第一篇:經典小升初奧數題及答案
都江堰戴氏精品堂數學教師輔導講義
學生姓名:_______ 任課教師:何老師(Tel:***)
1、某次數學測驗共20題,作對1題得5分,做錯1題扣1分,不做得0分,小華得了76分,他對了多少題?
2、一班有學生45人,男生2/5和女生的1/4參加了數學競賽,參賽的共有15人,男女生各幾人
3、一列火車長200米,通過一條長430的隧道用了42秒,以同樣的速度通過某站臺用25秒,這個站臺長多少米?
4、一項工作,甲單獨做需15天完成,乙單獨做需12天完成。這項工作由甲乙兩人合做,并且施工期間乙休息7天,問幾天完成?
5、本騎車前往一座城市,去時的速度為x,回來時的速度為y。他整個行程的平均速度是多少?
6、游泳池里,參加游泳的學生,小學生占30%,又來一批學生后,學生總數增加20%,小學生占學生總數的40%,小學
7、將37分為甲、乙、丙三個數,使甲、乙、丙三個數的乘積為1440,并且甲、乙兩數的積比丙數多12,求甲、乙、丙各是幾?
8、在800米環島上,每隔50米插一面彩旗,后來又增加了一些彩旗,就把彩旗的間隔縮短了,起點的彩旗不動,重新插后發現,一共有四根彩旗沒動,問現在的彩旗間隔多少米?
9、小學組織春游,同學們決定分成若干輛至多可乘32人的大巴車前去。如果打算每輛車坐22個人,就會有一人沒有座位;如果少開一輛車,那么,這批同學剛好平均分成余下的大巴。那么原來有多少同學?多少輛大巴?
10、一塊正方體木塊,體積是1331立方厘米。這塊正方體木塊的棱長是多少厘米?(適于六年級)
11、李明是個集郵愛好者。他集的小型張是郵票總數的十一分之一,后來他又收集到十五張小型張,這時小型張是郵票總數的九分之一,李明一共收集郵票多少張
12、兩堆沙,第一堆25噸,第二堆21噸。這兩堆中各用去同樣多的一部分后,第二堆剩下的是第一堆的3/4,每堆用多
13、幼兒園買來的蘋果是梨的3倍,吃掉10個梨和6個蘋果后,還有蘋果正好是梨的5倍。原來買來蘋果和梨共多少個?
14、在一個圓里畫一個最大的正方形,已知圓的面積是628平方厘米,求正方形的面積。
15、在一個正方形內畫一個最大的圓,已知正方形的面積是20平方厘米,圓的面積是多少?
16、小明看一本故事書,第一天看的頁數與總頁數的比是3:7,如果再看15頁,正好是這本書的一半,這本書有多少頁?
17、某服裝店出售某種服裝,已知售價比進價高20%以上才能出售。為了獲得更高的利潤,該店老板以高出進價80%的格標價。若你想買下標價360元的這種服裝,店老板最多降價多少元?
18、李大爺靠墻圍了一個半徑是10米的半圓形養雞場,用了多長的籬笆?面積是多少?
19、甲書架上的書是乙書架上的5分之4,從這兩個書架上各借出112本后,甲書架上的書是乙書架上的7分之4,原來甲、乙兩個書架各有多少本書?(解方程,要有過程)
20、六1班訂閱數學報,訂窗報紙人數占年級人數的百分之四十,訂數學報人數占訂閱人數的百分之四十訂語文報人數 的四分之三,兩報都訂的有15人,全年級有幾人
21、六年級有三個班,一班占全年級的1/3,二班和三班的比是1:13,二班比三班少8人,三個班各有幾人?
22、張叔叔家種月季花36棵,種菊花的棵樹是月季花的53,種蘭花的棵樹是菊花的,128張叔叔家種了多少棵蘭花(40棵)23、4噸葡萄在新疆測得含水量是99%,運抵南京后測得含水量是98%,問葡萄運抵南京后還剩幾噸?
24、一塊長方形試驗田,長和寬各增加3米,它的面積就增加99平方米。現在要在擴建后的試驗田四周圍上一圈籬笆,25、三角形三條邊分別是3厘米.4厘米.5厘米。這個三角形斜邊上的高是多少厘米?
26、一輛汽車每小時行40千米,自行車每行1千米比汽車多用2.5分鐘,自行車速度是汽車速度的百分之幾?
28、一個圓柱形油桶的容積是60立方分米,底面積是7.5平方分米,裝了五分之三桶油,油面高多少分米?30、用五個長10厘米,寬5厘米,高4厘米的長方體拼成一個表面積最大的長方體,它的表面積是多少?
31、用3個長5厘米、寬3厘米、高2厘米的長方體拼成一個表面積最小的長方體,32、同學們從學校去公園,走了全程的百分之八十時,正好到達少年宮;沿原路返回時行了全程的四分之一就過了少年宮0.3千米,學校離公園多少千米?
33、一列客車長200m,一列貨車長280m,它們在平行的軌道上相向行駛,從相遇到車尾離開需18s.已知客車與貨車的速度為5:3,求兩車每秒各行多少千米?
34、5名同學一個組去參觀少年宮,正好分成4組,每組一位教師帶隊,參觀少年宮的一共有多少人?
35、六年級(1)班原來有學生54人,男生占全班人數的5/9,后來男生轉走了幾人,這時男生占全班的13/25,問男生轉走了幾人?
36、小猴子扒了50個香蕉,它很貪吃,每走1米就吃一個,猴子家離樹林50米,最多能運回家多少根香蕉?
37、五年級一班有學生45人,其中男生人數比女生多1/7,后來又轉來男生若干人,這時男生和女生人數的比是9:7,現在全班有學生多少人?
38、有一張寬6厘米,長12厘米的長方形鐵皮,用它做成一個長方形無蓋的盒子,盒子的容積可能是多少?(長、寬、高均為整厘米)
40、一列客車長200m,一列貨車長280m,它們在平行的軌道上相向行駛,從相遇到車尾離開需18s.41、一本書的中間被撕掉了一張,佘下的各頁碼數的和正好是1200。這本書有()頁,撕掉的一張上的頁碼是()和()
42、有3個非零數字,能組成的所有的三位數之和是3108,這3個數字的和是()
43、某船在靜水中的速度是每小時15千米,它從上游甲地開往下游乙是共用8小時,水速每小時3千米,它從乙地返回甲地用()小時?
44、圓錐形容器中裝有2升水,水面高度正好是圓錐高度的一半,這個容器還能裝多少升水?
45、修一條路,第一天修了全長的1/2多2千米,第二天修了余下的1/3還少1千米,第三天修了全長的1/4多1千米,這時還剩20千米,求公路總長。
46、一對孿生姐妹今年的年齡的和、差、積、商相加的和為100,她們今年多少歲? 年齡為X,則:
47、將14拆成幾個自然數的和,再求出這些數的乘積,可以求出的最大乘積是多少?
48、只布袋中裝有大小相同,但顏色不同的手套若干只。已知手套的顏色有黑白灰三種。最少要取多少只手套才有保證有3副手套是同色的?
49、一個時鐘的時針長20厘米,如果走一晝夜,那么它的尖端所走過的路程有多長?時針所掃過的面積有多大?
50、參加數學競賽的男生比女生多28人,女生全部優勝,男生的3/4得優勝,男女生各優勝的共42人,求男女生參加競賽的各多少人?
過橋問題(1)
1.一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鐘行400米,這列火車通過長江大橋需要多少分鐘?
2.一列火車長200米,全車通過長700米的橋需要30秒鐘,這列火車每秒行多少米?
3.一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?和倍問題
1.秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
2.甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?
3.弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本后,弟弟的課外書是哥哥的2倍?
4.甲乙兩個糧庫原來共存糧170噸,后來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
第二篇:小升初奧數題
過橋問題(1)
1.一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鐘行400米,這列火車通過長江大橋需要多少分鐘?
分析:這道題求的是通過時間。根據數量關系式,我們知道要想求通過時間,就要知道路程和速度。路程是用橋長加上車長。火車的速度是已知條件。
總路程:(米)
通過時間:(分鐘)
答:這列火車通過長江大橋需要17.1分鐘。
2.一列火車長200米,全車通過長700米的橋需要30秒鐘,這列火車每秒行多少米?
分析與解答:這是一道求車速的過橋問題。我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件。可以用已知條件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出。
總路程:(米)
火車速度:(米)
答:這列火車每秒行30米。
3.一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?
分析與解答:火車過山洞和火車過橋的思路是一樣的。火車頭進山洞就相當于火車頭上橋;全車出洞就相當于車尾下橋。這道題求山洞的長度也就相當于求橋長,我們就必須知道總路程和車長,車長是已知條件,那么我們就要利用題中所給的車速和通過時間求出總路程。
總路程:
山洞長:(米)答:這個山洞長60米。
和倍問題
1.秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
我們把秦奮的年齡作為1倍,“媽媽的年齡是秦奮的4倍”,這樣秦奮和媽媽年齡的和就相當于秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那么求1倍是多少,接著再求4倍是多少?(1)秦奮和媽媽年齡倍數和是:4+1=5(倍)
(2)秦奮的年齡:40÷5=8歲
(3)媽媽的年齡:8×4=32歲
綜合:40÷(4+1)=8歲
8×4=32歲
為了保證此題的正確,驗證
(1)8+32=40歲
(2)32÷8=4(倍)計算結果符合條件,所以解題正確。
2.甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少? 已知兩架飛機3小時共飛行3600千米,就可以求出兩架飛機每小時飛行的航程,也就是兩架飛機的速度和。看圖可知,這個速度和相當于乙飛機速度的3倍,這樣就可以求出乙飛機的速度,再根據乙飛機的速度求出甲飛機的速度。甲乙飛機的速度分別每小時行800千米、400千米。
3.弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本后,弟弟的課外書是哥哥的2倍?
思考:(1)哥哥在給弟弟課外書前后,題目中不變的數量是什么?
(2)要想求哥哥給弟弟多少本課外書,需要知道什么條件?
(3)如果把哥哥剩下的課外書看作1倍,那么這時(哥哥給弟弟課外書后)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?
思考以上幾個問題的基礎上,再求哥哥應該給弟弟多少本課外書。根據條件需要先求出哥哥剩下多少本課外書。如果我們把哥哥剩下的課外書看作1倍,那么這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數相當于哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數始終是不變的數量。
(1)兄弟倆共有課外書的數量是20+25=45。
(2)哥哥給弟弟若干本課外書后,兄弟倆共有的倍數是2+1=3。
(3)哥哥剩下的課外書的本數是45÷3=15。
(4)哥哥給弟弟課外書的本數是25-15=10。
試著列出綜合算式:
4.甲乙兩個糧庫原來共存糧170噸,后來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
根據甲乙兩個糧庫原來共存糧170噸,后來從甲庫運出30噸,給乙庫運進10噸,可求出這時甲、乙兩庫共存糧多少噸。根據“這時甲庫存糧是乙庫存糧的2倍”,如果這時把乙庫存糧作為1倍,那么甲、乙庫所存糧就相當于乙存糧的3倍。于是求出這時乙庫存糧多少噸,進而可求出乙庫原來存糧多少噸。最后就可求出甲庫原來存糧多少噸。
甲庫原存糧130噸,乙庫原存糧40噸。
列方程組解應用題
(一)1.用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?
依據題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數,一個是制盒底的鐵皮張數,這樣就可以用兩個未知數表示,要求出這兩個未知數,就要從題目中找出兩個等量關系,列出兩個方程,組在一起,就是方程組。
兩個等量關系是:A做盒身張數+做盒底的張數=鐵皮總張數
B制出的盒身數×2=制出的盒底數 用86張白鐵皮做盒身,64張白鐵皮做盒底。
奇數與偶數
(一)其實,在日常生活中同學們就已經接觸了很多的奇數、偶數。
凡是能被2整除的數叫偶數,大于零的偶數又叫雙數;凡是不能被2整除的數叫奇數,大于零的奇數又叫單數。
因為偶數是2的倍數,所以通常用 這個式子來表示偶數(這里 是整數)。因為任何奇數除以2其余數都是1,所以通常用式子 來表示奇數(這里 是整數)。
奇數和偶數有許多性質,常用的有:
性質1 兩個偶數的和或者差仍然是偶數。
例如:8+4=12,8-4=4等。
兩個奇數的和或差也是偶數。
例如:9+3=12,9-3=6等。
奇數與偶數的和或差是奇數。
例如:9+4=13,9-4=5等。
單數個奇數的和是奇,雙數個奇數的和是偶數,幾個偶數的和仍是偶數。
性質2 奇數與奇數的積是奇數。
偶數與整數的積是偶數。
性質3 任何一個奇數一定不等于任何一個偶數。
1.有5張撲克牌,畫面向上。小明每次翻轉其中的4張,那么,他能在翻動若干次后,使5張牌的畫面都向下嗎? 同學們可以試驗一下,只有將一張牌翻動奇數次,才能使它的畫面由向上變為向下。要想使5張牌的畫面都向下,那么每張牌都要翻動奇數次。
5個奇數的和是奇數,所以翻動的總張數為奇數時才能使5張牌的牌面都向下。而小明每次翻動4張,不管翻多少次,翻動的總張數都是偶數。
所以無論他翻動多少次,都不能使5張牌畫面都向下。2.甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一個棋子,這個棋子是什么顏色的?
不論李平從甲盒中拿出兩個什么樣的棋子,他總會把一個棋子放入甲盒。所以他每拿一次,甲盒子中的棋子數就減少一個,所以他拿180+181-1=360次后,甲盒里只剩下一個棋子。
如果他拿出的是兩個黑子,那么甲盒中的黑子數就減少兩個。否則甲盒子中的黑子數不變。也就是說,李平每次從甲盒子拿出的黑子數都是偶數。由于181是奇數,奇數減偶數等于奇數。所以,甲盒中剩下的黑子數應是奇數,而不大于1的奇數只有1,所以甲盒里剩下的一個棋子應該是黑子。
奧賽專題--稱球問題
例1 有4堆外表上一樣的球,每堆4個。已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來。
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球。有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來。
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上。若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中。
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆。
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品。
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來。
解:把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示。把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C。如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論。如B<C,仿照B>C的情況也可得出結論。
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什么?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論。
(3)若A<B,類似于A>B的情況,可分析得出結論。奧賽專題--抽屜原理
【例1】一個小組共有13名同學,其中至少有2名同學同一個月過生日。為什么?
【分析】每年里共有12個月,任何一個人的生日,一定在其中的某一個月。如果把這12個月看成12個“抽屜”,把13名同學的生日看成13只“蘋果”,把13只蘋果放進12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學在同一個月過生日。
【例 2】任意4個自然數,其中至少有兩個數的差是3的倍數。這是為什么? 【分析與解】首先我們要弄清這樣一條規律:如果兩個自然數除以3的余數相同,那么這兩個自然數的差是3的倍數。而任何一個自然數被3除的余數,或者是0,或者是1,或者是2,根據這三種情況,可以把自然數分成3類,這3種類型就是我們要制造的3個“抽屜”。我們把4個數看作“蘋果”,根據抽屜原理,必定有一個抽屜里至少有2個數。換句話說,4個自然數分成3類,至少有兩個是同一類。既然是同一類,那么這兩個數被3除的余數就一定相同。所以,任意4個自然數,至少有2個自然數的差是3的倍數。
【例3】有規格尺寸相同的5種顏色的襪子各15只混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
【分析與解】試想一下,從箱中取出6只、9只襪子,能配成3雙襪子嗎?回答是否定的。
第三篇:小升初奧數邏輯推理題真題及答案
小升初奧數邏輯推理題真題及答案
1、A、B、C、D、E、F六人賽棋,采用單循環制。現在知道:A、B、C、D、E五人已經分別賽過5、4、3、2、l盤。問:這時F已賽過________盤。
2、甲、乙、丙三人比賽象棋,每兩人賽一盤.勝一盤得2分.平一盤得1分,輸一盤得0分.比賽的全部三盤下完后,只出現一盤平局.并且甲得3分,乙得2分,丙得1分.那么,甲 ________乙,甲________丙,乙________丙(填勝、平、負)。
3、A、B、C、D、E、F六個選手進行乒乓球單打的單循環比賽(每人都與其它選手賽一場),每天同時在三張球臺各進行一場比賽,已知第一天B對D,第二天C對E,第三天D對F,第四天B對C,問:第五天A與誰對陣?另外兩張球臺上是誰與誰對陣?
4、一個島上有兩種人:一種人總說真話的騎士,另一種是總是說假話的騙子。一天,島上的2003個人舉行一次集會,并隨機地坐成一圈,他們每人都聲明:“我左右的兩個鄰居是騙子。”第二天,會議繼續進行,但是一名居民因病未到會,參加會議的2002個人再次隨機地坐成一圈,每人都聲明:“我左右的兩個鄰居都是與我不同類的人。”問有病的居民是_________(騎士還是騙子)。
5、某班一次考試有52人參加,共考5個題,每道題做錯的人數如下:
題號 1 2 3 4
人數 4 6 10 20 39
又知道每人至少做對一道題,做對一道題的有7人,5道題全做對的有6人,做對2道題的人數和3道題的人數一樣多,那么做對4道題的有多少人?
1、【解】單循環制說明每個人都要賽5盤,這樣A 就跟所有人下過了,再看E,他只下過1盤,這意味著他只和A下過,再看B 下過4盤,可見他除了沒跟E下過,跟其他人都下過;再看D 下過2,可見肯定是跟A,B下的,再看C,下過3盤,可見他不能跟E,D下,所以只能跟A,B,F下,所以F總共下了3盤。
2、【解】甲得3分,而且只出現一盤平局,說明甲一勝一平;乙2分,說明乙一勝一負;丙1分,說明一平一負。這樣我們發現甲平丙,甲勝乙,乙勝丙。
3、【解】 天數 對陣 剩余對陣
第一天 B---D A、C、E、F
第二天 C---E A、B、D、F
第三天 D---F A、B、C、E
第四天 B---C A、D、E、F
第五天 A---? ?
從中我們可以發現D已經和B、C對陣了,這樣第二天剩下的對陣只能是A---D、B---F;又C已經和E、B對陣了,這樣第三天剩下的對陣只能是C---A、B---E;這樣B就已經和C、D、E、F都對陣了,只差第五天和A對陣了,所以第五天A---B;再看C已經和A、B、E對陣了,第一天剩下的對陣只能是C---F、A---E;這樣A只差和F對陣了,所以第四天A---F、D---E;所以第五天的對陣:A---B、C---D、E---F。
4、【解】:2003個人坐一起,每人都聲明左右都是騙子,這樣我們可以發現要么是騙子和騎士坐間隔的坐,要不就是兩個騙子和一個騎士間隔著坐,因為三個以上的騙子肯定不能挨著坐,這樣中間的騙子
就是說真話了。再來討論第一種情況,顯然騎士的人數要和騙子的人數一樣多,而現在總共只有2003人,所以不符合情況,這樣我們只剩下第二種情況。這樣我們假設少個騙子,則其中旁邊的那個騙子左右兩邊留下的騎士,這樣說明騙子說“我左右的兩個鄰居都是與我不同類的人”是真話。所以只能是少個騎士。
5、【解】: 總共有52×5=260道題,這樣做對的有260-(4+6+10+20+39)=181道題。
對2道,3道,4道題的人共有
52-7-6=39(人).他們共做對
181-1×7-5×6=144(道).由于對2道和3道題的人數一樣多,我們就可以把他們看作是對2.5道題的人((2+3)÷2=2.5).這樣轉化成雞兔同籠問題:所以對4道題的有(144-2.5×39)÷(4-1.5)=31(人).答:做對4道題的有31人.
第四篇:小學奧數題及答案
小學奧數題及答案
工程問題
1.甲乙兩個水管單獨開,注滿一池水,分別需要20小時,16小時.丙水管單獨開,排一池水要10小時,若水池沒水,同時打開甲乙兩水管,5小時后,再打開排水管丙,問水池注滿還是要多少小時?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小時后進水量
1-45/80=35/80表示還要的進水量
35/80÷(9/80-1/10)=35表示還要35小時注滿
答:5小時后還要35小時就能將水池注滿。
2.修一條水渠,單獨修,甲隊需要20天完成,乙隊需要30天完成。如果兩隊合作,由于彼此施工有影響,他們的工作效率就要降低,甲隊的工作效率是原來的五分之四,乙隊工作效率只有原來的十分之九。現在計劃16天修完這條水渠,且要求兩隊合作的天數盡可能少,那么兩隊要合作幾天?
解:由題意得,甲的工效為1/20,乙的工效為1/30,甲乙的合作工效為1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因為,要求“兩隊合作的天數盡可能少”,所以應該讓做的快的甲多做,16天內實在來不及的才應該讓甲乙合作完成。只有這樣才能“兩隊合作的天數盡可能少”。
設合作時間為x天,則甲獨做時間為(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小時完成,乙、丙合做需5小時完成。現在先請甲、丙合做2小時后,余下的乙還需做6小時完成。乙單獨做完這件工作要多少小時?
解:
由題意知,1/4表示甲乙合作1小時的工作量,1/5表示乙丙合作1小時的工作量
(1/4+1/5)×2=9/10表示甲做了2小時、乙做了4小時、丙做了2小時的工作量。
根據“甲、丙合做2小時后,余下的乙還需做6小時完成”可知甲做2小時、乙做6小時、丙做2小時一共的工作量為1。
所以1-9/10=1/10表示乙做6-4=2小時的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小時表示乙單獨完成需要20小時。
答:乙單獨完成需要20小時。
4.一項工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,這樣交替輪流做,那么恰好用整數天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,這樣交替輪流做,那么完工時間要比前一種多半天。已知乙單獨做這項工程需17天完成,甲單獨做這項工程要多少天完成?
解:由題意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后結束必須如上所示,否則第二種做法就不比第一種多0.5天)
1/甲=1/乙+1/甲×0.5(因為前面的工作量都相等)
得到1/甲=1/乙×2
又因為1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
5.師徒倆人加工同樣多的零件。當師傅完成了1/2時,徒弟完成了120個。當師傅完成了任務時,徒弟完成了4/5這批零件共有多少個?
答案為300個
120÷(4/5÷2)=300個
可以這樣想:師傅第一次完成了1/2,第二次也是1/2,兩次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,剛好是120個。
6.一批樹苗,如果分給男女生栽,平均每人栽6棵;如果單份給女生栽,平均每人栽10棵。單份給男生栽,平均每人栽幾棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一個池上裝有3根水管。甲管為進水管,乙管為出水管,20分鐘可將滿池水放完,丙管也是出水管,30分鐘可將滿池水放完。現在先打開甲管,當水池水剛溢出時,打開乙,丙兩管用了18分鐘放完,當打開甲管注滿水是,再打開乙管,而不開丙管,多少分鐘將水放完?
答案45分鐘。
1÷(1/20+1/30)=12
表示乙丙合作將滿池水放完需要的分鐘數。
1/12*(18-12)=1/12*6=1/2
表示乙丙合作將漫池水放完后,還多放了6分鐘的水,也就是甲18分鐘進的水。
1/2÷18=1/36
表示甲每分鐘進水
最后就是1÷(1/20-1/36)=45分鐘。
8.某工程隊需要在規定日期內完成,若由甲隊去做,恰好如期完成,若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,問規定日期為幾天?
答案為6天
解:
由“若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分別做全部的的工作時間比是2:3
時間比的差是1份
實際時間的差是3天
所以3÷(3-2)×2=6天,就是甲的時間,也就是規定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
9.兩根同樣長的蠟燭,點完一根粗蠟燭要2小時,而點完一根細蠟燭要1小時,一天晚上停電,小芳同時點燃了這兩根蠟燭看書,若干分鐘后來點了,小芳將兩支蠟燭同時熄滅,發現粗蠟燭的長是細蠟燭的2倍,問:停電多少分鐘?
答案為40分鐘。
解:設停電了x分鐘
根據題意列方程
1-1/120*x=(1-1/60*x)*2
解得x=40
二.雞兔同籠問題
1.雞與兔共100只,雞的腿數比兔的腿數少28條,問雞與兔各有幾只?
解:
4*100=400,400-0=400
假設都是兔子,一共有400只兔子的腳,那么雞的腳為0只,雞的腳比兔子的腳少400只。
400-28=372
實際雞的腳數比兔子的腳數只少28只,相差372只,這是為什么?
4+2=6
這是因為只要將一只兔子換成一只雞,兔子的總腳數就會減少4只(從400只變為396只),雞的總腳數就會增加2只(從0只到2只),它們的相差數就會少4+2=6只(也就是原來的相差數是400-0=400,現在的相差數為396-2=394,相差數少了400-394=6)
372÷6=62
表示雞的只數,也就是說因為假設中的100只兔子中有62只改為了雞,所以腳的相差數從400改為28,一共改了372只
100-62=38表示兔的只數
三.數字數位問題
1.把1至2005這2005個自然數依次寫下來得到一個多位數123456789.....2005,這個多位數除以9余數是多少?
解:
首先研究能被9整除的數的特點:如果各個數位上的數字之和能被9整除,那么這個數也能被9整除;如果各個位數字之和不能被9整除,那么得的余數就是這個數除以9得的余數。
解題:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次類推:1~1999這些數的個位上的數字之和可以被9整除
10~19,20~29……90~99這些數中十位上的數字都出現了10次,那么十位上的數字之和就是10+20+30+……+90=450
它有能被9整除
同樣的道理,100~900
百位上的數字之和為4500
同樣被9整除
也就是說1~999這些連續的自然數的各個位上的數字之和可以被9整除;
同樣的道理:1000~1999這些連續的自然數中百位、十位、個位
上的數字之和可以被9整除(這里千位上的“1”還沒考慮,同時這里我們少***320042005
從1000~1999千位上一共999個“1”的和是999,也能整除;
***320042005的各位數字之和是27,也剛好整除。
最后答案為余數為0。
2.A和B是小于100的兩個非零的不同自然數。求A+B分之A-B的最小值...解:
(A-B)/(A+B)
=
(A+B
2B)/(A+B)
=
*
B/(A+B)
前面的1
不會變了,只需求后面的最小值,此時
(A-B)/(A+B)
最大。
對于
B
/
(A+B)
取最小時,(A+B)/B
取最大,問題轉化為求
(A+B)/B的最大值。
(A+B)/B
=
+
A/B,最大的可能性是
A/B
=
99/1
(A+B)/B
=
(A-B)/(A+B)的最大值是:
/
3.已知A.B.C都是非0自然數,A/2
+
B/4
+
C/16的近似值市6.4,那么它的準確值是多少?
答案為6.375或6.4375
因為A/2
+
B/4
+
C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C為非0自然數,因此8A+4B+C為一個整數,可能是102,也有可能是103。
當是102時,102/16=6.375
當是103時,103/16=6.4375
4.一個三位數的各位數字
之和是17.其中十位數字比個位數字大1.如果把這個三位數的百位數字與個位數字對調,得到一個新的三位數,則新的三位數比原三位數大198,求原數.答案為476
解:設原數個位為a,則十位為a+1,百位為16-2a
根據題意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,則a+1=7
16-2a=4
答:原數為476。
5.一個兩位數,在它的前面寫上3,所組成的三位數比原兩位數的7倍多24,求原來的兩位數.答案為24
解:設該兩位數為a,則該三位數為300+a
7a+24=300+a
a=24
答:該兩位數為24。
6.把一個兩位數的個位數字與十位數字交換后得到一個新數,它與原數相加,和恰好是某自然數的平方,這個和是多少?
答案為121
解:設原兩位數為10a+b,則新兩位數為10b+a
它們的和就是10a+b+10b+a=11(a+b)
因為這個和是一個平方數,可以確定a+b=11
因此這個和就是11×11=121
答:它們的和為121。
7.一個六位數的末位數字是2,如果把2移到首位,原數就是新數的3倍,求原數.答案為85714
解:設原六位數為abcde2,則新六位數為2abcde(字母上無法加橫線,請將整個看成一個六位數)
再設abcde(五位數)為x,則原六位數就是10x+2,新六位數就是200000+x
根據題意得,(200000+x)×3=10x+2
解得x=85714
所以原數就是857142
答:原數為857142
8.有一個四位數,個位數字與百位數字的和是12,十位數字與千位數字的和是9,如果個位數字與百位數字互換,千位數字與十位數字互換,新數就比原數增加2376,求原數.答案為3963
解:設原四位數為abcd,則新數為cdab,且d+b=12,a+c=9
根據“新數就比原數增加2376”可知abcd+2376=cdab,列豎式便于觀察
abcd
2376
cdab
根據d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再觀察豎式中的個位,便可以知道只有當d=3,b=9;或d=8,b=4時成立。
先取d=3,b=9代入豎式的百位,可以確定十位上有進位。
根據a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再觀察豎式中的十位,便可知只有當c=6,a=3時成立。
再代入豎式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入豎式的十位,無法找到豎式的十位合適的數,所以不成立。
9.有一個兩位數,如果用它去除以個位數字,商為9余數為6,如果用這個兩位數除以個位數字與十位數字之和,則商為5余數為3,求這個兩位數.解:設這個兩位數為ab
10a+b=9b+6
10a+b=5(a+b)+3
化簡得到一樣:5a+4b=3
由于a、b均為一位整數
得到a=3或7,b=3或8
原數為33或78均可以
10.如果現在是上午的10點21分,那么在經過28799...99(一共有20個9)分鐘之后的時間將是幾點幾分?
答案是10:20
解:
(28799……9(20個9)+1)/60/24整除,表示正好過了整數天,時間仍然還是10:21,因為事先計算時加了1分鐘,所以現在時間是10:20
四.排列組合問題
1.有五對夫婦圍成一圈,使每一對夫婦的夫妻二人動相鄰的排法有()
A
768種
B
32種
C
24種
D
2的10次方中
解:
根據乘法原理,分兩步:
第一步是把5對夫妻看作5個整體,進行排列有5×4×3×2×1=120種不同的排法,但是因為是圍成一個首尾相接的圈,就會產生5個5個重復,因此實際排法只有120÷5=24種。
第二步每一對夫妻之間又可以相互換位置,也就是說每一對夫妻均有2種排法,總共又2×2×2×2×2=32種
綜合兩步,就有24×32=768種。
若把英語單詞hello的字母寫錯了,則可能出現的錯誤共有
()
A
119種
B
36種
C
59種
D
48種
解:
5全排列5*4*3*2*1=120
有兩個l所以120/2=60
原來有一種正確的所以60-1=59
4.慢車車長125米,車速每秒行17米,快車車長140米,車速每秒行22米,慢車在前面行駛,快車從后面追上來,那么,快車從追上慢車的車尾到完全超過慢車需要多少時間?
答案為53秒
算式是(140+125)÷(22-17)=53秒
可以這樣理解:“快車從追上慢車的車尾到完全超過慢車”就是快車車尾上的點追及慢車車頭的點,因此追及的路程應該為兩個車長的和。
5.在300米長的環形跑道上,甲乙兩個人同時同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,兩人起跑后的第一次相遇在起跑線前幾米?
答案為100米
300÷(5-4.4)=500秒,表示追及時間
5×500=2500米,表示甲追到乙時所行的路程
2500÷300=8圈……100米,表示甲追及總路程為8圈還多100米,就是在原來起跑線的前方100米處相遇。
6.一個人在鐵道邊,聽見遠處傳來的火車汽笛聲后,在經過57秒火車經過她前面,已知火車鳴笛時離他1360米,(軌道是直的),聲音每秒傳340米,求火車的速度(得出保留整數)
答案為22米/秒
算式:1360÷(1360÷340+57)≈22米/秒
關鍵理解:人在聽到聲音后57秒才車到,說明人聽到聲音時車已經從發聲音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
7.獵犬發現在離它10米遠的前方有一只奔跑著的野兔,馬上緊追上去,獵犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的動作快,獵犬跑2步的時間,兔子卻能跑3步,問獵犬至少跑多少米才能追上兔子。
正確的答案是獵犬至少跑60米才能追上。
解:
由“獵犬跑5步的路程,兔子要跑9步”可知當獵犬每步a米,則兔子每步5/9米。由“獵犬跑2步的時間,兔子卻能跑3步”可知同一時間,獵犬跑2a米,兔子可跑5/9a*3=5/3a米。從而可知獵犬與兔子的速度比是2a:5/3a=6:5,也就是說當獵犬跑60米時候,兔子跑50米,本來相差的10米剛好追完
8.AB兩地,甲乙兩人騎自行車行完全程所用時間的比是4:5,如果甲乙二人分別同時從AB兩地相對行使,40分鐘后兩人相遇,相遇后各自繼續前行,這樣,乙到達A地比甲到達B地要晚多少分鐘?
答案:18分鐘
解:設全程為1,甲的速度為x乙的速度為y
列式40x+40y=1
x:y=5:4
得x=1/72
y=1/90
走完全程甲需72分鐘,乙需90分鐘
故得解
9.甲乙兩車同時從AB兩地相對開出。第一次相遇后兩車繼續行駛,各自到達對方出發點后立即返回。第二次相遇時離B地的距離是AB全程的1/5。已知甲車在第一次相遇時行了120千米。AB兩地相距多少千米?
答案是300千米。
解:通過畫線段圖可知,兩個人第一次相遇時一共行了1個AB的路程,從開始到第二次相遇,一共又行了3個AB的路程,可以推算出甲、乙各自共所行的路程分別是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,從線段圖可以看出,甲一共走了全程的(1+1/5)。
因此360÷(1+1/5)=300千米
從A地到B地,甲、乙兩人騎自行車分別需要4小時、6小時,現在甲乙分別AB兩地同時出發相向而行,相遇時距AB兩地中點2千米。如果二人分別至B地,A地后都立即折回。第二次相遇點第一次相遇點之間有()千米
10.一船以同樣速度往返于兩地之間,它順流需要6小時;逆流8小時。如果水流速度是每小時2千米,求兩地間的距離?
解:(1/6-1/8)÷2=1/48表示水速的分率
2÷1/48=96千米表示總路程
11.快車和慢車同時從甲乙兩地相對開出,快車每小時行33千米,相遇是已行了全程的七分之四,已知慢車行完全程需要8小時,求甲乙兩地的路程。
解:
相遇是已行了全程的七分之四表示甲乙的速度比是4:3
時間比為3:4
所以快車行全程的時間為8/4*3=6小時
6*33=198千米
12.小華從甲地到乙地,3分之1騎車,3分之2乘車;從乙地返回甲地,5分之3騎車,5分之2乘車,結果慢了半小時.已知,騎車每小時12千米,乘車每小時30千米,問:甲乙兩地相距多少千米?
解:
把路程看成1,得到時間系數
去時時間系數:1/3÷12+2/3÷30
返回時間系數:3/5÷12+2/5÷30
兩者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相當于1/2小時
去時時間:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
八.比例問題
1.甲乙兩人在河邊釣魚,甲釣了三條,乙釣了兩條,正準備吃,有一個人請求跟他們一起吃,于是三人將五條魚平分了,為了表示感謝,過路人留下10元,甲、乙怎么分?快快快
答案:甲收8元,乙收2元。
解:
“三人將五條魚平分,客人拿出10元”,可以理解為五條魚總價值為30元,那么每條魚價值6元。
又因為“甲釣了三條”,相當于甲吃之前已經出資3*6=18元,“乙釣了兩條”,相當于乙吃之前已經出資2*6=12元。
而甲乙兩人吃了的價值都是10元,所以
甲還可以收回18-10=8元
乙還可以收回12-10=2元
剛好就是客人出的錢。
2.一種商品,今年的成本比去年增加了10分之1,但仍保持原售價,因此,每份利潤下降了5分之2,那么,今年這種商品的成本占售價的幾分之幾?
答案22/25
最好畫線段圖思考:
把去年原來成本看成20份,利潤看成5份,則今年的成本提高1/10,就是22份,利潤下降了2/5,今年的利潤只有3份。增加的成本2份剛好是下降利潤的2份。售價都是25份。
所以,今年的成本占售價的22/25。
3.甲乙兩車分別從A.B兩地出發,相向而行,出發時,甲.乙的速度比是5:4,相遇后,甲的速度減少20%,乙的速度增加20%,這樣,當甲到達B地時,乙離A地還有10千米,那么A.B兩地相距多少千米?
解:
原來甲.乙的速度比是5:4
現在的甲:5×(1-20%)=4
現在的乙:4×(1+20%)4.8
甲到B后,乙離A還有:5-4.8=0.2
總路程:10÷0.2×(4+5)=450千米
4.一個圓柱的底面周長減少25%,要使體積增加1/3,現在的高和原來的高度比是多少?
答案為64:27
解:根據“周長減少25%”,可知周長是原來的3/4,那么半徑也是原來的3/4,則面積是原來的9/16。
根據“體積增加1/3”,可知體積是原來的4/3。
體積÷底面積=高
現在的高是4/3÷9/16=64/27,也就是說現在的高是原來的高的64/27
或者現在的高:原來的高=64/27:1=64:27
5.某市場運來香蕉、蘋果、橘子和梨四種水果其中橘子、蘋果共30噸香蕉、橘子和梨共45噸。橘子正好占總數的13分之2。一共運來水果多少噸?
第二題:答案為65噸
橘子+蘋果=30噸
香蕉+橘子+梨=45噸
所以橘子+蘋果+香蕉+橘子+梨=75噸
橘子÷(香蕉+蘋果+橘子+梨)=2/13
說明:橘子是2份,香蕉+蘋果+橘子+梨是13份
橘子+香蕉+蘋果+橘子+梨一共是2+13=15份
第五篇:四年級奧數題及答案
四年級奧數題及答案:人數問題
1、乒乓球練習館里,有20名乒乓球運動員在練球,第一個女運動員和七個男運動員練過球;第二個女運動員和八個男運動員練過球;第三個女運動員和九個男運動員練過球;這樣一直到最后一個女運動員,她和全體男運動員都練習過球。請你算一算,這20個運動員中,男女運動員各多少名?
2、用大豆榨油,第一次用去大豆1264千克,第二次用去大豆1432千克,第二次比第一次多出油21千克,兩次共出油多少千克?
3、乒乓球練習館里,有20名乒乓球運動員在練球,第一個女運動員和七個男運動員練過球;第二個女運動員和八個男運動員練過球;第三個女運動員和九個男運動員練過球;這樣一直到最后一個女運動員,她和全體男運動員都練習過球。請你算一算,這20個運動員中,男女運動員各多少名?