五年級上冊數學知識點匯總(人教版)
第一單元
小數乘法
1、小數乘整數:
@意義——求幾個相同加數的和的簡便運算。
如:1.5×3表示求3個1.5的和的簡便運算(或1.5的3倍是多少)。
@計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
2、小數乘小數:
@意義——就是求這個數的幾分之幾是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:按整數算出積后,小數末尾的0要去掉,也就是把小數化簡;位數不夠時,要用0占位。
3、規律:
一個數(0除外)乘大于1的數,積比原來的數大;
一個數(0除外)乘小于1的數,積比原來的數小。
4、求近似數的方法一般有三種:
⑴四舍五入法;
⑵進一法;
⑶去尾法
5、計算錢數,保留兩位小數,表示計算到分;保留一位小數,表示計算到角。
6、小數四則運算順序和運算定律跟整數是一樣的。
7、運算定律和性質:
@
加法:
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
@
減法:
a-b-c=a-(b+c)
a-(b+c)=a-b-c
@
乘法:
乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
@
除法:
a÷b÷c=a÷(b×c)
a÷(b×c)
=a÷b÷c
第二單元
位
置
1、數對:
由兩個數組成,中間用逗號隔開,用括號括起來。括號里面的數由左至右分別為列數和行數,即“先列后行”。
2、作用:
一組數對確定唯一
一個點的位置。經度和緯度就是這個原理。
例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。如:數對(3,2)表示第三列,第二行。
(2)數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線。(有一個數不確定,不能確定一個點)
3、圖形左右平移行數不變;圖形上下平移列數不變。
第三單元
小數除法
1、小數除法的意義:
已知兩個因數的積與其中的一個因數,求另一個因數的運算。
如:0.6÷0.3表示已知兩個因數的積0.6與其中的一個因數0.3,求另一個因數的運算。
2、小數除以整數的計算方法:
小數除以整數,按整數除法的方法去除。商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有余數,要添0再除。
3、除數是小數的除法的計算方法:
先將除數和被除數擴大相同的倍數,使除數變成整數,再按“除數是整數的小數除法”的法則進行計算。
注意:如果被除數的位數不夠,在被除數的末尾用0補足。
4、在實際應用中,小數除法所得的商也可以根據需要用“四舍五入”法保留一定的小數位數,求出商的近似數。
5、除法中的變化規律:
①商不變:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。
②除數不變,被除數擴大,商隨著擴大。
③被除數不變,除數縮小,商擴大。
6、循環小數:
一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。
@
循環節:一個循環小數的小數部分,依次不斷重復出現的數字。如6.3232……的循環節是32.7、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。
第四單元
可能性
1、有些事件的發生是確定的,有些是不確定的。
可能
(不能確定)
(確定)
可能性
不可能
一定
2、事件發生的機會(或概率)有大小。
可能性
大
數量多
小
數量少
第五單元
簡易方程
1、在含有字母的式子里,字母中間的乘號可以記作“·”,也可以省略不寫。
注:加號、減號除號以及數與數之間的乘號不能省略。
2、a×a可以寫作a·a或a2
讀作a的平方。
注:
2a表示a+a
;a2表示a×a3、方程:含有未知數的等式稱為方程。
4、使方程左右兩邊相等的未知數的值,叫做方程的解。
5、求方程的解的過程叫做解方程。
6、解方程原理:天平平衡。
等式左右兩邊同時加、減、乘、除相同的數(0除外),等式依然成立。
7、10個數量關系式:
@
加法;
和=加數+加數?;
一個加數=和-兩一個加數
@
減法:
差=被減數-減數?;
被減數=差+減數?;
減數=被減數-差
@乘法:
積=因數×因數?;
一個因數=積÷另一個因數
@
除法:
商=被除數÷除數?;
被除數=商×除數?;
除數=被除數÷商
第六單元
多邊形的面積
1、長方形:
@
周長=(長+寬)×2——【長=周長÷2-寬;寬=周長÷2-長】
字母表示:C=(a+b)×2
@面積=長×寬
字母表示:S=ab2、正方形:
@周長=邊長×4
字母表示:C=4a
@面積=邊長×邊長
字母表示:S=a23、平行四邊形的面積=底×高
字母表示:
S=ah4、三角形的面積=底×高÷2
——【底=面積×2÷高;高=面積×2÷底】
字母表示:
S=ah÷25、梯形的面積=(上底+下底)×高÷2
字母表示:
S=(a+b)h÷2
上底=面積×2÷高-下底,下底=面積×2÷高-上底;
高=面積×2÷(上底+下底)
6、平行四邊形面積公式推導:
剪拼、平移、割補法
7、三角形面積公式推導:
旋轉、拼湊法
平行四邊形可以轉化成一個長方形;
兩個完全一樣的三角形可以拼成一個平行四邊形,長方形的長相當于平行四邊形的底;
平行四邊形的底相當于三角形的底;
長方形的寬相當于平行四邊形的高;
平行四邊形的高相當于三角形的高;
長方形的面積等于平行四邊形的面積,平行四邊形的面積等于三角形面積的2倍,因為長方形面積=長×寬,所以平行四邊形面積=底×高。
因為平行四邊形面積=底×高,所以三角形面積=底×高÷28、梯形面積公式推導:旋轉、拼湊法
9、兩個完全一樣的梯形可以拼成一個平行四邊形;
平行四邊形的底相當于梯形的上下底之和;
平行四邊形的高相當于梯形的高;
平行四邊形面積等于梯形面積的2倍,因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷210、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;
等底等高的平行四邊形面積是三角形面積的2倍。
11、長方形框架拉成平行四邊形,周長不變,面積變小。
12、組合圖形面積(或陰影部分面積):轉化成已學的簡單圖形,通過加、減進行計算(整體-部分=另一部分)。
第七單元
數學廣角——植樹問題
1、只載一端(封閉線路植樹問題)
如圖:
或
間隔數=棵樹
間隔長×間隔數=全長
全長÷間隔長=間隔數
全長÷間隔數=間隔長
2、兩端都載:
如圖:
間隔數+1=棵樹
間隔長×間隔數=全長
全長÷間隔長=間隔數
全長÷間隔數=間隔長
全長÷間隔長+1=棵數
全長÷(棵樹-1)=間隔長
3、兩端都不載
如圖:
間隔數-1=棵樹
間隔長×間隔數=全長
全長÷間隔長=間隔數
全長÷間隔數=間隔長
全長÷間隔長-1=棵數
全長÷(棵樹+1)=間隔長
一年級上冊數學知識點匯總(人教版)
第一單元
準備課
1、數一數
數數:數數時,按一定的順序數,從1開始,數到最后一個物體所對應的那個數,即最后數到幾,就是這種物體的總個數。
2、比多少
同樣多:當兩種物體一一對應后,都沒有剩余時,就說這兩種物體的數量同樣多。
比多少:當兩種物體一一對應后,其中一種物體有剩余,有剩余的那種物體多,沒有剩余的那種物體少。
比較兩種物體的多或少時,可以用一一對應的方法。
第二單
位
置
1、認識上、下
體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。
2、認識前、后
體會前、后的含義:一般指面對的方向就是前,背對的方向就是后。
同一物體,相對于不同的參照物,前后位置關系也會發生變化。
從而得出:確定兩個以上物體的前后位置關系時,要找準參照物,選擇的參照物不同,相對的前后位置關系也會發生變化。
3、認識左、右
以自己的左手、右手所在的位置為標準,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。
要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為準。
第三單元
1--5的認識和加減法
一、1--5的認識1、1—5各數的含義:每個數都可以表示不同物體的數量。有幾個物體就用幾來表示。
2、1—5各數的數序
從前往后數:1、2、3、4、5.從后往前數:5、4、3、2、1.3、1—5各數的寫法:根據每個數字的形狀,按數字在田字格中的位置,認真、工整地進行書寫。
二、比大小
1、前面的數等于后面的數,用“=”表示,即3=3,讀作3等于3。前面的數大于后面的數,用“>”表示,即3>2,讀作3大于2。前面的數小于后面的數,用“<”表示,即3<4,讀作3小于4。
2、填“>”或“<”時,開口對大數,尖角對小數。
三、第幾
1、確定物體的排列順序時,先確定數數的方向,然后從1開始點數,數到幾,它的順序就是“第幾”。第幾指的是其中的某一個。
2、區分“幾個”和“第幾”
“幾個”表示物體的多少,而“第幾”只表示其中的一個物體。
四、分與合數的組成:一個數(1除外)分成幾和幾,先把這個數分成1和幾,依次分到幾和1為止。例如:5的組成有1和4,2和3,3和2,4和1.把一個數分成幾和幾時,要有序地進行分解,防止重復或遺漏。
五、加法
1、加法的含義:把兩部分合在一起,求一共有多少,用加法計算。
2、加法的計算方法:計算5以內數的加法,可以采用點數、接著數、數的組成等方法。其中用數的組成計算是最常用的方法。
六、減法
1、減法的含義:從總數里去掉(減掉)一部分,求還剩多少用減法計算。
2、減法的計算方法:計算減法時,可以用倒著數、數的分成、想加算減的方法來計算。
七、01、0的意義:0表示一個物體也沒有,也表示起點。
2、0的讀法:0讀作:零3、0的寫法:寫0時,要從上到下,從左到右,起筆處和收筆處要相連,并且要寫圓滑,不能有棱角。
4、0的加、減法:任何數與0相加都得這個數,任何數與0相減都得這個數,相同的兩個數相減等于0.如:0+8=8
9-0=9
4-4=0
第四單元
認識圖形
1、長方體的特征:長長方方的,有6個平平的面,面有大有小。如圖:
2、長方體的特征:四四方方的,有6個平平的面,面的大小一樣。如圖:
3、圓柱的特征:直直的,上下一樣粗,上下兩個圓面大小一樣。放在桌子上能滾動。立在桌子上不能滾動。如圖:
4、球的特征:圓圓的,很光滑,它的表面是曲面。放在桌子上能向任意方向滾動。
5、立體圖形的拼擺:用長方體或正方體能拼組出不同形狀的立體圖形,在拼好的立體圖形中,有一些部位從一個角度是看不到的,要從多個角度去觀察。用小圓柱可以拼成更大的圓柱。
第五單元
6—10的認識和加減法
一、6—10的認識:
1、數數:根據物體的個數,可以用6—10各數來表示。數數時,從前往后數也就是從小往大數。
2、10以內數的順序:
(1)從前往后數:0、1、2、3、4、5、6、7、8、9、10。
(2)從后往前數:10、9、8、7、6、5、4、3、2、1、0。
3、比較大小:按照數的順序,后面的數總是比前面的數大。
4、序數含義:用來表示物體的次序,即第幾個。
5、數的組成:一個數(0、1除外)可以由兩個比它小的數組成。如:10由9和1組成。
記憶數的組成時,可由一組數想到調換位置的另一組。
二、6—10的加減法1、10以內加減法的計算方法:根據數的組成來計算。
2、一圖四式:根據一副圖的思考角度不同,可寫出兩道加法算式和兩道減法算式。
3、“大括號”下面有問號是求把兩部分合在一起,用加法計算。“大括號
”上面的一側有問號是求從總數中去掉一部分,還剩多少,用減法計算。
三、連加連減
1、連加的計算方法:計算連加時,按從左到右的順序進行,先算前兩個數的和,再與第三個數相加。
2、連減的計算方法:計算連減時,按從左到右的順序進行,先算前兩個數的差,再用所得的數減去第三個數。
四、加減混合加減混合的計算方法:計算時,按從左到右的順序進行,先把前兩個數相加(或相減),再用得數與第三個數相減(或相加)。
第六單元
11—20各數的認識
1、數數:根據物體的個數,可以用11—20各數來表示。
2、數的順序:11—20各數的順序是:11、12、13、14、15、16、17、18、19、20、3、比較大小:可以根據數的順序比較,后面的數總比前面的數大,或者利用數的組成進行比較。
4、11—20各數的組成:都是由1個十和幾個一組成的,20由2個十組成的。如:1個十和5個一組成15。
5、數位:從右邊起第一位是個位,第二位是十位。
6、11—20各數的讀法:從高位讀起,十位上是幾就讀幾十,個位上是幾就讀幾。20的讀法,20讀作:二十。
7、寫數:寫數時,對照數位寫,有1個十就在十位上寫1,有2個十就在十位上寫2.有幾個一,就在個位上寫幾,個位上一個單位也沒有,就寫0占位。
8、十加幾、十幾加幾與相應的減法:
(1)10加幾和相應的減法的計算方法:10加幾得十幾,十幾減幾得十,十幾減十得幾。
如:10+5=15
17-7=10
18-10=8
(2)十幾加幾和相應的減法的計算方法:計算十幾加幾和相應的減法時,可以利用數的組成來計算,也可以把個位上的數相加或相減,再加整十數。
(3)加減法的各部分名稱:
在加法算式中,加號前面和后面的數叫加數,等號后面的數叫和。
在減法算式中,減號前面的數叫被減數,減號后面的數叫減數,等號后面的數叫差。
9、解決問題:
求兩個數之間有幾個數,可以用數數法,也可以用畫圖法。還可以用計算法(用大數減小數再減1的方法來計算)。
第七單元
認識鐘表
1、認識鐘面:
鐘面:鐘面上有12個數,有時針和分針。
分針:鐘面上又細又長的指針叫分針。
時針:鐘面上又粗又短的指針叫時針。
2、鐘表的種類:日常生活中的鐘表一般分兩種,一種:掛鐘,鐘面上有12個數,分針和時針。另一種:電子表,表面上有兩個點“:”,“:”的左邊和右邊都有數。
3、認識整時:
分針指向12,時針指向幾就是幾時;電子表上,“:”的右邊是“00”時表示整時,“:”的左邊是幾就是幾時。
3、整時的寫法:
整時的寫法有兩種:寫成幾時或電子表數字的形式。如:8時或8:00
第八單元
20以內的進位加法
一、9加幾計算方法:計算9加幾的進位加法,可以采用“點數”“接著數”“湊十法”等方法進行計算,其中“湊十法”比較簡便。
利用“湊十法”計算9加幾時,把9湊成10需要1,就把較小數拆成1和幾,10加幾就得十幾。
二、8、7、6加幾的計算方法:(1)點數;
(2)接著數;(3)湊十法。可以“拆大數、湊小數”,也可以“拆小數、湊大數”。三、5、4、3、2加幾的計算方法:
(1)“拆大數、湊小數”。(2)“拆小數、湊大數”。
四、解決問題:
(1)解決問題時,可以從不同的角度觀察、分析、從而找到不同的解題方法。
(2)求總數的實際問題,用加法計算。