第一篇:平行四邊形證明題
1如圖,已知D是△ABC的邊AB上一點,CE∥AB,DE交AC于點O,且OA=OC.求證:四邊形ADCE是平行四邊形.
2、如圖,F、C是線段AD上的兩點,AB∥DE,BC∥EF,AF=DC,連接AE、BD,求證:四邊形ABDE是平行四邊形.
3、如圖,點A、F、C、D在同一直線上,點B和點E分別在直線AD的兩側,且AB=DE,∠A=∠D,AF=DC.求證:四邊形BCEF是平行四邊形.
4、如圖,E、F是平行四邊形ABCD的對角線AC上的兩點,AE=CF.求證:四邊形DEBF是平行四邊形.
5如圖,已知□ABCD的對角線AC,BD相交于點O,直線EF經過點O,且分別交AB,CD于點E,F.求證:四邊形BFDE是平行四邊形..
6、如圖,平行四邊形ABCD中,AE⊥BC,CF⊥AD,垂足分別是E、F.求證:△ABE≌△CDF.
7、已知ABCD是平行四邊形,用尺規分別作出△BAC與△DAC共公邊AC上的高BE、DF.求證:BE=DF.
8、如圖,在?ABCD中,點E是DC的中點,連接AE,并延長交BC的延長線于點F.
(1)求證:△ADE和△CEF的面積相等
(2)若AB=2AD,試說明AF恰好是∠BAD的平分線
9、如圖,在平行四邊形ABCD中,點E、F是對角線AC上兩點,且AE=CF.試說明:∠EBF=∠FDE.
10如圖,在正方形ABCD中,AB=4,P是線段AD上的動點,PE⊥AC于點E,PF⊥BD于點F,則PE+PF的值為()
11、已知:如圖,四邊形ABCD是平行四邊形,DE∥AC,交BC的延長線于點E,EF⊥AB于點F,求證:AD=CF.
12、如圖,在正方形ABCD中,點E在對角線AC上,點F在邊BC上,連接BE、DF,DF交對角線AC于點G,且DE=DG.(1)求證:AE=CG;(2)試判斷BE和DF的位置關系,并說明理由.
13、如圖,點B、C、E是同一直線上的三點,四邊形ABCD與四邊形CEFG都是正方形,連接BG、DE.求證:BG=DE;
14、已知:P是正方形ABCD對角線BD上一點,PE⊥DC,PF⊥BC,E、F分別為垂足. 求證:AP=EF.
15、如圖,AC是菱形ABCD的對角線,點E,F分別在AB,AD上,AE=AF.求證:CE=CF.
15、如圖,四邊形ABCD是矩形,直線L垂直分線段AC,垂足為O,直線L分別于線段AD,CB的延長線交于點E,F,證明四邊形AFCE是菱形.
16、如圖,E、F是四邊形ABCD的對角線AC上兩點,AE=CF,DF∥BE,DF=BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AC平分∠BAD,求證:?ABCD為菱形.
17、如圖所示,在菱形ABCD中,∠BAD=120°,AB=4. 求:(1)對角線AC,BD的長;(2)菱形ABCD的面積.
18、如圖,四邊形ABCD是矩形,點E是邊AD的中點.求證:EB=EC.
19、如圖,矩形ABCD的對角線AC、BD交于點O,∠AOB=60°,AB=3,求BD的長.
20、在矩形ABCD中,已知AB=2,BC=4,對角線AC的垂直平分線分別交AD、AC于點E、O,連接CE,求CE的長.
21、已知:矩形ABCD中,對角線AC與BD交于點O,∠BOC=120°,AC=4cm,求矩形ABCD的周長.
第二篇:平行四邊形證明題
平行四邊形證明題
由條件可知,這是通過三角形的中位線定理來判斷FG平行DA,同理HE平行DA,GE平行CB,FH平行CB!~
我這一化解,樓主應該明白了吧!~
希望樓主采納,謝謝~!不懂再問!!
此題關鍵就是對于三角形的中位線定理熟不!~!~·
已知:F,G是△CDA的中點,所以FG是△CDA的中位線,所以FG平行DA
同理HE是△BAD的中位線,所以HE平行DA,所以FG平行HE
同理可得:FH平行GE!~
即四邊形FGEH是平行四邊形(兩組對邊分別平行的四邊形是平行四邊形
2證明:∵E,F,G,H分別是AB,CD,AC,BD的中點
∴FG//AD,HE//AD,FH//BC,EG//BC
∴FG//HE,FH//EG
∴四邊形EGFH是平行四邊形
3.理由:連接一條對角線,AC吧。
∵AD平行BC,AB平行DC(平行四邊形的性質)
∴∠DAC=∠ACB,∠BAC=∠DCA
在△ABC和△DAC中,∠DAC=∠ACB
AC=CA
∠BAC=∠DCA
所以,△ABC全等于△DAC(A.S.A)
所以,AB=DA,AD=BC
證明:∵四邊形ABCD為平行四邊形;
∴DC‖AB;
∴∠EAF=∠DEA
∵AE,CF,分別是∠DAB、∠BCD的平分線;
∴∠DAE=∠EAF;∠ECF=∠BCF;
∴∠EAF=∠CFB;
∴AE‖CF;
∵EC‖AF
∴四邊形AFCE是平行四邊形
41.畫個圓,里面畫個矩形2.假設圓里面的是平行四邊形3.因為對邊平行,所以4個角相等4.平行四邊四個角之和等于360,5.360除以4等于906.所以圓內平行四邊形為矩形..3判定(前提:在同一平面內)(1)兩組對邊分別相等的四邊形是平行四邊形;
(2)一組對邊平行且相等的四邊形是平行四邊形;(3)兩組對邊分別平行的四邊形是平行四邊形;(4)兩條對角線互相平分的四邊形是平行四邊形(5)兩組對角分別相等的四邊形為平行四邊形(注:僅以上五條為平行四邊形的判定定理,并非所有真命題都為判定定理,希望各位讀者不要隨意更改。)(第五條對,如果對角相等,那么鄰角之和的二倍等于360°,那么鄰角之和等與180°,那么對邊平行,(兩組對邊分別平行的四邊形是平行四邊形)所以這個四邊形是平行四邊形)編輯本段性質(矩形、菱形、正方形都是特殊的平行四邊形。)(1)平行四邊形對邊平行且相等。(2)平行四邊形兩條對角線互相平分。(3)平行四邊形的對角相等,兩鄰角互補。(4)連接任意四邊形各邊的中點所得圖形是平行四邊形。(推論)(5)平行四邊形的面積等于底和高的積。(可視為矩形)(6)過平行四邊形對角線交點的直線,將平行四邊形分成全等的兩部分圖形。(7)對稱中心是兩對角線的交點。
性質9(8)矩形菱形是軸對稱圖形。(9)平行四邊形ABCD中(如圖)E為AB的中點,則AC和DE互相三等分,一般地,若E為AB上靠近A的n等分點,則AC和DE互相(n+1)等分。*注:正方形,矩形以及菱形也是一種特殊的平行四邊形。(10)平行四邊形ABCD中,AC、BD是平行四邊形ABCD的對角線,則各四邊的平方和等于對角線的平方和。(11)平行四邊形對角線把平行四邊形面積分成四等分。(12)平行四邊形是中心對稱圖形,但不是軸對稱圖形。(13)平行四邊形中,兩條在不同對邊上的高所組成的夾角,較小的角等于平行四邊形中較小的角,較大的角等于平行四邊形中較大的角。(14)平行四邊形中,一個角的頂點向他對角的兩邊所做的高,與這個角的兩邊組成的夾角相等。編輯本段平行四邊形中常用輔助線的添法
一、連接對角線或平移對角線。
二、過頂點作對邊的垂線構成直角三角形。
第三篇:特殊平行四邊形:證明題
特殊四邊形之證明題
1、如圖8,在ABCD中,E,F分別為邊AB,CD的中點,連接DE,BF,BD. ?
(1)求證:△ADE≌△CBF.
(2)若AD?BD,則四邊形BFDE是什么特殊四邊形?請證明你的結論.
F C
A E B2、如圖,四邊形ABCD中,AB∥CD,AC平分?BAD,CE∥AD交AB于E.
(1)求證:四邊形AECD是菱形;
(2)若點E是AB的中點,試判斷△ABC的形狀,并說明理由.
3.如圖,△ABC中,AC的垂直平分線MN交AB于點D,交AC于點O,CE∥AB交MN于E,連結AE、CD.
(1)求證:AD=CE;
(2)填空:四邊形ADCE的形狀是.
A
DMN
B
4.如圖,在△ABC中,AB=AC,D是BC的中點,連結AD,在AD的延長線上取一點E,連結BE,CE.
(1)求證:△ABE≌△ACE
(2)當AE與AD滿足什么數量關系時,四邊形ABEC是菱形?并說明理由.
5.如圖,在△ABC和△DCB中,AB = DC,AC = DB,AC與DB交于點M.
(1)求證:△ABC≌△DCB ;
(2)過點C作CN∥BD,過點B作BN∥AC,CN與BN交于點N,試判斷線段BN與CN的數量關系,并證明你的結論.
6、如圖,矩形ABCD中,O是AC與BD的交點,過O點的直線EF與AB,CD的延長線分別交于E,F.
(1)求證:△BOE≌△DOF;
(2)當EF與AC滿足什么關系時,以A,E,C,F為頂點的四邊形是菱形?證明你的結論.
F
A
B
E
D B N
7.600,它的兩底分別是16cm、30cm。求它的腰長。
(兩種添線方法)
C
8.如圖
(七),在梯形ABCD中,AD∥BC,AB?AD?DC,AC?AB,將CB延長至點F,使BF?CD.
(1)求?ABC的度數;
(2)求證:△CAF為等腰三角形.
C
B 圖七 F
第四篇:平行四邊形證明題練習
平行四邊形證明題練習
1、如圖1,四邊形ABCD的對角線AC、BD相交于點O,DE⊥AC,BF⊥AC,DE=BF,且∠ADB=∠DBC.求證:四邊形ABCD是平行四邊形.2、如圖2,E、F、G、H
分別是AB、BC、CD、DA的中點.求證:四邊形EFGH是平行四邊形.HD
CFB3、如圖,□ABCD中,點E、F分別在CD、AB上,DF∥BE,EF交BD于點O,求證EO=FO.4、如圖,在□ABCD中,點E是AD的中點,BE的延長線與CD的延長線交于點F.(1)求證:△ABE≌△DFE;
(2)試連接BD,AF,判斷四邊形ABDF的形狀,并證明你的結論.5、已知□ABCD中,AE⊥BD于E,CF⊥BD于F,四邊形AECF是平行四邊形嗎?試說明理由.BC
第五篇:特殊平行四邊形之證明題
特殊平行四邊形之證明題
題型一:菱形的證明
1.已知:如圖,在?ABCD中,AE是BC邊上的高,將△ABE沿BC方向平移,使點E與點C重合,得△GFC.
(1)求證:BE?DG;
(2)若?B?60°,當AB與BC滿足什么數量關系時,四邊形ABFG是菱形?證明你的結論.
2.如圖,△ABC中,AC的垂直平分線MN交AB于點D,交AC于點O,CE∥AB交MN于E,連結AE、CD.
(1)求證:AD=CE;
(2)填空:四邊形ADCE的形狀是.
A
DD B EF C M
N
B C3、如圖,已知:在四邊形ABFC中,?ACB=90?,BC的垂直平分線EF交BC于點D,交AB于點E,且CF=AE
(1)試探究,四邊形BECF是什么特殊的四邊形;
(2)當?A的大小滿足什么條件時,四邊形BECF是正方形?請回答并證明你的結論.(特別提醒:表示角最好用數字)
題型二:正方形的證明題
1、四邊形ABCD、DEFG都是正方形,連接AE、CG.
(1)求證:AE=CG;
(2)觀察圖形,猜想AE與CG之間的位置關系,想.
并證明你的猜
2、如圖8-1,已知P為正方形ABCD的對角線AC上一點(不與A、C重合),PE⊥BC于點E,PF⊥CD于點F.(1)求證:BP=DP;
(2)如圖8-2,若四邊形PECF繞點C按逆時針方向旋轉,在旋轉過程中是否總有BP=DP?若是,請給予證明;若不是,請用反例加以說明;
(3)試選取正方形ABCD的兩個頂點,分別與四邊形PECF的兩個頂點連結,使得到的兩條線段在四邊形PECF繞點C按逆時針方向旋轉的過程中長度始終相等,并證明你的結論.3.如圖①,四邊形ABCD是正方形, 點G是BC
上任意一點,DE⊥AG于點E,BF⊥AG于點F.(1)求證:DE-BF = EF.
(2)當點G為BC邊中點時, 試探究線段EF圖8-1 圖8-
2與GF之間的數量關系,并說明理由.
(3)若點G為CB延長線上一點,其余條件不變.請你在圖②中畫出圖形,寫出此時DE、BF、EF之間的數量關系(不需要證明).
題型五:矩形的證明題
4.如圖,四邊形ABCD是矩形,△PBC和△QCD都是等邊三角形,且點P在矩形上方,點Q在矩形內. 求證:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.
A
Q
B
D C5、如圖,在△ABC 中,點O是AC邊上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F.
(1)求證:EO=FO;
(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結論.
題型六:綜合證明題
1.如圖,在Rt△ABC中,∠ACB=90°, ∠B =60°,BC=2.點0是AC的中點,過點0的直線l從與AC重合的位置開始,繞點0作逆時針旋轉,交AB邊于點D.過點C作CE∥AB交直線l于點E,設直線l的旋轉角為α.(1)①當α=________度時,四邊形EDBC是等腰梯形,此時AD的長為_________;
②當α=________度時,四邊形EDBC是直角梯形,此時AD的長為_________;
(2)當α=90°時,判斷四邊形EDBC是否為菱形,并說明理由.
6.如圖,△ABC中,點O是邊AC上一個動點,過O作直線
MN∥BC,設MN交?BCA的平分線于點E,交?BCA的外角平
分線于點F.
(1)探究:線段OE與OF的數量關系并加以證明;
(2)當點O在邊AC上運動時,四邊形BCFE會是菱形嗎?若是,請證明,若不是,則說明理由;
(3)當點O運動到何處,且△ABC滿足什么條件時,四邊形AECF是正方形?
B
N C D
.對角線AC,BD相交于點O,7、如圖15,平行四邊形ABCD中,AB?AC,AB?
1,BC?
將直線AC繞點O順時針旋轉,分別交BC,AD于點E,F.
(1)證明:當旋轉角為90?時,四邊形ABEF是平行四邊形;
(2)試說明在旋轉過程中,線段AF與EC總保持相等;
(3)在旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉的度數. F
D C