第一篇:三角形的內(nèi)角和教案
課題:三角形的內(nèi)角和
教學目標:
1、認識三角形的內(nèi)角和是180度這一特性;
2、運用三角形的內(nèi)角和根據(jù)已知角的度數(shù)求未知角的度數(shù);
3、通過量、拼、折等方法,培養(yǎng)學生的合作能力、動手實踐能力,使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。教學重難點:
1、用不同方法探究、驗證三角形的內(nèi)角和是180度。
2、認識三角形的內(nèi)角和是180度這一特性,能夠根據(jù)已知角的度數(shù)求未知角的度數(shù)。教學準備:
三角形紙板、教學課件、白紙、量角器 教學過程:
一、導入新課,復習準備
1、同學們今天我們來到一個新的環(huán)境來上課,緊張嗎?那我們先來猜個謎語看看誰能先猜出來,好不好?出示課件謎語。形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。(打一幾何圖形)
2、好,同學們真聰明,今天老師要講的內(nèi)容就是有關(guān)三角形的。(板書三角形)同學們,你們還記得三角形按角的不同可以分成 哪幾類嗎? 生:直角三角形、銳角三角形、鈍角三角形
二、教學新課
1、理解三角形的內(nèi)角、內(nèi)角和
(1)課件出示一個三角形,三角形的內(nèi)角是什么? 生:三角形的這三個角,就叫做三角形的三個內(nèi)角。
師:為了研究方便,我們把三角形的三個內(nèi)角標記為∠
1、∠
2、∠3。(2)什么是三角形的內(nèi)角和?
生:三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和,即∠1+∠2+∠3。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。
2、猜測三角形的內(nèi)角和
出示情境圖。請大家一起來觀察這幅圖,發(fā)生了什么小故事?誰能說一下?
生:在爭論誰的內(nèi)角和最大。
師:講得真棒,那么到底是誰的內(nèi)角和最大呢。有同學說三個三角形內(nèi)角和都是180°,大家同意嗎?我們能用什么方法驗證呢?
3、小組討論驗證三角形內(nèi)角和的方法
生1:我們可以用測量的辦法,把三角形的每一個內(nèi)角算出來,再計算它們的和。
生2:用剪刀或者直接用手把三角形的三個角撕下來,再把撕下來的三個角拼在一起,看看拼成什么角。
4、操作驗證探究三角形內(nèi)角和的規(guī)律 方法一:
以小組為單位利用課前準備好的工具測量計算三角形三個內(nèi)角的和各是多少度?記錄在表格中。引導學生匯報測量和計算的結(jié)果。(學生匯報的結(jié)果基本接近180)
師:大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關(guān)系呢?剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少測量的次數(shù)呢?讓我們一起來動手實驗研究,我們一定能弄清這個問題。(師有意識的指導:你們想到什么方法了?我們可以把三個角撕下 來或剪下來,再把角拼起來看看是不是180度)方法二:
(預設(shè))生: 我是用撕的方法。
(學生上臺演示:這位同學真細心,完成得很好。)
師:這個三角形的三個內(nèi)角拼在一起是個平角,所以說這個三角形的內(nèi)角和是180,現(xiàn)在請同學們看一下電腦的演示。(課件演示)(演示完后請學生動手拼一拼各種三角形,進行驗證)方法三:
師:還有別的方法嗎? 我在電腦里收索到了折的方法,請同學們看看它是怎么折的?(課件演示)(演示完后請學生動手折一折各種三角形,進行驗證)師:剛才我們用量、剪、拼、折等等方法證明了無論什么樣的三角形內(nèi)角和都是180,現(xiàn)在讓我們用自豪肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180”。
三、鞏固練習
1、同學們,我們通過實驗已經(jīng)證明了三角形的內(nèi)角和是180°。一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?我們一起做幾道題目試試吧。(出示課件習題,讓學生計算后講解)
2、同學們真的很棒,解決了這么多的問題。接下來我們來玩?zhèn)€小游戲輕松一下好不好。這個游戲我們跟電腦一起玩,請你們自由想象一個三角形,你喜歡什么樣的三角形,就想象什么樣的三角形,然后把你想象的的三個度數(shù)告訴電腦,讓電腦幫我們畫出來好不好。(學生說度數(shù),電腦演示過程)
四、課堂總結(jié)
通過這節(jié)課的學習你收獲了哪些知識?
(三角形的內(nèi)角和是180°)
五、板書設(shè)計
三角形的內(nèi)角和是180° 銳角三角形 180° 直角三角形 180° 鈍角三角形 180°
第二篇:三角形內(nèi)角和教案
三角形內(nèi)角和教學設(shè)計
一、教材分析:
教材創(chuàng)設(shè)了一個有趣的問題情境,以此激發(fā)學生的興趣,引出探索活動。首先,教師應使學生明確“內(nèi)角”的意義,然后引導學生探索三角形內(nèi)角和等于多少。大多數(shù)學生會想到用測量角的方法,此時就可以安排小組活動。每組同學可以畫出大小、形狀不同的若干個三角形,分別量出三個內(nèi)角的度數(shù),并求出它們的和,填寫在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個三角形內(nèi)角和都在180°左右。三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個活動:一是把三角形三個內(nèi)角撕下來,再拼在一起,組成一個平角,因此三角形內(nèi)角和是180度。二是把三個內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個平角。每個活動都要使學生動手試一試,加深對三角形內(nèi)角和的認識,體驗三角形內(nèi)角和性質(zhì)的探索過程。
二、學生狀況分析:
學生在本課學習前已經(jīng)認識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),學生課上對數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題的策略多樣化。
三、學習目標:
1.通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。
2.知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。
3.發(fā)展學生動手操作、觀察比較和抽象概括的能力。體驗數(shù)學活動的探索樂趣,體會研究數(shù)學問題的思想方法。
4.能應用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。
四、教具、學具準備:
課件、6張三角形的紙、學生準備任意三角形。
五、教學過程:
(一)設(shè)疑導入(2分鐘)
師:在平的數(shù)學學習中,我們經(jīng)常會使用一種工具——三角尺。(課件出示兩個三角尺)每個三角尺里都有三個角,我們把它叫內(nèi)角。(板書內(nèi)角)為了方便老師分別給兩個三角尺的內(nèi)角編上號,誰能告訴我它們分別是多少度?
師:請同學們仔細觀察比較一下,這兩個三角形有什么共同之處?
生:它們的內(nèi)角和都是180°。
師:你是怎么得出180°的?
生:30°+60°+90°=180°
師:那第二個呢?
生:45°+45°+90°=180°
師:同學們,通過剛才的算一算,我們得到這兩個直角三角形的內(nèi)角和都是180°,由此你想到什么呢?(這兩個直角三角形的內(nèi)角和都是180°,那其他的三角形呢?)
生A:其他三角形的內(nèi)角和也是180°
(二)動手操作,探究問題,以動啟思(20分鐘)
1、師:這只是我們的一種猜測,三角形的內(nèi)角和是否真的等于180°,還需要我們?nèi)ヲ炞C。接下來,我們就來驗證三角形的內(nèi)角和,老師為大家準備了1號——6號6個三角形,下面請每個同學選擇一個三角形來驗證。想一想,你準備用什么樣的方法來驗證三角形的內(nèi)角和,然后開始驗證。
(1)小組合作,討論驗證方法
(2)匯報驗證方法、結(jié)果
現(xiàn)在我們一起交流一下驗證的結(jié)果,交流的時候,你先介紹一下驗證的是幾號三角形,然后說一說是什么三角形,最后說一說內(nèi)角和是多少。
師:同學們我、其實剛才我在驗證的時候很多同學有的還是量一量的方法,從剛才過程中來看量一量的方法還是有誤差,所以老師建議大家可以是有更加準確、簡便的方法來驗證。
師:好,請同學們觀察大屏幕,這些三角形的內(nèi)角和都是180°,那么請問,現(xiàn)在我們能不能以下結(jié)論:所以的三角形的內(nèi)角和都是180°呢?
生:可以
師:難道你們都沒有懷疑這是老師故意安排好的呢?(沒有)那我告訴你們這就是老師故意安排好的,或許也是一種巧合。我們在科學研究的道路上就要敢于質(zhì)疑的精神,接下來我們怎么辦?(我們應該在找一些三角形驗證)這個建議非常好,找一些任意三角形這樣才有說服力。
師:每個同學都準備的三角形帶了嗎?下面就請同學來驗證你們自己帶來的三角形的內(nèi)角和究竟是多少度。學生匯報交流。
同學們我們這樣驗證,驗證完嗎?(驗證不完)
師:剛才我們通過算一算、拼一拼、折一折的方法,不管是老師提供的三角形還是你們自己準備的三角形這些直角、銳角、鈍角三角形的內(nèi)角和都是180°,那么我們可以概括成什么呢?
生:我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都是180°。
課件出示結(jié)論:三角形的內(nèi)角和是180°)。
師:看來我們的猜測是正確的,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是1800”。(板書:三角形的內(nèi)角和是1800
(四)鞏固練習:(15分鐘)
學會了知識,我們就要懂得去運用。下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學問題。(課件)
師:一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?
師:把大三角形平均分成兩份。它的(指均分后的一個小三角形)內(nèi)角和是多少度?(生有的答90 °,有的180 °。)
師:哪個對?為什么?
生:180°,因為它還是一個三角形。
師:每個小三角形的度數(shù)是180°,那么這樣的兩個小三角形拼成一個大三角形,內(nèi)角和是多少度? 這時學生的答案又出現(xiàn)了180°和360°兩種。
師:究竟誰對呢?大家可以在小組內(nèi)拼一拼,進行討論
生1:180°,因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內(nèi)角和總是180°。
生2:我發(fā)現(xiàn)兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,就比原來兩個三角形少180 °,所以大三角形的內(nèi)角和還是180°,不是360°。
師:三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
1、三角形ABC是等腰三角形,角A是頂角等于50度,角B=?角C=?
教師引導學生復習等腰三角形的特征,再讓學生談談想法。
教師匯總解法:
180度-50度=130度130度÷2度=65度
知識拓展:三角形ABC是等腰三角形,角B是底角等于50度,頂角角A=?(學生自主完成匯報結(jié)果)教師匯總解法:
50度×2=100度180度-100度=80度
2、一個直角三角形,一個銳角為35度,求另一個銳角的度數(shù)。
教師帶領(lǐng)學生復習直角三角形的特征。(指名匯報)解法不唯一,只要學生思路正確老師應及時給與肯定。教師匯總解法:
(1)180度-90度=90度90度-35度=55度
(2)180度-35度=145度145度-90度=55度
(3)90度+35度=125度180度-125度=55度
(4)90度-35度=55度
3、下面的說法對嗎?
1)鈍角三角形的兩個銳角之和大于90度。()
2)大三角形的內(nèi)角和比小三角形的內(nèi)角和大。()
3)一個直角三角形中最多有一個直角。()
學生自主理解題意,教師引導學生說出對或錯的原因。
4、老師這還有一個難題需要解決,同學們愿意接受挑戰(zhàn)嗎?
師:老師手里有一個信封,信封里露出一來個角,這個角的度數(shù)是45度,請同學們判斷一下,隱藏在信封里的三角形是什么三角形?
師:信封里還露出一來個角,這個角的度數(shù)是45度,它是這個三角形內(nèi)角中最小的銳角,請同學們判斷一下,隱藏在信封里的三角形是什么三角形?
5、想一想,下面圖形的內(nèi)角和分別是多少?
學生小組討論如何分割,教師巡視并參與討論,討論完后小組匯報,指名板演。
(五)課堂小結(jié)
師:一節(jié)課快要結(jié)束了,那么我們回想一下這節(jié)課你有什么收獲,什么感想?
第三篇:三角形內(nèi)角和教案
三角形內(nèi)角和教學設(shè)計
講課人:閆轉(zhuǎn)
一、教學內(nèi)容:三角形內(nèi)角和(教材85頁的例五)
二、教學目標:1、2、3、知道三角形的內(nèi)角和是180°。正確計算三角形中某一個角的度數(shù)。培養(yǎng)學生分析、判斷的能力,滲透知識間的內(nèi)在聯(lián)系和轉(zhuǎn)化的數(shù)學思想。
三、教學重難點
理解并熟練運用三角形的內(nèi)角和是180°。
四、教具學具準備
不同形狀的三角形,量角器
五、教學過程:
(一)故事導入:
三角形家里的兄弟們在家里吵個不停,鈍角三角形說:“我有一個角最大,我的三個角之和也是最大”,直角三角形說:“我一個角都90°,更何況我長了三只腳,我肯定比你大”,等邊三角形說:“我三條邊都相等,我三個角的度數(shù)之和也不比你直角三角形,鈍角三角形三角之和小呀。這家兄弟就這樣,你一言,我一語的吵的不可開交,直角三角形和鈍角三角剛要動手打起來時,媽媽回來了。三角形媽媽很奇怪,急忙就問:怎么了孩子們?銳角三角形低著頭小聲說:媽媽,他們都說:他三個角之和比我大,是這樣的嗎?三角形媽媽哈哈大笑,我以為你們在吵什么呢?原來是這個問題,好了孩子們,要想知道你們?nèi)齻€角之和到底是多少?今天我?guī)銈內(nèi)コ菂^(qū)二小四年級那里的小朋友今天就在學習這節(jié)課,兄弟們跟著媽媽一起今天也來到我們的教室。同學們一會兒學會了,把正確答案告訴這幾位兄弟,好嗎?
(二)教學實施
(1)小組合作把準備的三角形折下來,在拼一拼,看能拼成一個什么角?
(2)反饋結(jié)果。
(3)學生總結(jié)結(jié)果。
三角形的內(nèi)角和是180°。(課件展示三角形的內(nèi)角和是180度。)
(4)(課件出示學過的三角形)請幾位同學告訴三角形家里的兄弟們,他們的內(nèi)角和是多少?
(三)設(shè)疑。
根據(jù)三角形的內(nèi)角和是180°如果知道兩個角的度數(shù),就可以求出第三個角的度數(shù)。(課件出示)
在一個直角三角形中,∠C=30°,求∠A的度數(shù)?
(1)學生讀題,分析題意。
(2)嘗試做題。
(3)教師訂正書寫。(課件出示)
∠A=180°-90°-30°
=60°
(四)做一做
1、在一個三角形中∠1=140°,∠3=25°.求∠2的度數(shù)?
2、我是小判官。(對的打√,錯的打×)
①把一個等腰三角形分成兩個完全一樣的小
三角形,每個小三角形的內(nèi)角和都是90度。
②直角三角形的兩個銳角和是90度。
③任何一個三角形的內(nèi)角和都是180度。
④鈍角三角形的兩個銳角之和大于90度,直角三角形的兩個銳角之和正好等于90度
3、求下面各角的度數(shù)。(課件出示)
(五)課堂作業(yè):
(1)三邊相等,求三個角的度數(shù)。(2)等腰三角形,頂角是96°,求底角(3)
在一個直角三角形中,有個銳角是40°,求另一個角。
(2)我給我女兒買了一個等腰三角形的風箏,他的一個底角是70°,它的頂
角是多少度?
(六)智力大闖關(guān)
我的一個內(nèi)角是72°,是另一個內(nèi)角的4倍,我是一個什么三角形?
六、課堂小結(jié)。
三角形的內(nèi)角和是多少? 三角形的內(nèi)角和是180度。
七、作業(yè)布置。
P88 頁 9、10
附板書設(shè)計:
三角形的內(nèi)角和是180°
第四篇:三角形內(nèi)角和教案
三角形內(nèi)角和教案
教學內(nèi)容:課本第67頁。
教學目標:通過操作活動探索發(fā)現(xiàn)和驗證“三角形的內(nèi)角和是180度”的規(guī)律。
通過量一量、剪一剪、拼一拼,培養(yǎng)學生合作能力、動手實踐能力和運用新知識解決問題的能力。
使學生體驗數(shù)學學習的樂趣,激發(fā)學生主動學習數(shù)學的興趣。教學重點:探索發(fā)現(xiàn)和驗證三角形內(nèi)角和是180度。教學難點:對不同探究方法的指導和學生對規(guī)律的應用。教學準備:課件,三角形,量角器。教學設(shè)計:
一、復習舊知,引出課題。誰能說說它們分別是什么三角形?
預設(shè):銳角三角形,直角三角形,鈍角三角形。
請一位同學分別標出這些三角形的角,其余的同學在自己準備的三角形中標角。獨立完成,集體訂正。
其實這些角是三角形的內(nèi)角,誰能大膽猜一猜三角形內(nèi)角和是多少度? 預設(shè):360°,180°,90°…….今天我們一起來探究三角形內(nèi)角和。板書課題:三角形內(nèi)角和
二、探究新知
1、小組合作。
課件展示:活動要求(1)4人一組,每人任選一個三角形用你的方法驗證三角形內(nèi)角和。
(2)小組交流各自的驗證方法和驗證結(jié)果,評選出較好的驗證方法并說明理由。(3)每組選派一名同學匯報。
預設(shè):我們組選用的是量角法,依次測量出三角形內(nèi)角和是170°,185°,180°… 哪一組和這一組驗證方法不同?
預設(shè):我們是把三角形的3個角剪下來拼在一起發(fā)現(xiàn)得到一個平角因此得知三角形內(nèi)角和是180°。
你能把你拼的過程給大家說詳細一些嗎?
預設(shè):選出一個角,再選出一個角使得它的一邊與前一個角的一邊重合,剩下的角的一邊和前一個角的另一條邊重合,此時拼出一個平角因此三角形內(nèi)角和是180°。
我發(fā)現(xiàn)你選用的是銳角三角形,那直角三角形,鈍角三角形的內(nèi)角和是怎樣的?請同學們嘗試用這種方法驗證三角形內(nèi)角和。
預設(shè):直角三角形內(nèi)角和是180°,鈍角三角形內(nèi)角和是180°。總結(jié):通過撕(剪)拼法,我們驗證任意三角形內(nèi)角和是180°。
追問:同學們我有一個困惑剛才有部分同學通過測量角計算內(nèi)角和為什么不是180°,問題出在哪里?
預設(shè):測量角的方法不正確。預設(shè):三角形做得不規(guī)范。
預設(shè):測量過程中存在誤差,導致不精確。
總結(jié):撕(剪)拼法在驗證三角形內(nèi)角和精確性上優(yōu)勝于量角法。還有沒有同學想出不一樣的驗證方法呢?
預設(shè)1:課件展示折拼法,請一位同學說出具體的操作過程。剩下的同學仿照這種方法任選一個三角形驗證三角形內(nèi)角和。
預設(shè)2:同學上臺展示操作過程,其余同學觀察后并自行操作。
總結(jié):
折拼法依然能驗證任意三角形內(nèi)角和是180°。看來解決數(shù)學問題的方法不是唯一的,希望同學們在今后的學習當中能多思,多想充分挖掘自己的聰明才智。
三、知識運用,鞏固練習。
請同學們獨立完成下題。(每題10分共100分。)
1、如圖∠1=140°,∠3=25°,∠2=(°)。
2、一個直角三角形,一個銳角是50°,另一個銳角是(°)。
3、一個頂角是50°的等腰三角形的底角是(°)。
4、等邊三角形每個角是(°)。
5、等腰直角三角形的一個底角是(°)。
6、在一個三角形中,∠A=90°,∠B+∠C=(°)。
7、一個三角形中,有一個角是65°,另外的兩個角可能是(°)和(°)。
8、某同學把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊形狀完全一樣的玻璃,那么最省事的辦法是帶()去。為什么?
②③①
9、把下面這個三角形沿虛線剪成兩個三角形,每個小三角形的內(nèi)角和是多少度?
10、根據(jù)三角形內(nèi)角和是 180 °。你能求出下面四邊形的內(nèi)角和嗎?
四、課后小結(jié)
請你談談本節(jié)課的收獲。
五、板書設(shè)計
任意三角形內(nèi)角和是180°。
第五篇:三角形內(nèi)角和教案
三角形的內(nèi)角和 教學設(shè)計
北坊小學 許燕
一、教學內(nèi)容:人教版義務教育課程標準實驗教科書四年級下冊第五單元“三角形的內(nèi)角和”。
二、教學目標:
1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,發(fā)展學生的空間觀念。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學思想。
3.培養(yǎng)學生善于傾聽、勤于思考的學習習慣和科學嚴謹?shù)膶W習態(tài)度。
三、教學重點:探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。
教學難點:對不同探究方法的指導和學生對規(guī)律的靈活應用。
四、教具學具準備:課件、學生準備不同類型的三角形各一個,量角器。
五、教學過程:
(一)、創(chuàng)設(shè)情景,引出問題
1、猜謎語:(課件)
形狀似座山,穩(wěn)定性能堅。
三竿首尾連,學問不簡單。
(打一圖形名稱)(板書:三角形)(課件演示三條線段圍成三角形的過程)。
2、前面我們學習了三角形的有關(guān)知識,這節(jié)課我們來學習三角形的內(nèi)角和。板書課題:三角形的內(nèi)角和
(二)探究新知
1、三角形的內(nèi)角、內(nèi)角和
(1)什么是三角形內(nèi)角,誰先來根據(jù)自己的理解說一說?
師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。為了方便研究,我們把每個三角形的3個內(nèi)角分別標上∠
1、∠
2、∠3,(2)三角形內(nèi)角和
師:內(nèi)角和指的又是什么?
生:三角形的三個內(nèi)角的度數(shù)的和,就是三角形的內(nèi)角和。
(多讓幾個學生說一說)
猜想與驗證
師:英國數(shù)學家牛頓說過:沒有大膽的猜想就作不出偉大的發(fā)現(xiàn)。請同學們大膽的猜想一下?三角形的內(nèi)角和會是多少度呢?
師:剛才我們對三角形的內(nèi)角和進行了大膽的猜測,是不是所有的三角形的內(nèi)角和都是180°呢?在猜想與事實之間是需要科學、嚴謹?shù)尿炞C的。同學們能不能想個什么好辦法來驗證三角形的內(nèi)角和就是180度呢?
3、操作驗證,小組合作。
老師為每個小組準備了一個學具筐,里面有不同的學習材料,或許這些材料會對你有所啟發(fā),幫助你想出好辦法。每人現(xiàn)在都認真的想一想,你打算怎樣來驗證三角形的內(nèi)角和
不是180o呢?利用課前準備的材料,選自己喜歡的三角形,想辦法進行驗證。
三角形的形狀 ∠1 ∠2 ∠3 三角形的內(nèi)角和(∠1+∠2+∠3)
鈍角三角形
直角三角形
銳角三角形
我們的結(jié)論
學生匯報。(課件演示驗證結(jié)果。)(1)匯報測量結(jié)果
為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?
(因為測量有誤差,所以匯報的測量結(jié)果,有的是180°,有的接近180°。)
師:其它小組的方法是怎樣的?
(2)剪、拼
a、學生上臺演示。你們組是怎么想到把三角形撕下來拼成一個平角來驗證的呢?
B、請大家四人小組合作,用他們的方法驗證其它三角形。
C、展示學生作品。
D、你們組把本不在一起的三個角,通過移動位置,轉(zhuǎn)化成一個平角來驗證,運用了轉(zhuǎn)化的策略,你們組也很會學習。
(3)折拼
師:條條大路通羅馬,其它小組的驗證方法是怎樣的?
師:我在電腦里收索到折的方法,請同學們看一看是怎么折的(課件演示)。
4、科學驗證方法
師:不同的方法,同樣的精彩,大家發(fā)現(xiàn)了嗎?無論是撕一撕、折一折、還是拼一拼,這些方法都有異曲同工之妙,那就是你們都用了轉(zhuǎn)化的策略。我發(fā)現(xiàn)你們都有數(shù)學家的頭腦,既然任何操作都難以消除誤差,那么這個180度是怎樣認定的呢?數(shù)學家在證明這一猜想時,也用了轉(zhuǎn)化的思想,一起來看(看課件)(出示圖片)
師:善于數(shù)學發(fā)現(xiàn)和思考使帕斯卡走上了成功的道路。成為偉大的數(shù)學家。他在12歲時就驗證了任何三角形的內(nèi)角和都是180°(課件)
③鉛筆旋轉(zhuǎn)法。
教師:下面請同學們拿出鉛筆,我們一起來做一個旋轉(zhuǎn)鉛筆的游戲——筆尖向左,旋轉(zhuǎn)第一個銳角,依次旋轉(zhuǎn)第二個銳角,再旋轉(zhuǎn)第三個銳角。師:開始和結(jié)束時的筆尖方向有什么變化? 生1:和剛開始上課時的鉛筆旋轉(zhuǎn)有點相似。生2:開始筆尖向左,現(xiàn)在的筆尖向右。
師:鉛筆繞著三角形三個內(nèi)角旋轉(zhuǎn)后筆尖、筆尾位置顛倒,這說明鉛筆正好旋轉(zhuǎn)了多少度?……
師:看到這些新的驗證方法,你有什么感想?
師:除了我們這節(jié)課大家想到的方法,還有很多方法也能驗證三角形的內(nèi)角和是180°到初中我們還要更嚴密的方法證明三角形的內(nèi)角和是180°。
三、解決相關(guān)問題
師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!
.1.看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學信息很淺顯)
猜猜∠3有多少度?∠1=40o
∠2=48o
2.爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是70°,它的頂角是多少度?
3、思考:你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?
4、通過今天的學習,現(xiàn)在你能解決三角形三兄弟的紛爭了吧?你想對它們說的什么?
四、全課總結(jié),完善新知
利用今天的學習方法我們還可以推理出四邊形、五邊形、六邊形,甚至更多邊形的內(nèi)角和,相信同學們只要你擁有善于發(fā)現(xiàn)的眼睛,勤于思考的大腦,勇于實踐的雙手,將來你也會像數(shù)學家帕斯卡一樣偉大。
五、板書設(shè)計:
三角形的內(nèi)角和是180°
∠1+∠2+∠3=180°
度量
剪拼
折拼