第一篇:2018考研數學:巧答證明題的3個方法
http://www.tmdps.cn/kaoyan/
2018考研數學:巧答證明題的3個方法
證明題是考研數學題型中考生比較頭疼的一類,從基礎復習開始,就需要大家多多總結,掌握方法技巧。下面文都網??佳蓄l道就來談談數學證明題巧答的3個方法,2018考研考生get了嗎?
1.結合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結論。
知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數學推理是環環相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數列來說,“單調性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
2.借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。如2007年數學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數草圖,再聯系結論能夠發現:兩個函數除兩個端點外還有一個函數值相等的點,那就是兩個函數分別取最大值的點(正確審題:兩個
http://www.tmdps.cn/kaoyan/)之間的一個點。這樣很容易想到輔助函數F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。再如2005年數學一第18題(1)是關于零點存在定理的證明題,只要在直角坐標系中結合所給條件作出函數y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數圖形有交點,這就是所證結論,重要的是寫出推理過程。從圖形也應該看到兩函數在兩個端點處大小關系恰好相反,也就是差函數在兩個端點的值是異號的,零點存在定理保證了區間內有零點,這就證得所需結果。如果第二步實在無法完滿解決問題的話,轉第三步。
3.逆推法
從結論出發尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發構造函數,利用函數的單調性推出結論。在判定函數的單調性時需借助導數符號與單調性之間的關系,正常情況只需一階導的符號就可判斷函數的單調性,非正常情況卻出現的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數的符號判定一階導數的單調性,再用一階導的符號判定原來函數的單調性,從而得所要證的結果。該題中可設F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
對于那些經常使用如上方法的考生來說,利用三步走就能輕松收獲數學證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學請按“證明三步走”來建立自信心,以阻止考試分數的白白流失。
第二篇:考研數學證明題三大解題方法
考研數學證明題三大解題方法
縱觀近十年考研數學真題,大家會發現:幾乎每一年的試題中都會有一個證明題,而且基本上都是應用中值定理來解決問題的。但是要參加碩士入學數學統一考試的同學所學專業要么是理工要么是經管,同學們在大學學習數學的時候對于邏輯推理方面的訓練大多是不夠的,這就導致數學考試中遇到證明推理題就發怵,以致簡單的證明題得分率卻極低。除了個別考研輔導書中有一些證明思路之外,大多數考研輔導書在這一方面沒有花太大力氣,本人自認為在推理證明方面有不凡的效績,在此給大家簡單介紹一些解決數學證明題的入手點,希望對有此隱患的同學有所幫助。
一、結合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結論。
知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數學推理是環環相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數列來說,“單調性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
二、借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。如2007年數學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數草圖,再聯系結論能夠發現:兩個函數除兩個端點外還有一個函數值相等的點,那就是兩個函數分別取最大值的點(正確審題:兩個函數取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。再如2005年數學一第18題(1)是關于零點存在定理的證明題,只要在直角坐標系中結合所給條件作出函數y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數圖形有交點,這就是所證結論,重要的是寫出推理過程。從圖形也應該看到兩函數在兩個端點處大小關系恰好相反,也就是差函數在兩個端點的值是異號的,零點存在定理保證了區間內有零點,這就證得所需結果。如果第二步實在無法完滿解決問題的話,轉第三步。
三、逆推
從結論出發尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發構造函數,利用函數的單調性推出結論。在判定函數的單調性時需借助導數符號與單調性之間的關系,正常情況只需一階導的符號就可判斷函數的單調性,非正常情況卻出現的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數的符號判定一階導數的單調性,再用一階導的符號判定原來函數的單調性,從而得所要證的結果。該題中可設F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
對于那些經常使用如上方法的同學來說,利用三步走就能輕松收獲數學證明的12分,但對于從心理上就不自信能解決證明題的同學來說,卻常常輕易丟失12分,后一部分同學請按“證明三步走”來建立自信心,以阻止考試分數的白白流失。
第三篇:考研數學證明題三大解題方法
考研數學證明題三大解題方法
最專業的學習資料下載網站
歡迎下載http://NewDown.org的學習資料,為了您的電腦更安全,請從http://NewDown.org下載本站資料,其他網站下載的資料,均為非法盜鏈,并且不能保證您的電腦和上網安全。為了能更好的保證您的電腦和上網安全,請從http://NewDown.org下載所以本站提供的資料。
縱觀近十年考研數學真題,大家會發現:幾乎每一年的試題中都會有一個證明題,而且基本上都是應用中值定理來解決問題的。但是要參加碩士入學數學統一考試的同學所學專業要么是理工要么是經管,同學們在大學學習數學的時候對于邏輯推理方面的訓練大多是不夠的,這就導致數學考試中遇到證明推理題就發怵,以致簡單的證明題得分率卻極低。除了個望對有此隱患的同學有所幫助。
2006年數學一真題第16題(1)是證明極限的存在性并求極限。只要證明
2007年數學一第19題是一個關于中值定理的證明題,可以在直角坐標系F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。再如2005年數學一第18題(1)是關于零點存在y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數圖形有交點,這就是所證結論,重要的是寫出推理過程。從圖形也應該看到兩函數在兩個端點處大小關系恰好相反,也就是差函數在兩個端點的值是異號的,零點存在定理保證了區間內有零點,這就證得所需結果。如果第二步實在無法完滿解決問題的話,轉第三步。
三、逆推
從結論出發尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發構造函數,利用函數的單調性推出結論。在判定函數的單調性時需借助導數符號與單調性之間的關系,正常情況只需一階導的符號就可判斷函數的單調性,非正常情況卻出現的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數的符號判定一階導數的單調性,再用一階導的符號判定原來函數的單調性,從而得所要證的結果。該題中可設F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。對于那些經常使用如上方法的同學來說,利用三步走就能輕松收獲數學證明的12分,但對于從心理上就不自信能解決證明題的同學來說,卻常常輕易丟失12分,后一部分同學請按“證明三步走”來建立自信心,以阻止考試分數的白白流失。
本站鄭重申明:為了您的電腦更安全,請從http://NewDown.org下載本站資料,其他網站下載的資料,本站一例不保證您的上網安全。
最專業的學習資料下載網站http://NewDown.org
第四篇:2019考研數學一復習之如何答證明題
2019考研數學一復習之如何答證明題
來源:智閱網
證明題是數學題型中考生比較頭疼的一類,從基礎復習開始,就需要大家多多總結,掌握方法技巧。所以,一起來看看證明題的解題技巧吧!
1.結合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結論。
知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如某一年的考研數學一的真題要求考生證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數列必有極限。只要知道這個準則,該問題就能輕松解決。
2.借助幾何意義尋求證明思路。
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。如某年考研數學一真題涉及到中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數草圖,再聯系結論能夠發現:兩個函數除兩個端點外還有一個函數值相等的點,那就是兩個函數分別取最大值的點(正確審題:兩個函數取得最大值的點不一定是同一個點)之間的一個點。
關于證明題的解題技巧,大家還可以做做湯老師的2019《考研數學接力題典1800》(數學一),書中詳細的講解和豐富的例題,可以加強咱們考生對于證明題等題型的解題技巧的掌握。
第五篇:2017考研:考研數學證明題知識點歸納
2017考研:考研數學證明題知識點歸納
高等數學題目中比較困難的是證明題,今天凱程老師給大家整理了在整個高等數學,容易出證明題的地方。
一、數列極限的證明
數列極限的證明是數一、二的重點,特別是數二最近幾年考的非常頻繁,已經考過好幾次大的證明題,一般大題中涉及到數列極限的證明,用到的方法是單調有界準則。
二、微分中值定理的相關證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質定理; 2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導數的相關問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
在考查的時候,一般會把三類定理兩兩結合起來進行考查,所以要總結到現在為止,所考查的題型。
三、方程根的問題
包括方程根唯一和方程根的個數的討論。
四、不等式的證明
五、定積分等式和不等式的證明
主要涉及的方法有微分學的方法:常數變異法;積分學的方法:換元法和分布積分法。
六、積分與路徑無關的五個等價條件
這一部分是數一的考試重點,最近幾年沒涉及到,所以要重點關注。
以上是容易出證明題的地方,同學們在復習的時候重點歸納這類題目的解法??佳胁欢牡胤?,可以關注凱程微信公眾號“凱程考研”,第一時間發布考研資訊,精心推送考研經驗,匯聚考研正能量,提供權威擇校擇專業指導,答疑、求罵醒,你需要的都在這里。