比》中美國夢破滅的主題或美國夢的悲劇一類的主題;《呼嘯山莊》、《傲慢與偏見》中的愛情主題等。選擇經典作家的代表作品為研究對象并不是不可以,但對于一般本科生而言,要就這些作品的某一方面進行較為深入、有創意的探討,還是有相當難度的。因為,對于某一經典文本的某些問題,國內外評論界可能早有定論,而一般的學生“尚不能用當代文論的新視角去解讀,很難提出自己的新解”(杜志卿, 2005)。

5.研讀詩歌,理論先行。在歷屆本科英語專業畢業生的論文中,有關詩歌的論文很少有人涉及。究其成因,主要是在較短篇幅的詩歌中大量運用意象和象征等寫作手法,再加上詩人用特有的音韻感和

第三篇:英語專業論文題目參考

英語專業論文題目

語言與語言學類

001 從歷史文化的發展看某個英語詞或短語的語義演變

002 英詩中常用的修辭

003 英語諺語的修辭手法

004 委婉語種

005 英語中的縮略語

006 英語詞匯中的外來語單詞

007 英語新詞新意探究

008 美國英語的特色

009 如何正確把握英語定語從句(或其他各種從句或語法形式)在句子中的確切含義

010 Fuzzy Words and Their Uses in Human Communication

011 Ambiguity and Puns in English

012 Some basic consideration of style

013 English by Newspaper

014 English Personal Pronouns: a Preliminary Textual Analysis

015 Thematic Network and Text Types

016 An Inquiry into Speech Act Theory

017 On Lexical Cohesion in Expository Writing

018 The Inferences of Conversational Implications

019 Context and Meaning

020 The Construction and Interpretation of Cohesion in Texts 語言教學類

001 擴大詞匯量和提高英語閱讀能力的關系

002 提高英語閱讀速度的主要障礙

003 英語閱讀能力和閱讀速度的關系

004 通過擴大知識面提高英語閱讀能力

005 如何在閱讀實踐中提高英語閱讀能力

006 閱讀英文報刊的好處

007 如何處理精讀和泛讀的關系

008 如何對付英語閱讀材料中的生詞

009 如何通過閱讀擴大詞匯量

010 提高閱讀能力和提高英語聽力的關系

011 英語聽說讀寫四種技能的關系

012 通過英語閱讀提高英語寫作能力

013 英語快速閱讀能力的構成成分

014 中學生英語自主學習能力的培養

015 英語教學中的語言焦慮及解決策略

016 簡筆畫-英語教學中簡單高效的教學手段

017 提高英語聽力理解能力的策略和技巧

018 電子辭典與英語教學

019 普通話對英語語音的遷移作用

020 母語遷移在基礎教育各階段中的作用

021 提高大班課堂教學的效果

022 《英語課程標準》研究

023 口語教學中教師的角色

024 從心理學角度探討少兒英語教學

025 英語課堂提問的策略研究

026 英語后進生產生的原因以及補差方法研究

027 英語詞匯教學方法探討

028 小學生英語口語能力評估方法研究

029 朗讀在英語教學中的作用

030 任務型教學法研究

031 方言對學生英語語音的影響

032 英語閱讀課堂教學模式探討

033 英語課堂的合作學習策略研究

034 中學生英語學習策略的培養

035 探究式教學法在中學英語教學中的應用

036 現代信息技術在英語教學中的應用

037 教師教學行為對高中生英語學習的影響

038 實施成功教育減少兩極分化

039 小學英語活動課教學模式研究

040 中學英語聽力訓練最佳方案

041 原版電影與英語學習

042 中學生英語興趣的培養

043 《瘋狂英語》(或各種教學方式)的利與弊

044 張思中教學法實踐調查報告

045 如何杜絕中式英語

046 英語教師的文化素養

047 網絡時代如何學好英語

048 背景知識與閱讀理解

049 上下文在閱讀理解中的作用

050 家庭教師在中學生英語學習中的利弊

051 中學英語教學現狀分析

052 中學英語課堂上的Daily Report

053 中外教師解釋課文方法比較

054 中外教師課堂提問方法比較

055 中外教師課堂鼓勵性用語比較

056 中外教師對學生總體要求之比較

057 計算機輔助英語教學中的諸問題

058 不同種類的計算機輔助英語教學方式

059 計算機輔助英語教學中的教學法原則

060 The Instructive Meaning of Inter-language Pragmatics for foreign Language Teaching

061 Pedagogical Translation and Translation Teaching

062 The Importance of Cultural Authenticity in Teaching Materials

063 Micro-teaching and Student Teacher Training

064 How to Evaluate the Teacher www.tmdps.cn Performance-A Case Study 065 English Test Design 066 The Interference of Native Language in English Writing or Translation 067 Translation Methods and English Teaching

第四篇:英語專業論文開場白

Good afternoon, Distinguished professors and teachers.I am Gu Danni From the class of English translation.First, I would like to express my sincere gratitude to my supervisor, Ms.Wang, for her intellectual guidance, invaluable instructions and comments on my thesis.It is with her valuable assistance that I have finally accomplished this paper.The title of my paper is Strategies in Humor Translation of American Sitcom Friends.As a vital part in translation, the translation of humor in subtitle is gradually capturing an increasing attention and developing into an independent research field.The purpose of the paper is to explore the interpretation of verbal humor in American sitcoms Friends under the guidance of the Functional Equivalence Theory, with the hope of helping people express humor and understand humor effectively.The final goal of translating a sitcom is to ensure that the target audience can get the humor and appreciate it in the exactly the same manner as the original audiences do,here is an outline of my presentation and I divide my paper into five parts.Part one and two presents an introduction of this study and Nida’s Functional Equivalence Theory, Part three makes a clear illustration of the different categories of humor in Friends,and discussed the features of language.Then I apply these strategies to the subtitling of Friends featuring humorous language.Part five draws some conclusions that translators should try to find appropriate strategies to convey the humorous effect and make the cross-cultural communication smoothly.I hope the paper can provide some insightful opinions for the improvement of humor translation in American sitcoms.However, due to limited time and resources, the paper may have some deficiency, and there is still a long way to go..I’m looking forward to your sincere comments and suggestions.That’s all.Thank you.

第五篇:英語專業論文翻譯

A smart copper(II)-responsive binucleargadolinium(III)complex-based magnetic resonanceimaging contrast agent?

Yan-meng Xiao,ab Gui-yan Zhao,ab Xin-xiu Fang,ab Yong-xia Zhao,ab Guan-hua Wang,c Wei Yang*a and Jing-wei Xu*a A novel Gd-DO3A-type bismacrocyclic complex, [Gd2(DO3A)2BMPNA], with a Cu2+-selective binding unitwas synthesized as a potential “smart” copper(II)-responsive magnetic resonance imaging(MRI)contrast agent.The relaxivity of the complex was modulated by the presence or absence of Cu2+;in the absence of Cu2+, the complex exhibited a relatively low relaxivity value(6.40 mM1 s1), while the addition of Cu2+ triggered an approximately 76% enhancement in relaxivity(11.28 mM1 s1).Moreover, this Cu2+-responsive contrast agent was highly selective in its response to Cu2+ over other biologically-relevant metal ions.The influence of some common biological anions on the Cu2+-responsive contrast agent and the luminescence lifetime of the complex were also studied.The results of the luminescence lifetime measurements indicated that the enhancement in relaxivity was mainly ascribed to the increased number of inner-sphere water molecules binding to the paramagnetic Gd3+ core upon the addition of Cu2+.In addition, the visual change associated with the significantly enhanced relaxivity due to the addition of Cu2+ was observed from T1-weighted phantom images.Introduction Copper(II)ion is a vital metal nutrient for the metabolism of life and plays a critical role in various biological processes.1,2 Its homeostasis is critical for the metabolism and development of living organisms.3,4 On the other hand, the disruption of its homeostasis may lead to a variety of physical diseases and neurological problems such as Alzheimer's disease,5 Menkes and Wilson's disease,6 amyotrophic lateral sclerosis,7,8 and prion disease.9,10 Therefore, the assessment and understanding of the distribution of biological copper in living systems by noninvasive imaging is crucial to provide more insight into copper homeostasis and better understand the relationship between copper regulation and its physiological function.A wide variety of organic uorescent dyes have been exploited for the optical detection of ions in the last few decades.11–13However, optical imaging using organic uorescent dyes hasseveral limitations such as photobleaching, light scattering,limited penetration, low spatial resolution and the disturbance of auto uorescence.14 By comparison, magnetic resonance imaging(MRI)is an increasingly accessible technique used as a noninvasive clinical diagnostic modality for medical diagnosis and biomedical research.15 It can provide high spatial resolution three-dimensional anatomical images with information about physiological signals and biochemical events.16 As a powerful diagnostic imaging tool in medicine, MRI can distinguish normal tissue from diseased tissue and lesions in a noninvasive manner,17–19 which avoids diagnostic thoracotomy or laparotomy surgery for medical diagnoses and greatly improves the diagnostic efficiency.Multiple MRI imaging parameters can provide a wealth of diagnostic information.In addition, the desired cross-section for acquiring multi-angle and multi-planar images of various parts of the entire body can be freely chosen by adjusting the MRI magnetic eld;this ability makes medical diagnostics and studies of the body's metabolism and function more and more effective and convenient.Contrast agents are often used in MRI examinations to improve the resolution and sensitivity;the image quality can be signicantly improved by applying contrast agents which enhance the MRI signal intensity by increasing the relaxation rates of the surrounding water protons.20 Due to the high magnetic moment(seven unpaired electrons)and slow electronic relaxation of the

paramagnetic gadolinium(III)ion, gadolinium(III)-based MRI contrast agents are commonly employed to increase the relaxation rate of the surrounding water protons.16,21 However, most of these contrast agents are nonspecific and provide only anatomical information.On the basis of Solomon–Bloembergen–Morgan theory,22–24 several parameters can be manipulated to alter the relaxivity of gadolinium(III)-based MRI contrast agents.These parameters include the number of coordinated water molecules(q), the rotational correlation time(sR)and the residence lifetime of coordinated water molecules bound to the paramagnetic Gd3+ center(sM).Adjusting any of these three factors provides the opportunity to design “smart” MRI contrast agents for specific biochemical events.25–27 In recent years, there have been many studies on the development of responsive gadolinium(III)-based MRI contrast agents;most of them have focused on the development of targeted, high relaxivity and bioactivated contrast agents.These responsive gadolinium(III)-based MRI contrast agents can be modulated by particular in vivo stimuli including pH,28–35 metal ion concentration36–43 and enzyme activity.44–50 Notably, a number of copper-responsive MRI contrast agents have been reported to detect uctuations of copper ions in vivo.51–58 These activated contrast agents exploit the modulation of the number of coordinated water molecules to generate distinct enhancements in longitudinal relaxivity in response to copper ions(Cu+ or Cu2+).In this study, we designed and synthesized a binuclear gadolinium-based MRI contrast agent, [Gd2(DO3A)2BMPNA], that is specically responsive to Cu2+ over other biologicallyrelevant metal ions.The new copper-responsive MRI contrast agent comprises two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold59,60(BMPNA), which functions as a receptor for copper-induced relaxivity switching.The synthetic strategy for [Gd2(DO3A)2BMPNA] is depicted in Scheme 1.Subsequently, the T1 relaxivity of [Gd2(DO3A)2BMPNA] was studied at 25 C and 60 MHz in the absence or presence of Cu2+.Experiments to determine the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+ over other biologically-relevant ions were carried out as well.Luminescence lifetime was measured to determine the number of coordinated water molecules(q)of [Gd2(DO3A)2BMPNA] in the absence or presence of Cu2+.In addition, T1-weighted phantom images were collected to visualize the relaxivity enhancement caused by Cu2+, suggesting potential in vivo applications.Experimental section

Materials and instruments

All materials for synthesis were purchased from commercial suppliers and used without further purication.1H and 13C NMR spectra were taken on an AMX600 Bruker FT-NMR spectrometer with tetramethylsilane(TMS)as an internal standard.Luminescence measurements were performed on a Hitachi Fluorescence spectrophotometer-F-4600.The time-resolved luminescence emission spectra were recorded on a Perkin-Elmer LS-55 uorimeter with the following conditions: excitation wavelength, 295 nm;emission wavelength, 545 nm;dela time, 0.02 ms;gate time, 2.00 ms;cycle time, 20 ms;excitation slit, 5 nm;emission slit, 10 nm.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Mass spectra(MS)were obtained on an auto ex III TOF/TOF MALDI-MS and anIonSpec ESI-FTICR mass spectrometer.Elemental analyses were performed on a Vario EL Element Analyzer.Synthesis Synthesis of compound 3.Methyl 2,6-bis(3-(bromomethyl)-1H-pyrazol-1-yl)isonicotinate(Compound1)59,60 and 4,7,10-tris(2-(tert-butoxy)-2-oxoethyl)-4,7,10-triaza-azoniacyclododecan-1-ium bromide(Compound 2)61 were prepared following thereported methods.Compound 2(0.25 g, 0.296 mmol)was suspended in 2 ml anhydrous acetonitrile with 6 equivalents of NaHCO3(0.1492 g)and the mixture was stirred at room temperature for 0.5 h.Compound 1(0.0675 g, 0.148 mmol)was added, and the mixture was slowly heated to reflux(80 C)and stirred overnight.After the reaction was terminated, the mixture was cooled to room temperature, and the solution was ltered.The precipitate was washed several times with anhydrous acetonitrile, and the collected ltrate solution was evaporated under reduced pressure.The residue was puried using silicagel column chromatography eluted with CH2Cl2–n-hexane–CH3OH(10 : 3 : 1, v/v/v)to afford Compound 3(0.1038 g, 53%)as a pale yellow solid.1H NMR(600 MHz, DMSO): 8.22(s, 2H), 8.15(s, 2H), 6.62(s, 2H), 4.53(s, 4H), 3.82(s, 3H), 3.42(m, 4H), 2.98(m, 8H), 2.85(s, 8H), 2.71(m, 24H), 1.33(s, 54H)(Fig.S1?).13C NMR(151 MHz, CDCl3): d 173.21, 172.44, 163.99, 152.38, 150.11, 143.13, 128.07, 109.83, 108.36, 82.59, 57.84, 56.52, 56.06, 55.56, 52.98, 50.55, 48.91, 47.30, 27.96(Fig.S2?).HRMS(ESI): m/z calc.for C67H111N13O14 [M + 2H]2+ 661.92650, [M + H + Na]2+ 672.91747, [M + 2Na]2+ 683.90844, found [M + 2H]2+ 661.92584, [M+ H + Na]2+ 672.91690, [M + 2Na]2+ 683.90682(Fig.S3?).Synthesis of compound 4.Compound 3(0.1 g, 0.0756 mmol)was stirred with triuoroacetic acid in methylene chloride solution(2 ml)at room temperature for 24 h.The solvent was then evaporated under reduced pressure, and the residue was washed three times in CH3OH and CH2Cl2 to eliminate excess acid.The obtained residue was dissolved with a minimum volume of CH3OH and precipitated with cold Et2O.The precipitate was ltered to afford a brown yellow solid(0.1022 g).1H NMR(600 MHz, DMSO): 9.06(s, 2H), 8.17(s, 2H), 6.84(s, 2H), 4.33(s, 4H), 3.98(s, 3H), 3.56(b, 20H), 3.09(m, 24H)(Fig.S4?).13C NMR(151 MHz, D2O): d 174.11, 169.13, 164.64, 150.75, 148.85, 142.10, 129.88, 109.75, 107.99, 55.69, 54.01, 53.10, 52.43, 51.15, 49.59, 48.22, 47.69(Fig.S5?).MALDI-TOFMS spectrum(CH3OH): m/z calc.for C43H63N13O14 [M H] 984.46, found 984.7(Fig.S6?).Anal calc.for C43H63N13O14-$3CF3COOH$2H2O: C, 43.14;H, 5.17;N, 13.35;found C, 42.34;H, 4.999;N, 13.29%.Preparation of [Gd2(DO3A)2BMPNA] and [Tb2(DO3A)2-BMPNA].Compound 4(0.05 mmol)was dissolved in 2 ml of highly-puried water.GdCl3 or TbCl3(0.1 mmol)was added dropwise.The pH was maintained at 6.5–7.0 with NaOH during the whole process.The solution was then stirred at 75 C for 24 h.MALDI-MS(H2O): m/z calc.for C42H55N13O14Gd2 [M + H]+ 1281.46, found 1281.4(Fig.S7?).MALDI-MS(H2O): m/z calc.for C42H55N13O14Tb2 [M + H]+ 1284.3, found 1284.4(Fig.S8?).T1 measurements.The longitudinal relaxation times(T1)of aqueous solutions of [Gd2(DO3A)2BMPNA] were measured on an HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd)at 1.5 T.All of the tested samples were prepared in HEPES-buffered aqueous solutions at pH 7.4.All of the metal ions(Na+, K+, Ca2+, Mg2+, Cu2+, Zn2+, Fe3+, Fe2+)were used as chloride salts.Concentrations of Gd3+ were determined by ICP-OES.Relaxivities were determined from the slope of the plot of 1/T1 vs.[Gd].The data were tted to the following eqn(1),20

(1/T1)obs ?(1/T1)d + r1[M](1)

where(1/T1)obs and(1/T1)d are the observed values in the presence and absence of the paramagnetic species, respectively, and [M] is the concentration of paramagnetic [Gd].Luminescence measurements.Luminescence emission spectra were collected on a Hitachi uorescence spectrophotometer-F-4600.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Samples were excited at 290 nm, and the emission maximum(545 nm)was used to determine luminescence lifetimes.The Tb(III)-based emission spectra were measured using 0.1 mM solutions of Tb complex analog in 100 mM HEPES buffer at pH 7.4 in H2O and D2O in the absence and presence of Cu2+.The number of coordinated water molecules(q)was calculated according to eqn(2):62,63 q= ? 5(sH2O1 sD2O1 0.06)(2)T1-weighted MRI phantom images.Phantom images were collected on a 1.5 T HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd).Instrument parameter settings were as follows: 1.5 T magnet;matrix =256 256;slice thickness =1 mm;TE= 13 ms;TR= 100 ms;and number of acquisitions =1.Results and discussion Longitudinal relaxivity of [Gd2(DO3A)2BMPNA] in response to copper(II)ion To investigate the inuence of Cu2+ on the relaxivity of [Gd2(DO3A)2BMPNA], the longitudinal relaxivity r1 for the [Gd2(DO3A)2BMPNA] contrast agent was determined using T1 measurements in the absence or presence of Cu2+ at 60 MHz and 25 C using a 0.2mMGd3+ solution of [Gd2(DO3A)2BMPNA] in 100 mM HEPES buffer(pH 7.4)under simulated physiological conditions.The concentrations of Gd3+ were determined by ICP-OES.The relaxivity r1 was calculated from eqn(1).In the absence of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] was 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).64 Upon addition of up to 1 equiv.of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] increased to 11.28 mM1 s1(76% relaxivity enhancement).As shown in Fig.1, the relaxivity gradually increased with the copper ion concentration, reaching a maximum value of approximately 1.2 equivalents of Cu2+.Due to the use of triuoroacetic acid in the synthesis of Compound 4, triuoroacetic acid residues produced CF3COO in the [Gd2(DO3A)2BMPNA] solution, allowing CF3COO to partially coordinate with Cu2+ to form “Chinese lantern” type structure complexes.65 When the amount of added copper ions was further increased to above 1.2 equiv., the relaxivity was maintained at the same level.The observed difference in Cu2+-triggered relaxivity enhancement demonstrated the ability of this contrast agent to sense Cu2+ in vivo by means of MRI.Our designed contrast agent not only exhibited a higher relaxivity, but also displayed a Cu2+-responsive relaxivity enhancement.Selectivity studies The relaxivity response of [Gd2(DO3A)2BMPNA] exhibited excellent selectivity for Cu2+ over a variety of other competing, biologically-relevant metal ions at physiological levels.As depicted in Fig.2(white bars), the addition of alkali metal cations(10 mM Na+, 2 mM K+)and alkaline earth metal cations(2 mM Mg2+, 2 mM Ca2+)did not generate an increase in relaxivity compared to the copper ion turn-on response;even the introduction of d-block metal cations(0.2 mM Fe2+, 0.2 mM Fe3+, 0.2 mM or 2 mM Zn2+)did not trigger relaxivity enhancements.We noted that Zn2+ is also known to replace Gd3+ in transmetalation experiments;however, studies with analogous Gd3+-DO3A complexes demonstrated that this ligand is more kinetically inert to metal-ion exchange.66 To ensure the kinetic stability of the complex, we used MS to monitor [Gd2(DO3A)2BMPNA] in the presence of 1 equiv.of Zn2+.No metal-ion exchange was observed at room temperature after 7 days(Fig.S13?).Relaxivity interference experiments for [Gd2(DO3A)2BMPNA] in the presence of both Cu2+(0.2 mM)and other biologically-relevant metal ions were also conducted;the results are shown as black bars in Fig.2, indicating that these biologically-relevant metal ions(Na+, K+, Mg2+, Ca2+, Fe2+, Fe3+, Zn2+)had no interference on the Cu2+-triggered relaxivity enhancement.In addition, we also tested the Cu2+ response for [Gd2(DO3A)2BMPNA] in the presence of physiologically-relevant concentrations of common biological anions to determine whether the Cu2+-triggered relaxivity enhancement was affected by biological anions at physiological levels.As previously mentioned, Cu2+ binding induced an enhancement in relaxivity from 6.40 mM1 s1 to 11.28 mM1 s1(a 76% increase).As shown in Fig.3, in the presence of citrate(0.13 mM), lactate(0.9 mM), H2PO4(0.9 mM), or HCO3(10 mM), the Cu2+-triggered relaxivity enhancement was approximately 61%(from 6.01 mM1 s1 to 9.66mM1 s1), 66%(from 6.13mM1 s1 to 10.16 mM1 s1), 20%(from 5.88 mM1 s1 to 7.02 mM1 s1), or 55%(from 6.15 mM1 s1 to 9.55 mM1 s1), respectively.Additionally, 100 mM NaCl had almost no effect(an approximately 75% increase), and a simulated extracellular anion solution(EAS, contain 30 mM NaHCO3, 100 mM NaCl, 0.9 mM KH2PO4, 2.3 mM sodium lactate, and 0.13 mM sodium citrate, pH =7),67 resulted in a Cu2+-triggered relaxivity enhancement of approximately 26%(from 6.02 mM1 s1 to 7.56 mM1 s1).Generally, the results revealed that lactate, citrate, and HCO3 had slight impacts on the Cu2+-triggered relaxivity enhancement, while H2PO4 and EAS influenced the enhancement to a greater degree.As shown in Scheme 2, [Gd2(DO3A)2BMPNA] possessed two water molecules after the addition of 1 equiv.Of Cu2+.According to the work of Dickins and coworkers, in lanthanide complexes with two water molecules, the waters can be partially displaced by phosphate, carbonate, acetate, carboxylate, lactate and citrate at different levels.68–70 The influence of these anions on the Cu2+-triggered relaxivity enhancement may be attributed to the partial replacement of coordinated water molecules by these anions.The relatively high concentration of phosphate could likely replace coordinated water molecules to reduce the increased number of water molecules surrounding the paramagnetic Gd3+ centre induced by Cu2+.As shown in Table 1, we measured the number of water molecules in the rst coordination sphere of Tb3+ in the presence of phosphate;the number of coordinated water molecules(q)decreased from 1.5 to 0.8.Coordination features Luminescence lifetime experiments were performed to explore the mechanism of the Cu2+-triggered relaxivity enhancement.Luminescence lifetime measurements of lanthanide complexes have been widely used to quantify the number of inner-sphere water molecules.71 In particular, Tb3+ and Eu3+ have commonly been applied for lifetime measurements because their emission spectra are in the visible region when their 4f electrons are relaxed from higher energy levels to the lowest energy multiplets.72,73 Therefore, the Tb3+ analogue of [Gd2(DO3A)2BMPNA], [Tb2(DO3A)2BMPNA], was prepared according to a similar method, and the luminescence lifetimes of the Tb3+ analogue in HEPES-buffered H2O and D2O in the absence and presence of Cu2+ were measured.As shown in Fig.S9,? the luminescence decay curve of [Tb2(DO3A)2BMPNA] was tted to obtain the luminescence lifetimes74(Table 1), and the number of coordinated water molecules(q)was calculated by eqn(2).The analysis results(Table 1)for [Tb2(DO3A)2BMPNA] in HEPES-bufferedH2OandD2O in the absence and presence of Cu2+ indicated that q increased from 0.6 to 1.5 upon the addition of 1 equiv.of Cu2+;this result indicated that the Cu2+-triggered relaxivity enhancement for [Gd2(DO3A)2BMPNA] was most likely due to the increased number of coordinated water molecules around the Gd3+ ion upon Cu2+ binding to the pyrazole centre(Scheme 2).Aer the addition of Cu2+, Cu2+ removed the pyrazole centre N atom from the paramagnetic Gd3+ ion to generate an open coordination site available for a water molecule.Luminescence emission titrations of [Tb2(DO3A)2BMPNA] towards Cu2+ were also performed to investigate the binding properties of the contrast agent towards Cu2+.Upon addition of 1 equiv.Cu2+, the luminescence of [Tb2(DO3A)2BMPNA] at 545 nm decreased gradually and reached a minimum due to the quenching nature of the paramagnetic Cu2+(Fig.S10?).The titration data indicated a 1 : 1 binding stoichiometry(Scheme 2)Copper-responsive T1-weighted phantom MRI in vitro To demonstrate the potential feasibility of this Cu2+-responsive [Gd2(DO3A)2BMPNA] for copper-imaging applications, T1-weighted phantom images of [Gd2(DO3A)2BMPNA] were acquired in the absence and presence of copper ions.The phantom images depicted in Fig.4 displayed distinct increases in image intensity in the presence of 1 equiv.Cu2+ compared with those without Cu2+(Fig.4D).Moreover, some of the other competing metal ions were also tested to further verify the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+.Discernible differences were not observed upon the addition of Mg2+(Fig.4C), Zn2+(Fig.4E), or Ca2+(Fig.4F).In addition, we also tested the clinical contrast agent Magnevist(Fig.4G);the image intensity was a bit darker than that of our contrast agent.Conclusions

In conclusion, we designed and synthesized a novel bismacrocyclic DO3A-type Cu2+-responsive MRI contrast agent, [Gd2(DO3A)2BMPNA].The new Cu2+-responsive MRI contrast agent comprised two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold(BMPNA)that functioned as a Cu2+ receptor switch to induce a distinct relaxivity enhancement in response to Cu2+;the relaxivity was increased up to 76%.Importantly, the complex exhibited high selectivity for Cu2+ over a range of other biologically-relevant metal ions at physiological levels.Luminescence lifetime experiment results showed that the number of inner-sphere water molecules(q)increased from 0.6 to 1.5 upon the addition of 1 equiv.Cu2+.When Cu2+ was coordinated in the central part of the complex, the donor N atom of the pyrazole centre was removed from the paramagnetic Gd3+ ion and replaced by a water molecule(Scheme 2).Consequently, the Cu2+-triggered relaxivity enhancement could be ascribed to the increase in the number of inner-sphere water molecules.The designed contrast agent had a longitudinal relaxivity of 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).In addition, the visual change associated with the signicantly enhanced relaxivity from the addition of Cu2+ was observed in T1-weighted phantom images.Acknowledgements We are grateful to the State Key Laboratory of Electroanalytical Chemistry for nancial support.Notes and references 1 S.Puig and D.J.Thiele, Curr.Opin.Chem.Biol., 2002, 6, 171.2 S.C.Leary, D.R.Winge and P.A.Cobine, Biochim.Biophys.Acta, Gen.Subj., 2009, 146, 1793.3 D.D.Agranoff and S.Krishna, Mol.Microbiol., 1998, 28, 403.4 H.Kozlowski, A.Janicka-Klos, J.Brasun, E.Gaggelli, D.Valensin and G.Valensin, Coord.Chem.Rev., 2009, 253, 2665.5 K.J.Barnham, C.L.Masters and A.I.Bush, Nat.Rev.Drug Discovery, 2004, 3, 205.6 D.J.Waggoner, T.B.Bartnikas and J.D.Gitlin, Neurobiol.Dis., 1999, 6, 221.7 J.S.Valentine and P.J.Hart, Proc.Natl.Acad.Sci.U.S.A., 2003, 100, 3617.8 L.I.Bruijn, T.M.Miller and D.W.Cleveland, Annu.Rev.Neurosci., 2004, 27, 723.9 G.L.Millhauser, Acc.Chem.Res., 2004, 37, 79.10 D.R.Brown and H.Kozlowski, Dalton Trans., 2004, 1907.11 A.W.Czarnik, Acc.Chem.Res., 1994, 27, 302.12 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.13 H.N.Kim, M.H.Lee, H.J.Kim, J.S.Kim and J.Yoon, Chem.Soc.Rev., 2008, 37, 1465.14 M.Mahmoudi, V.Serpooshan and S.Laurent, Nanoscale, 2011, 3, 3007.15 P.A.Rinck, Magnetic Resonance Imaging, Blackwell Science, Berlin, 4th edn, 2001, p.149.16 A.E.Merbach and ′E.T′oth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Ltd., New York, 2001.17 S.Aime, E.Terreno, D.D.Castelli and A.Viale, Chem.Rev., 2010, 110, 3019.18 S.Aime, M.Fasano and E.Terreno, Chem.Soc.Rev., 1998, 27, 19.19 M.Woods, D.E.Woessner and A.D.Sherry, Chem.Soc.Rev., 2006, 35, 500.20 R.B.Lauffer, Chem.Rev., 1987, 87, 901.21 J.Kowalewski, D.Kruk and J.Parigi, Adv.Inorg.Chem., 2005, 57, 42.22 I.Solomon, Phys.Rev., 1955, 99, 559.23 N.Bloembergen, J.Chem.Phys., 1957, 27, 572.24 N.Bloembergen and L.O.Morgan, J.Chem.Phys., 1961, 34, 842.25 E.L.Que and C.J.Chang, Chem.Soc.Rev., 2010, 39, 51.26 C.S.Bonnet and ′E.T′oth, Future Med.Chem., 2010, 2, 367.27 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.28 S.Aime, S.G.Crich, M.Botta, G.Giovenzana, G.Palmisano and M.Sisti, Chem.Commun., 1999, 1577.29 J.Hall, R.Haner, S.Aime, M.Botta, S.Faulkner, D.Parker and A.S.de Sousa, New J.Chem., 1998, 22, 627.30 M.P.Lowe and D.Parker, Chem.Commun., 2000, 707.31 S.Aime, A.Barge, M.Botta, D.Parker and A.S.De Sousa, J.Am.Chem.Soc., 1997, 119, 4767.32 S.Aime, F.Fedeli, A.Sanino and E.Terreno, J.Am.Chem.Soc., 2006, 128, 11326.33 M.P.Lowe, D.Parker, O.Reany, S.Aime, M.Botta, G.Castellano, E.Gianolio and R.Pagliarin, J.Am.Chem.Soc., 2001, 123, 7601.34 R.Hovland, C.Glogard, A.J.Aasen and J.Klaveness, J.Chem.Soc., Perkin Trans.2, 2001, 929.35 ′E.T′oth, R.D.Bolskar, A.Borel, G.Gonz′alez, L.Helm, A.E.Merbach, B.Sitharaman and L.J.Wilson, J.Am.Chem.Soc., 2004, 127, 799.36 W.H.Li, S.E.Fraser and T.J.Meade, J.Am.Chem.Soc., 1999, 121, 1413.37 K.Dhingra, M.E.Maier, M.Beyerlein, G.Angelovski and N.K.Logothetis, Chem.Commun., 2008, 3444.38 H.Hifumi, A.Tanimoto, D.Citterio, H.Komatsu and K.Suzuki, Analyst, 2007, 132, 1153.39 L.M.De Le′on-Rodr′?guez, A.J.M.Lubag, J.A.L′opez, G.Andreu-de-Riquer, J.C.Alvarado-Monz′on and A.D.Sherry, MedChemComm, 2012, 3, 480.40 R.Trokowski, J.Ren, F.K.Kalman and A.D.Sherry, Angew.Chem., Int.Ed., 2005, 44, 6920.41 W.S.Li, J.Luo, F.Jiang and Z.N.Chen, Dalton Trans., 2012, 41, 9405.42 K.Hanaoka, K.Kikuchi, Y.Urano and T.Nagano, J.Chem.Soc., Perkin Trans.2, 2001, 1840.43 R.Ruloff, G.v.Koten and A.E.Merbach, Chem.Commun., 2004, 842.44 M.Giardiello, M.P.Lowe and M.Botta, Chem.Commun., 2007, 4044.45 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.46 W.Xu and Y.Lu, Chem.Commun., 2011, 47, 4998.47 R.A.Moats, S.E.Fraser and T.J.Meade, Angew.Chem., Int.Ed., 1997, 36, 726.48 A.Y.Louie, M.M.Huber, E.T.Ahrens, U.Rothbacher, R.Moats, R.E.Jacobs, S.E.Fraser and T.J.Meade, Nat.Biotechnol., 2000, 18, 321.49 B.Yoo and M.D.Pagel, J.Am.Chem.Soc., 2006, 128, 14032.50 Q.Wei, G.K.Seward, P.A.Hill, B.Patton, I.E.Dimitrov, N.N.Kuzma and I.J.Dmochowski, J.Am.Chem.Soc., 2006, 128, 13274.51 E.L.Que and C.J.Chang, J.Am.Chem.Soc., 2006, 128, 15942.52 E.L.Que, E.Gianolio, S.L.Baker, A.P.Wong, S.Aime and C.J.Chang, J.Am.Chem.Soc., 2009, 131, 8527.53 E.L.Que, E.Gianolio, S.L.Baker, S.Aime and C.J.Chang, Dalton Trans., 2010, 39, 469.54 W.S.Li, J.Luo and Z.N.Chen, Dalton Trans., 2011, 484.55 E.L.Que, E.J.New and C.J.Chang, Chem.Sci., 2012, 3, 1829.56 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.57 D.Kasala, T.S.Lin, C.Y.Chen, G.C.Liu, C.L.Kao, T.L.Cheng and Y.M.Wang, Dalton Trans., 2011, 5018.58 D.Patel, A.Kell, B.Simard, B.Xiang, H.Y.Lin and G.Tian, Biomaterials, 2011, 32, 1167.59 E.Brunet, O.Juanes, R.Sedano and J.C.Rodr′?guez-Ubis, Photochem.Photobiol.Sci., 2002, 1, 613.60 Z.Q.Ye, G.L.Wang, J.X.Chen, X.Y.Fu, W.Z.Zhang and J.L.Yuan, Biosens.Bioelectron., 2010, 26, 1043.61 S.Mizukami, K.Tonai, M.Kaneko and K.Kikuchi, J.Am.Chem.Soc., 2008, 130, 14376.62 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.63 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.64 P.Caravan, J.J.Ellison, T.J.McMurry and R.B.Laufer, Chem.Rev., 1999, 99, 2293.65 O.G.Polyakov, B.G.Nolan, B.P.Fauber, S.M.Miller, O.P.Anderson and S.H.Strauss, Inorg.Chem., 2000, 39, 1735.66 M.F.Tweedle, J.J.Hagan, K.Kumar, S.Mantha and C.A.Chang, Magn.Reson.Imaging, 1991, 9, 409.67 D.Parker, Coord.Chem.Rev., 2000, 205, 109.68 R.S.Dickins, T.Gunnlaugsson, D.Parker and R.D.Peacock, Chem.Commun., 1998, 1643.69 J.I.Bruce, R.S.Dickins, L.J.Govenlock, T.Gunnlaugsson, S.Lopinski, M.P.Lowe, D.Parker, R.D.Peacock, J.J.B.Perry, S.Aime and M.Botta, J.Am.Chem.Soc., 2000, 122, 9674.70 R.S.Dickins, S.Aime, A.S.Batsanov, A.Beeby, M.Botta, J.I.Bruce, J.A.K.Howard, C.S.Love, D.Parker, R.D.Peacock and H.Puschmann, J.Am.Chem.Soc., 2002, 124, 12697–12705.71 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.72 C.C.Bryden and C.N.Reilley, Anal.Chem., 1982, 54, 610.73 K.Binnemans, Chem.Rev., 2009, 109, 4283.74 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.This journal is ? The Royal Society of Chemistry 2014 RSC Adv., 2014, 4, 34421–34427 | 34427

下載師范大學英語專業論文(5篇)word格式文檔
下載師范大學英語專業論文(5篇).doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    愛麗絲夢游仙境英語專業論文

    Alice adventures in wonder land 主要內容 《愛麗絲奇境歷險記》講述了小姑娘愛麗絲追趕一只揣著懷表、會說話的白兔,掉進了一個兔子洞,由此墜入了神奇的地下世界。在這個世......

    英語專業最新論文選題大全

    最新英語專業論文選題,共十個方面 第一方面 第二方面 第三方面 第四方面第五方面 第六方面第七方面 第八方面第九方面 第十方面一,英語文化選題 第一部分(1~~80) 1 從《遠離塵囂......

    英語專業推薦論文題目

    2011 淺析《荊棘鳥》中宗教桎梏下的愛情 Analysis of the Love Shackled by Religion in The Thorn Birds 英語語言在商業廣告中的應用分析與研究 The Analysis of Advertis......

    英語專業論文題目大全范文合集

    英語專業論文題目大全 好的論文題目既是研究的方向,也是一個新的學習領域。你會像一葉小舟,盡情游弋在知識的海洋中。 確定選題 寫論文,首先要有選題。我們要從當前英語教學實......

    英語專業論文選題參考

    英美文學 1.英國文學(選題范圍,含各個時期的作家) 2.美國文學(選題范圍,含各個時期的作家) 3女性研究(選題范圍) 4.電影中婦女解放思想探索 5.淺析女性雜志中的性別現象 6.歌詞中女......

    英語專業論文題目參考

    一、翻譯類畢業論文選題 1.Study on Translation of Trade Marks and Culture 商標翻譯與文化研究 2.The Social and Cultural Factors in Translation Practice 影響翻譯......

    英語專業論文選題

    從中英禮貌原則的角度談論跨文化交際的失誤 如何處理廣告英譯中的跨文化英譯失誤 試論中西文化習慣在商務談判中的作用 淺析中美家庭教育的差異 翻譯研究參考選題 翻譯中語......

    英語專業論文題目[大全]

    英語畢業論文寫作 論文題目 語言學類: 1. 年齡和學習時間對第二語言習得的影響(The Influence of Starting Age and Length of Learning on SLA) 2. 性別與語言中的意識形態(Id......

主站蜘蛛池模板: 亚洲日韩国产av中文字幕| 国产免费久久精品99久久| 免费黄色电影在线观看| 亚洲www永久成人网站| 日韩欧美亚洲综合久久影院| 欧洲熟妇牲交| 专干老熟女视频在线观看| 成人精品综合免费视频| 久久国产免费观看精品a片| 手机看片aⅴ永久免费无码| 久久久久久亚洲综合影院| 夜夜高潮夜夜爽国产伦精品| 成人精品一区二区三区中文字幕| 狠狠综合久久久久综合网址| 99久久精品日本一区二区免费| 欧美精品亚洲精品日韩专区va| 亚洲欧美高清在线精品一区二区| 青青草国产精品人人爱| 亚洲a∨无码一区二区三区| 影音先锋女人av鲁色资源网久久| 四虎国产精品永久在线下载| 日本久久久久久级做爰片| 五十路熟妇强烈无码| 毛片免费全部播放无码| 国产三级久久久精品麻豆三级| 国产精品制服| 日产精品卡三卡在线| 欧美一区二区三区久久综合| 天天av天天翘天天综合网| 亚洲首页一区任你躁xxxxx| 加勒比一区二区无码视频在线| 国产精品国产自线拍免费软件| 亚洲日韩va在线视频| 国产精品普通话国语对白露脸| 国产成人无码va在线播放| 中文字幕无线码一区2020青青| 无码高潮少妇毛多水多水免费| 国产成人国产在线观看| 精品久久人妻av中文字幕| 乱子伦视频在线看| 无码h肉在线观看免费一区|