第一篇:配方法(一)教學設計
第二章
一元二次方程
2.配方法
(一)一、教學目標:
知識技能:會用開方法解形如(x?m)2?n(n?0)的方程,理解配方法,會用配方法解二次項系數為1,一次項系數為偶數的一元二次方程;
數學思考:經歷列方程解決實際問題的過程,體會一元二次方程是刻畫現實世界中數量關系的一個有效模型,增強學生的數學應用意識和能力;
問題解決:體會轉化的數學思想方法;
情感態度:能根據具體問題中的實際意義檢驗結果的合理性。
二、教學重難點
重點:運用配方法解簡單的數字系數的一元二次方程 難點:配方法過程中,解一元二次的要點的理解
三、教學方法 教師引導學生探索
四、教具準備 小黑板
五、教學過程
1、創設情境
(1)工人師傅想在一塊足夠大的長方形鐵皮上裁出一個面積為100CM2正方形,請你幫他想一想,這個正方形的邊長應為 ;若它的面積為75CM2,則其邊長應為。(選1個同學口答)
(2)如果一個正方形的邊長增加3cm后,它的面積變為64cm2,則原來的正方形的邊長為。若變化后的面積為48cm2呢?(小組合作交流)(3)你會解下列一元二次方程嗎?(獨立練習)
x2?5;(x?2)2?5; x2?12x?36?0。
(4)上節課,我們研究梯子底端滑動的距離x(m)滿足方程x2?12x?15?0,你能仿照上面幾個方程的解題過程,求出x的精確解嗎?你認為用這種方法解 這個方程的困難在哪里?(合作交流)
利用實際問題,讓學生初步體會開方法在解一元二次方程中的應用,為后面學習配方法作好鋪墊;培養學生善于觀察分析、樂于探索研究的學習品質及與他人合作交流的意識。
2、探索新知
(1)、做一做:(填空配成完全平方式,體會如何配方)
填上適當的數,使下列等式成立。(選4個學生口答)
x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2 x2?8x?____?(x?___)2 x2?4x?____?(x?___)2
問題:上面等式的左邊常數項和一次項系數有什么關系?對于形如x2?ax的式子如何配成完全平方式?(小組合作交流)
(2)、解決例題
?解方程:x2+8x-9=0.(師生共同解決)
解:可以把常數項移到方程的右邊,得 x2+8x=9 兩邊都加上(一次項系數8的一半的平方),得 x2+8x+42=9+42.(x+4)2=25 開平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.?解決梯子底部滑動問題:x2?12x?15?0(仿照例1,學生獨立解決)解:移項得 x2+12x=15,兩邊同時加上62得,x2+12x+62=15+36,即(x+6)2=51 兩邊開平方,得x+6=±51
所以:x1?51?6,x2??51?6,但因為x表示梯子底部滑動的距離所以x2??51?6 不合題意舍去。答:梯子底部滑動了(51?6)米。(3)、整理思路
用這種方法解一元二次方程的思路是什么?其關鍵又是什么?(小組合作交流)
通過對例1和例2的講解,規范配方法解一元二次方程的過程,讓學生充分理解掌握用配方法解一元二次方程的基本思路及關鍵是將方程轉化成(x?m)2?n(n?0)形式,同時通過例2提醒學生注意:有的方程雖然有兩個不同的解,但在處理實際問題時要根據實際意義檢驗結果的合理性,對結果進行取舍。由于此問題在情境引入時出現過,因此也達到前后呼應的目的。最后由問題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。
(4)、應用提高
例3:如圖,在一塊長和寬分別是16米和12米的長方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來長方形面積的一半,試求水渠的寬度。(先獨立思考,再小組合作交流)
在前兩個例題的基礎上,通過例3進一步提高學生分析問題解決問題的能力,幫助學生熟練掌握配方法在實際問題中的應用,也為后續學習做好鋪墊。例題分析:如果設水渠的寬為x米,則方程應該是(16?x)(12?x)?如果設水渠的寬為x米,則方程應該是16?12?12x?16x?x2?1?12?16;21?12?16,2并且給出了合理的解釋,如果剩余的耕地面積等于原來的一半則意味著水渠的面積也等于原來長方形面積的一半,所以方程可以列為:12x?16x?x2?1?12?16。面對這些問題,組織學生解他們所列出的幾個方2程,然后再讓小組成員合作交流討論,通過討論,學生發現這三種方法都正確,并且指出第一種方法可以利用平移水渠,把分割成的四部分拼在一起,構成了一個較大的矩形(如下圖),然后再利用矩形的面積公式列出方程,此種方法在解決此類問題時最簡單。這樣通過學生之間的爭論、辯論提高了課堂效率,激發了學生學習數 學的熱情,達到了資源共享。
3、隨堂練習
解下列方程
(1)x2?10x?25?7;(2)x2?6x?1;(3)x2?14x?8(4)x2?2x?2?8x?4
4、課堂小結
師生互相交流、總結配方法解一元二次方程的基本思路和關鍵,以及在應用配方法時應注意的問題。鼓勵學生結合本節課的學習,談自己的收獲與感想(學生暢所欲言,教師給予鼓勵)。
5、布置作業
課本55頁習題2.3 第 1題、第2題、第3題
第二篇:配方法(一)教學設計
第二章
一元二次方程
2.配方法
(一)石麗威
一、學生知識狀況分析
學生的知識技能基礎:學生在初二上學期已經學習過開平方,知道一個正數有兩個平方根,會利用開方求一個正數的兩個平方根,并且也學習了完全平方公式。在本章前面幾節課中,又學習了一元二次方程的概念,并經歷了用估算法求一元二次方程的根的過程,初步理解了一元二次方程解的意義;
學生活動經驗基礎:在相關知識的學習過程中,學生已經經歷了用計算器估算一元二次方程解的過程,解決了一些簡單的現實問題,感受到解一元二次方程的必要性和作用,基于學生的學習心理規律,在學習了估算法求解一元二次方程的基礎上,學生自然會產生用簡單方法求其解的欲望;同時在以前的數學學習中學生已經經歷了很多合作學習的過程,具有了一定的合作學習的經驗,具備了一定的合作與交流的能力。
二、教學任務分析
教科書基于學生用估算的方法求解一元二次方程的基礎之上,提出了本課的具體學習任務:用配方法解二次項系數為1且一次項系數為偶數的一元二次方程。但這僅僅是這堂課具體的教學目標,或者說是一個近期目標。而數學教學的遠期目標,應該與具體的課堂教學任務產生實質性聯系。本課《配方法》內容從屬于“方程與不等式”這一數學學習領域,因而務必服務于方程教學的遠期目標:“讓學生經歷由具體問題抽象出方程的過程,體會方程是刻畫現實世界中數量關系的一個有效模型,并在解一元二次方程的過程中體會轉化的數學思想”,同時也應力圖在學習中逐步達成學生的有關情感態度目標。為此,本節課的教學目標是:
1、會用開方法解形如(x?m)2?n(n?0)的方程,理解配方法,會用配方法解二次項系數為1,一次項系數為偶數的一元二次方程;
2、經歷列方程解決實際問題的過程,體會一元二次方程是刻畫現實世界中數量關系的一個有效模型,增強學生的數學應用意識和能力;
3、體會轉化的數學思想方法;
4、能根據具體問題中的實際意義檢驗結果的合理性。
三、教學過程分析
本節課設計了五個教學環節:第一環節:復習回顧;第二環節:情境引入;第三環節:講授新課;第四環節:練習提高;第五環節:課堂小結;第六環節:布置作業。
第一環節:復習回顧
活動內容:
1、如果一個數的平方等于4,則這個數是,若一個數的平方等于7,則這個數是。一個正數有幾個平方根,它們具有怎樣的關系?
2、用字母表示完全平方公式。
3、用估算法求方程x2?4x?2?0的解?你喜歡這種方法嗎?為什么?你能設法求出其精確解嗎?
活動目的:以問題串的形式引導學生逐步深入地思考,通過前兩個問題,引導學生復習開平方和完全平方公式,通過后一個問題的回答讓學生進一步體會用估計法解一元二次方程較麻煩,激發學生的求知欲,為學生后面配方法的學習作好鋪墊。
實際效果:第1和第2問選兩三個學生口答,由于問題較簡單,學生很快回答出來。第3問由學生獨立練習,通過練習,學生既復習了估算法,同時又進一步體會到了估算法較麻煩,達到了激發學生探索新解法的目的。
第二環節:情境引入
活動內容:(1)工人師傅想在一塊足夠大的長方形鐵皮上裁出一個面積為100CM2正方形,請你幫他想一想,這個正方形的邊長應為 ;若它的面積為75CM2,則其邊長應為。(選1個同學口答)(2)如果一個正方形的邊長增加3cm后,它的面積變為64cm2,則原來的正方形的邊長為。若變化后的面積為48cm2呢?(小組合作交流)(3)你會解下列一元二次方程嗎?(獨立練習)
x2?5;(x?2)2?5; x2?12x?36?0。
(4)上節課,我們研究梯子底端滑動的距離x(m)滿足方程x2?12x?15?0,你能仿照上面幾個方程的解題過程,求出x的精確解嗎?你認為用這種方法解這個方程的困難在哪里?(合作交流)
活動目的:利用實際問題,讓學生初步體會開方法在解一元二次方程中的應用,為后面學習配方法作好鋪墊;培養學生善于觀察分析、樂于探索研究的學習品質及與他人合作交流的意識。
實際效果:在復習了開方的基礎上,學生很快口答出了第1問,為解決第二問做好了準備。第2問讓學生合作解決,學生在交流如何求原來正方形的邊長時,產生了不同的方法,有的學生直接開方先求出了新正方形的邊,再減增加的邊長,求出原來的正方形的邊長;有的同學用了方程,設原正方形的邊長為xcm,根據題意列出了一元二次方程(x?3)2?64;(x?3)2?48然后兩邊開方,根據實際情況求出了原來正方形的邊長,這樣,再一次經歷了用一元二次方程解決實際問題的過程,并初步了解了開方法在一元二次方程中的簡單應用。在第2問的基礎上,學生很快解決了第3問。但學生在解決第4問時遇到了困難,他們發現等號的左端不是完全平方式,不能直接化成(x?m)2?n(n?0)的形式,因此大部分同學認為這個方程不能用開方法解,那么如何解決這樣的方程問題呢?這就是我們本節課要來研究的問題(自然引出課題),為后面探索配方法埋好了伏筆。
第三環節:講授新課
活動內容1:做一做:(填空配成完全平方式,體會如何配方)
填上適當的數,使下列等式成立。(選4個學生口答)
x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2
x2?8x?____?(x?___)2 x2?4x?____?(x?___)2
問題:上面等式的左邊常數項和一次項系數有什么關系?對于形如x2?ax的式子如何配成完全平方式?(小組合作交流)
活動目的:配方法的關鍵是正確配方,而要正確配方就必須熟悉完全平方式的特征,在此通過幾個填空題,使學生能夠用語言敘述并充分理解左邊填的是“一次項系數一半的平方”,右邊填的是“一次項系數的一半”,進一步復習鞏固完全平方式中常數項與一次項系數的關系,為后面學習掌握配方法解一元二次方程做好充分的準備。
實際效果:由于在復習回顧時已經復習過完全平方式,所以大部分學生很快解決四個小填空題。通過小組的合作交流,學生發現要把形如x2?ax的式子
a如何配成完全平方式,只要加上一次項系數一半的平方即加上()2即可。而
2且講解中小組之間互相補充、互相競爭,氣氛熱烈,使如何配成完全平方式的方法更加透徹。事實上,通過對配方的感知的過程,學生都能用自己的語言歸納總結出配成完全平方式的方法,這就為下一環節“用配方法解一元二次方程”打好基礎。由此也反映出學生善于觀察分析的良好品質,而這種品質是在學生自覺行為中得到培養的,體現了學生良好的情感、態度、價值觀。活動內容2:解決例題
(1)解方程:x2+8x-9=0.(師生共同解決)
解:可以把常數項移到方程的右邊,得 x2+8x=9 兩邊都加上(一次項系數8的一半的平方),得 x2+8x+42=9+42.(x+4)2=25 開平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解決梯子底部滑動問題:x2?12x?15?0(仿照例1,學生獨立解決)解:移項得 x2+12x=15,兩邊同時加上62得,x2+12x+62=15+36,即(x+6)2=51 兩邊開平方,得x+6=±51
所以:x1?51?6,x2??51?6,但因為x表示梯子底部滑動的距離所以x2??51?6 不合題意舍去。
答:梯子底部滑動了(51?6)米。活動內容3:及時小結、整理思路
用這種方法解一元二次方程的思路是什么?其關鍵又是什么?(小組合作交流)
活動目的:通過對例1和例2的講解,規范配方法解一元二次方程的過程,讓學生充分理解掌握用配方法解一元二次方程的基本思路及關鍵是將方程轉化成(x?m)2?n(n?0)形式,同時通過例2提醒學生注意:有的方程雖然有兩個不同的解,但在處理實際問題時要根據實際意義檢驗結果的合理性,對結果進行取舍。由于此問題在情境引入時出現過,因此也達到前后呼應的目的。最后由問題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。
實際效果:學生經過前一環節對配方法的特點有了初步的認識,通過兩個例題的處理,進一步完善對配方法基本思路的把握,是對配方法的學習由探求邁向實際應用的第一步。最后利用兩個問題,通過小組的合作交流得出配方法的基本思路和解決問題的關鍵,結論的得出來源于學生在實例分析中的親身感受,體現學生學習的主動性。活動內容
4、應用提高
例3:如圖,在一塊長和寬分別是16米和12米的長方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來長方形面積的一半,試求水渠的寬度。(先獨立思考,再小組合作交流)
活動目的:在前兩個例題的基礎上,通過例3進一步提高學生分析問題解決問題的能力,幫助學生熟練掌握配方法在實際問題中的應用,也為后續學習做好鋪墊。實際效果:大部分學生通過獨立思考,結合圖形很快列出了方程,在交流過程中小組成員之間產生了分歧,有的同學認為,如果設水渠的寬為x米,則
1?12?16;有的同學認為如果設水渠的寬為x21米,則方程應該是16?12?12x?16x?x2??12?16,并且給出了合理的解
2方程應該是(16?x)(12?x)?釋;有的同學則認為,如果剩余的耕地面積等于原來的一半則意味著水渠的面積也等于原來長方形面積的一半,所以方程可以列為:12x?16x?x2?1?12?16。面對這些問題,組織學生解他們2所列出的幾個方程,然后再讓小組成員合作交流討論,通過討論,學生發現這三種方法都正確,并且指出第一種方法可以利用平移水渠,把分割成的四部分拼在一起,構成了一個較大的矩形(如下圖),然后再利用矩形的面積公式列出方程,此種方法在解決此類問題時最簡單。這樣通過學生之間的爭論、辯論提高了課堂效率,激發了學生學習數學的熱情,達到了資源共享。
第四環節:練習與提高
活動內容:解下列方程
(1)x2?10x?25?7;(2)x2?6x?1;(3)x(x?14)?0(4)x2?8x?9
活動目的:對本節知識進行鞏固練習。
實際效果:此處留給學生充分的時間與空間進行獨立練習,通過練習,學生基本都能用配方法解解二次項系數為
1、一次項系數為偶數的一元二次方程,取得了較好的教學效果,加深了學生對“用配方法解簡單一元二次方程”的理解。
第五環節:課堂小結
活動內容:師生互相交流、總結配方法解一元二次方程的基本思路和關鍵,以及在應用配方法時應注意的問題。
活動目的:鼓勵學生結合本節課的學習,談自己的收獲與感想(學生暢所欲言,教師給予鼓勵)。實際效果:學生暢所欲言談自己的切身感受與實際收獲,掌握了配方法的基本思路和過程。
第六環節:布置作業
課本50頁習題2.3 1題、2題
四、教學反思
1、創造性地使用教材
教材只是為教師提供最基本的教學素材,教師完全可以根據學生的實際情況進行適當調整。學生在初
一、初二已經學過完全平方公式和如何對一個正數進行開方運算,而且普遍掌握較好,所以本節課從這兩個方面入手,利用幾個簡單的實際問題逐步引入配方法。教學中將難點放在探索如何配方上,重點放在配方法的應用上。本節課老師安排了三個例題,通過前兩個例題規范用配方法解一元二次方程的過程,幫助學生充分掌握用配方法解一元二次方程的技巧,同時本節課創造性地使用教材,把配方法(3)中的一個是設計方案問題改編成一個實際應用問題,讓學生體會到了方程在實際問題中的應用,感受到了數學的實際價值。培養了學生分析問題,解決問題的能力。
2、相信學生并為學生提供充分展示自己的機會
課堂上要把激發學生學習熱情和獲得學習能力放在教學首位,通過運用各種啟發、激勵的語言,以及組織小組合作學習,幫助學生形成積極主動的求知態度。本節課多次組織學生合作交流,通過小組合作,為學生提供展示自己聰明才智的機會,并且在此過程中教師發現了學生在分析問題和解決問題時出現的獨到見解,以及思維的誤區,這樣使得老師可以更好地指導今后的教學。
3、注意改進的方面
在小組討論之前,應該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問。教師應對小組討論給予適當的指導,包括知識的啟發引導、學生交流合作中注意 的問題及對困難學生的幫助等,使小組合作學習更具實效性。
第三篇:配方法(一)教學設計
《 一元二次方程----配方法》教學設計(最終稿)
一、研修背景:
學校:赫章縣哲莊鄉初級中學 執教教師及備課組:本校數學教研組
研究學科與課題:數學學科《一元二次方程----配方法》 研究主要問題:怎樣的設計才能使這堂課達到最佳效果
二、研究過程:(一)學情研究
1、學生的知識技能基礎研究:
學生在初二上學期已經學習過開平方,知道一個正數有兩個平方根,會利用開方求一個正數的兩個平方根,并且也學習了完全平方公式。在本章前面幾節課中,又學習了一元二次方程的概念,并經歷了用估算法求一元二次方程的根的過程,初步理解了一元二次方程解的意義;
2、學生活動經驗基礎研究:
在相關知識的學習過程中,學生已經經歷了用計算器估算一元二次方程解的過程,解決了一些簡單的現實問題,感受到解一元二次方程的必要性和作用,基于學生的學習心理規律,在學習了估算法求解一元二次方程的基礎上,學生自然會產生用簡單方法求其解的欲望;同時在以前的數學學習中學生已經經歷了很多合作學習的過程,具有了一定的合作學習的經驗,具備了一定的合作與交流的能力。
(二)教學任務研究
1、教材研究:教科書基于學生用估算的方法求解一元二次方程的基礎之上,提出了本課的具體學習任務:用配方法解二次項系數為1且一次項系數為偶數的一元二次方程。但這僅僅是這堂課具體的教學目標,或者說是一個近期目標。而數學教學的遠期目標,應該與具體的課堂教學任務產生實質性聯系。本課《配方法》內容從屬于“方程與不等式”這一數學學習領域,因 1 而務必服務于方程教學的遠期目標:“讓學生經歷由具體問題抽象出方程的過程,體會方程是刻畫現實世界中數量關系的一個有效模型,并在解一元二次方程的過程中體會轉化的數學思想”,同時也應力圖在學習中逐步達成學生的有關情感態度目標。
2、教學目標研究:本節課應達到以下教學目標:
(1)會用開方法解形如(x?m)2?n(n?0)的方程,理解配方法,會用配方法解二次項系數為1,一次項系數為偶數的一元二次方程;
(2)經歷列方程解決實際問題的過程,體會一元二次方程是刻畫現實世界中數量關系的一個有效模型,增強學生的數學應用意識和能力;
(3)體會轉化的數學思想方法;
(4)能根據具體問題中的實際意義檢驗結果的合理性。
(三)教學過程研究
本節課可設計為以下五個教學環節: 第一環節:復習回顧 教學活動內容設計:
1、如果一個數的平方等于4,則這個數是,若一個數的平方等于7,則這個數是。一個正數有幾個平方根,它們具有怎樣的關系?
2、用字母表示完全平方公式。
3、用估算法求方程x2?4x?2?0的解?你喜歡這種方法嗎?為什么?你能設法求出其精確解嗎?
教學活動內容設計意圖:以問題串的形式引導學生逐步深入地思考,通過前兩個問題,引導學生復習開平方和完全平方公式,通過后一個問題的回答讓學生進一步體會用估計法解一元二次方程較麻煩,激發學生的求知欲,為學生后面配方法的學習作好鋪墊。
實際教學中的效果:第1和第2問選兩三個學生口答,由于問題較簡單,學生很快回答出來。第3問由學生獨立練習,通過練習,學生既復習了估算法,同時又進一步體會到了估算法較麻煩,達到了激發學生探索新解法的目的。第二環節:情境引入 教學活動內容設計:
1、工人師傅想在一塊足夠大的長方形鐵皮上裁出一個面積為100CM2正方形,請你幫他想一想,這個正方形的邊長應為 ;若它的面積為75CM2,則其邊長應為。(選1個同學口答)
2、如果一個正方形的邊長增加3cm后,它的面積變為64cm2,則原來的正方形的邊長為。若變化后的面積為48cm2呢?(小組合作交流)
3、你會解下列一元二次方程嗎?(獨立練習)
x2?5;(x?2)2?5; x2?12x?36?0。
4、上節課,我們研究梯子底端滑動的距離x(m)滿足方程x2?12x?15?0,你能仿照上面幾個方程的解題過程,求出x的精確解嗎?你認為用這種方法解這個方程的困難在哪里?(合作交流)
活動內容設計的意圖:利用實際問題,讓學生初步體會開方法在解一元二次方程中的應用,為后面學習配方法作好鋪墊;培養學生善于觀察分析、樂于探索研究的學習品質及與他人合作交流的意識。
實際教學效果:在復習了開方的基礎上,學生很快口答出了第1問,為解決第二問做好了準備。第2問讓學生合作解決,學生在交流如何求原來正方形的邊長時,產生了不同的方法,有的學生直接開方先求出了新正方形的邊,再減增加的邊長,求出原來的正方形的邊長;有的同學用了方程,設原正方形的邊長為xcm,根據題意列出了一元二次方程(x?3)2?64;(x?3)2?48然后兩邊開方,根據實際情況求出了原來正方形的邊長,這樣,再一次經歷了用一元二次方程解決實際問題的過程,并初步了解了開方法在一元二次方程中的簡單應用。在第2問的基礎上,學生很快解決了第3問。但學生在解決第4問時遇到了困難,他們發現等號的左端不是完全平方式,不能直接化成因此大部分同學認為這個方程不能用開方法解,(x?m)2?n(n?0)的形式,那么如何解決這樣的方程問題呢?這就是我們本節課要來研究的問題(自然 3 引出課題),為后面探索配方法埋好了伏筆。第三環節:講授新課
教學活動內容設計
1:做一做:(填空配成完全平方式,體會如何配方)
填上適當的數,使下列等式成立。(選4個學生口答)
x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2 x2?8x?____?(x?___)2 x2?4x?____?(x?___)2
問題:上面等式的左邊常數項和一次項系數有什么關系?對于形如x2?ax的式子如何配成完全平方式?(小組合作交流)
教學活動內容設計的意圖:配方法的關鍵是正確配方,而要正確配方就必須熟悉完全平方式的特征,在此通過幾個填空題,使學生能夠用語言敘述并充分理解左邊填的是“一次項系數一半的平方”,右邊填的是“一次項系數的一半”,進一步復習鞏固完全平方式中常數項與一次項系數的關系,為后面學習掌握配方法解一元二次方程做好充分的準備。
實際教學效果:由于在復習回顧時已經復習過完全平方式,所以大部分學生很快解決四個小填空題。通過小組的合作交流,學生發現要把形如x2?ax的a式子如何配成完全平方式,只要加上一次項系數一半的平方即加上()2即可。
2而且講解中小組之間互相補充、互相競爭,氣氛熱烈,使如何配成完全平方式的方法更加透徹。事實上,通過對配方的感知的過程,學生都能用自己的語言歸納總結出配成完全平方式的方法,這就為下一環節“用配方法解一元二次方程”打好基礎。由此也反映出學生善于觀察分析的良好品質,而這種品質是在學生自覺行為中得到培養的,體現了學生良好的情感、態度、價值觀。教學活動內容設計2:解決例題
(1)解方程:x2+8x-9=0.(師生共同解決)
解:可以把常數項移到方程的右邊,得 x2+8x=9 兩邊都加上(一次項系數8的一半的平方),得 x2+8x+42=9+42.(x+4)2=25 開平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解決梯子底部滑動問題:x2?12x?15?0(仿照例1,學生獨立解決)解:移項得 x2+12x=15,兩邊同時加上62得,x2+12x+62=15+36,即(x+6)2=51 兩邊開平方,得x+6=±51
所以:x1?51?6,x2??51?6,但因為x表示梯子底部滑動的距離所以x2??51?6 不合題意舍去。答:梯子底部滑動了(51?6)米。教學活動內容設計3:及時小結、整理思路
用這種方法解一元二次方程的思路是什么?其關鍵又是什么?(小組合作交流)
教學活動內容設計2、3意圖:通過對例1和例2的講解,規范配方法解一元二次方程的過程,讓學生充分理解掌握用配方法解一元二次方程的基本思路及關鍵是將方程轉化成(x?m)2?n(n?0)形式,同時通過例2提醒學生注意:有的方程雖然有兩個不同的解,但在處理實際問題時要根據實際意義檢驗結果的合理性,對結果進行取舍。由于此問題在情境引入時出現過,因此也達到前后呼應的目的。最后由問題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。
實際教學效果:學生經過前一環節對配方法的特點有了初步的認識,通過兩個例題的處理,進一步完善對配方法基本思路的把握,是對配方法的學習由 5 探求邁向實際應用的第一步。最后利用兩個問題,通過小組的合作交流得出配方法的基本思路和解決問題的關鍵,結論的得出來源于學生在實例分析中的親身感受,體現學生學習的主動性。活動內容
4、應用提高
例3:如圖,在一塊長和寬分別是16米和12米的長方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來長方形面積的一半,試求水渠的寬度。(先獨立思考,再小組合作交流)
教學活動內容設計的意圖:在前兩個例題的基礎上,通過例3進一步提高學生分析問題解決問題的能力,幫助學生熟練掌握配方法在實際問題中的應用,也為后續學習做好鋪墊。
實際教學效果:大部分學生通過獨立思考,結合圖形很快列出了方程,在交流過程中小組成員之間產生了分歧,有的同學認為,如果設水渠的寬為x米,1?12?16;有的同學認為如果設水渠的寬為x21米,則方程應該是16?12?12x?16x?x2??12?16,并且給出了合理的解
2則方程應該是(16?x)(12?x)?釋;有的同學則認為,如果剩余的耕地面積等于原來的一半則意味著水渠的面積也等于原來長方形面積的一半,所以方程可以列為:12x?16x?x2?1?12?16。面對這些問題,組織學生解他們2所列出的幾個方程,然后再讓小組成員合作交流討論,通過討論,學生發現這三種方法都正確,并且指出第一種方法可以利用平移水渠,把分割成的四部分拼在一起,構成了一個較大的矩形(如下圖),然后再利用矩形的面積公式列出方程,此種方法在解決此類問題時最簡單。這樣通過學生之間的爭論、辯論提高了課堂效率,激發了學生學習數學的熱情,達到了資源共享。第四環節:練習與提高 教學活動內容設計:解下列方程
(1)x2?10x?25?7;(2)x2?6x?1;(3)x(x?14)?0(4)x2?8x?9 活動內容設計的意圖:對本節知識進行鞏固練習。
實際教學效果:此處留給學生充分的時間與空間進行獨立練習,通過練習,學生基本都能用配方法解解二次項系數為
1、一次項系數為偶數的一元二次方程,取得了較好的教學效果,加深了學生對“用配方法解簡單一元二次方程”的理解。第五環節:課堂小結
教學活動內容設計:師生互相交流、總結配方法解一元二次方程的基本思路和關鍵,以及在應用配方法時應注意的問題。活動內容設計的意圖:
鼓勵學生結合本節課的學習,談自己的收獲與感想(學生暢所欲言,教師給予鼓勵)。
實際教學效果:
學生暢所欲言談自己的切身感受與實際收獲,掌握了配方法的基本思路和過程。
第六環節:布置作業
課本50頁習題2.3 1題、2題
《 一元二次方程----配方法》教學設計研修心得
通過本節課的集體說課、集體備課、上課、集體評課,我是感觸頗深,下面我就針對本節課的設計和和教學過程說說我之所獲:
一、創造性地使用教材
教材只是為教師提供最基本的教學素材,教師完全可以根據學生的實際情況進行適當調整。就本節課的內容而言,學生在七年級、八年級已經學過完全平方公式和如何對一個正數進行開方運算,所以本節課從這兩個方面入手,利用幾個簡單的實際問題逐步引入配方法。教學中將難點放在探索如何配方上,重點放在配方法的應用上。本節課安排了三個例題,通過前兩個例 7 題規范用配方法解一元二次方程的過程,幫助學生充分掌握用配方法解一元二次方程的技巧,同時本節課創造性地使用教材,把配方法(3)中的一個是設計方案問題改編成一個實際應用問題,讓學生體會到了方程在實際問題中的應用,感受到了數學的實際價值。培養了學生分析問題,解決問題的能力。這不能不說是創造性使用教材的結果。
二、相信學生并為學生提供充分展示自己的機會
課堂上要把激發學生學習熱情和獲得學習能力放在教學首位,通過運用各種啟發、激勵的語言,以及組織小組合作學習,幫助學生形成積極主動的求知態度。就本節課而言,備課組強調:教學時應盡可能創設情境,組織學生合作交流,通過小組合作,為學生提供展示自己聰明才智的機會,并且在此過程中教師發現了學生在分析問題和解決問題時出現的獨到見解,以及思維的誤區,這樣以便于授課教師更好地指導今后的教學。所以本節課,多次組織學生合作交流,且取得的效果也是顯而易見的。
三、教學中應注意的問題:使小組合作學習更具實效性
就本節課而言,我認為仍有需要注意改進的方面,例如,在小組討論之前,應該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問。教師應對小組討論給予適當的指導,包括知識的啟發引導、學生交流合作中注意的問題及對困難學生的幫助等,使小組合作學習更具實效性……
總之,通過本節課課例研究,讓我真正明白了集體的智慧是大得驚人的。就本節課而言,備課組的老師們根據課程標準的要求和教材特點,結合學生的實際情況,各抒己見研究最科學的教法和程序,為優質高效的課堂教學做好充分準備。因此,我希望學校教研組,應多組織這樣教研活動,以充分發揮集體智慧,從而使所有老師都集思廣益,博采眾長,真正實現腦資源共享、真正熟練地駕馭好教材和課堂。
第四篇:配方法(一)教學設計1
第二章
一元二次方程
2.配方法
(一)三、教學過程分析
本節課設計了五個教學環節:第一環節:復習回顧;第二環節:情境引入;第三環節:講授新課;第四環節:練習提高;第五環節:課堂小結;第六環節:布置作業。
第一環節:復習回顧
活動內容:
1、如果一個數的平方等于4,則這個數是,若一個數的平方等于7,則這個數是。一個正數有幾個平方根,它們具有怎樣的關系?
2、用字母表示完全平方公式。
3、用估算法求方程x2?4x?2?0的解?你喜歡這種方法嗎?為什么?你能設法求出其精確解嗎?
活動目的:以問題串的形式引導學生逐步深入地思考,通過前兩個問題,引導學生復習開平方和完全平方公式,通過后一個問題的回答讓學生進一步體會用估計法解一元二次方程較麻煩,激發學生的求知欲,為學生后面配方法的學習作好鋪墊。
實際效果:第1和第2問選兩三個學生口答,由于問題較簡單,學生很快回答出來。第3問由學生獨立練習,通過練習,學生既復習了估算法,同時又進一步體會到了估算法較麻煩,達到了激發學生探索新解法的目的。
第二環節:情境引入
活動內容:(1)工人師傅想在一塊足夠大的長方形鐵皮上裁出一個面積為100CM2正方形,請你幫他想一想,這個正方形的邊長應為 ;若它的面積為75CM2,則其邊長應為。(選1個同學口答)
(2)如果一個正方形的邊長增加3cm后,它的面積變為64cm2,則原來的正方形的邊長為。若變化后的面積為48cm2呢?(小組合作交流)(3)你會解下列一元二次方程嗎?(獨立練習)
x2?5;(x?2)?5; x?12x?36?0。
22(4)上節課,我們研究梯子底端滑動的距離x(m)滿足方程x2?12x?15?0,你能仿照上面幾個方程的解題過程,求出x的精確解嗎?你認為用這種方法解這個方程的困難在哪里?(合作交流)
活動目的:利用實際問題,讓學生初步體會開方法在解一元二次方程中的應用,為后面學習配方法作好鋪墊;培養學生善于觀察分析、樂于探索研究的學習品質及與他人合作交流的意識。
實際效果:在復習了開方的基礎上,學生很快口答出了第1問,為解決第二問做好了準備。第2問讓學生合作解決,學生在交流如何求原來正方形的邊長時,產生了不同的方法,有的學生直接開方先求出了新正方形的邊,再減增加的邊長,求出原來的正方形的邊長;有的同學用了方程,設原正方形的邊長為xcm,根據題意列出了一元二次方程(x?3)2?64;(x?3)2?48然后兩邊開方,根據實際情況求出了原來正方形的邊長,這樣,再一次經歷了用一元二次方程解決實際問題的過程,并初步了解了開方法在一元二次方程中的簡單應用。在第2問的基礎上,學生很快解決了第3問。但學生在解決第4問時遇到了困難,他們發現等號的左端不是完全平方式,不能直接化成因此大部分同學認為這個方程不能用開方法解,(x?m)?n(n?0)的形式,2那么如何解決這樣的方程問題呢?這就是我們本節課要來研究的問題(自然引出課題),為后面探索配方法埋好了伏筆。
第三環節:講授新課
活動內容1:做一做:(填空配成完全平方式,體會如何配方)
填上適當的數,使下列等式成立。(選4個學生口答)
x?12x?_____?(x?6)x?8x?____?(x?___)222 x2?6x?____?(x?3)
2x2?4x?____?(x?___)2
2問題:上面等式的左邊常數項和一次項系數有什么關系?對于形如 2 x?ax2的式子如何配成完全平方式?(小組合作交流)
活動目的:配方法的關鍵是正確配方,而要正確配方就必須熟悉完全平方式的特征,在此通過幾個填空題,使學生能夠用語言敘述并充分理解左邊填的是“一次項系數一半的平方”,右邊填的是“一次項系數的一半”,進一步復習鞏固完全平方式中常數項與一次項系數的關系,為后面學習掌握配方法解一元二次方程做好充分的準備。
實際效果:由于在復習回顧時已經復習過完全平方式,所以大部分學生很快解決四個小填空題。通過小組的合作交流,學生發現要把形如x2?ax的式子如何配成完全平方式,只要加上一次項系數一半的平方即加上()2即可。而
2a且講解中小組之間互相補充、互相競爭,氣氛熱烈,使如何配成完全平方式的方法更加透徹。事實上,通過對配方的感知的過程,學生都能用自己的語言歸納總結出配成完全平方式的方法,這就為下一環節“用配方法解一元二次方程”打好基礎。由此也反映出學生善于觀察分析的良好品質,而這種品質是在學生自覺行為中得到培養的,體現了學生良好的情感、態度、價值觀。活動內容2:解決例題
(1)解方程:x2+8x-9=0.(師生共同解決)
解:可以把常數項移到方程的右邊,得 x2+8x=9 兩邊都加上(一次項系數8的一半的平方),得 x2+8x+42=9+42.(x+4)=25 開平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解決梯子底部滑動問題:x2?12x?15?0(仿照例1,學生獨立解決)解:移項得 x2+12x=15,兩邊同時加上62得,x2+12x+62=15+36,即(x+6)2=51 兩邊開平方,得x+6=±51 2所以:x1?51?6,x2??51?6,但因為x表示梯子底部滑動的距離所以x2??51?6 不合題意舍去。
答:梯子底部滑動了(51?6)米。活動內容3:及時小結、整理思路
用這種方法解一元二次方程的思路是什么?其關鍵又是什么?(小組合作交流)
活動目的:通過對例1和例2的講解,規范配方法解一元二次方程的過程,讓學生充分理解掌握用配方法解一元二次方程的基本思路及關鍵是將方程轉化成(x?m)2?n(n?0)形式,同時通過例2提醒學生注意:有的方程雖然有兩個不同的解,但在處理實際問題時要根據實際意義檢驗結果的合理性,對結果進行取舍。由于此問題在情境引入時出現過,因此也達到前后呼應的目的。最后由問題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。
實際效果:學生經過前一環節對配方法的特點有了初步的認識,通過兩個例題的處理,進一步完善對配方法基本思路的把握,是對配方法的學習由探求邁向實際應用的第一步。最后利用兩個問題,通過小組的合作交流得出配方法的基本思路和解決問題的關鍵,結論的得出來源于學生在實例分析中的親身感受,體現學生學習的主動性。活動內容
4、應用提高
例3:如圖,在一塊長和寬分別是16米和12米的長方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來長方形面積的一半,試求水渠的寬度。(先獨立思考,再小組合作交流)
活動目的:在前兩個例題的基礎上,通過例3進一步提高學生分析問題解決問題的能力,幫助學生熟練掌握配方法在實際問題中的應用,也為后續學習做好鋪墊。
實際效果:大部分學生通過獨立思考,結合圖形很快列出了方程,在交流過程中小組成員之間產生了分歧,有的同學認為,如果設水渠的寬為x米,則 方程應該是(16?x)(12?x)?12?12?16;有的同學認為如果設水渠的寬為x12?12?16米,則方程應該是16?12?12x?16x?x2?,并且給出了合理的解釋;有的同學則認為,如果剩余的耕地面積等于原來的一半則意味著水渠的面積也等于原來長方形面積的一半,所以方程可以列為:12x?16x?x2?12?12?16。面對這些問題,組織學生解他們所列出的幾個方程,然后再讓小組成員合作交流討論,通過討論,學生發現這三種方法都正確,并且指出第一種方法可以利用平移水渠,把分割成的四部分拼在一起,構成了一個較大的矩形(如下圖),然后再利用矩形的面積公式列出方程,此種方法在解決此類問題時最簡單。這樣通過學生之間的爭論、辯論提高了課堂效率,激發了學生學習數學的熱情,達到了資源共享。
第四環節:練習與提高
活動內容:解下列方程
(1)x?10x?25?7;(2)x?6x?1;(3)x(x?14)?0(4)x222?8x?9
活動目的:對本節知識進行鞏固練習。
實際效果:此處留給學生充分的時間與空間進行獨立練習,通過練習,學生基本都能用配方法解解二次項系數為
1、一次項系數為偶數的一元二次方程,取得了較好的教學效果,加深了學生對“用配方法解簡單一元二次方程”的理解。
第五環節:課堂小結
活動內容:師生互相交流、總結配方法解一元二次方程的基本思路和關鍵,以及在應用配方法時應注意的問題。
活動目的:鼓勵學生結合本節課的學習,談自己的收獲與感想(學生暢所欲言,教師給予鼓勵)。
實際效果:學生暢所欲言談自己的切身感受與實際收獲,掌握了配方法的基本思路和過程。第六環節:布置作業
課本50頁習題2.3 1題、2題
四、教學反思
1、創造性地使用教材
教材只是為教師提供最基本的教學素材,教師完全可以根據學生的實際情況進行適當調整。學生在初
一、初二已經學過完全平方公式和如何對一個正數進行開方運算,而且普遍掌握較好,所以本節課從這兩個方面入手,利用幾個簡單的實際問題逐步引入配方法。教學中將難點放在探索如何配方上,重點放在配方法的應用上。本節課老師安排了三個例題,通過前兩個例題規范用配方法解一元二次方程的過程,幫助學生充分掌握用配方法解一元二次方程的技巧,同時本節課創造性地使用教材,把配方法(3)中的一個是設計方案問題改編成一個實際應用問題,讓學生體會到了方程在實際問題中的應用,感受到了數學的實際價值。培養了學生分析問題,解決問題的能力。
2、相信學生并為學生提供充分展示自己的機會
課堂上要把激發學生學習熱情和獲得學習能力放在教學首位,通過運用各種啟發、激勵的語言,以及組織小組合作學習,幫助學生形成積極主動的求知態度。本節課多次組織學生合作交流,通過小組合作,為學生提供展示自己聰明才智的機會,并且在此過程中教師發現了學生在分析問題和解決問題時出現的獨到見解,以及思維的誤區,這樣使得老師可以更好地指導今后的教學。
3、注意改進的方面
在小組討論之前,應該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問。教師應對小組討論給予適當的指導,包括知識的啟發引導、學生交流合作中注意的問題及對困難學生的幫助等,使小組合作學習更具實效性。
第五篇:配方法教學設計
2.2、配方法(二)
教學目標:
1.利用方程解決實際問題.
2.訓練用配方法解題的技能.
教學重點:
利用方程解決實際問題
教學難點:
對于開放性問題的解決,即如何設計方案
教學方法:
分組討論法
教學內容及過程:
一、復習:
1、配方:
(1)x―3x+ =(x―)
(2)x―5x+ =(x―)
2、用配方法解一元二次方程的步驟是什么?
以上兩題可讓學生口答。
3、用配方法解下列一元二次方程?
(1)3x―1=2x(2)x―5x+4=0
找學生板演。
二、引入課題:
我們已經學習了用配方法解一元二次方程,在生產生活中常遇到一些問題,需要用一元二次方程來解答,請同學們將課本翻到60頁,閱讀課本,并思考:
三、出示思考題:
1、222
2http://www.ffkj.net
如圖所示:
(1)設花園四周小路的寬度均為x m,可列怎樣的一元二次方程?
(16-2x)(12-2x)=
×16×12
(2)一元二次方程的解是什么?
x1=2 x2=12
(3)這兩個解都合要求嗎?為什么?
x1=2合要求,x2=12不合要求,因荒地的寬為 12m,小路的寬不可能為 12m,它必須小于荒地寬的一半。
2、設花園四角的扇形半徑均為x m,可列怎樣的一元二次方程?
xπ=2×12×16
(2)一元二次方程的解是什么?
(3)合符條件的解是多少?
x1=5.5
3、你還有其他設計方案嗎?請設計出來與同伴交流。
(1)花園為菱形(2)花園為圓形?
(3)花園為三角形(4)花園為梯形
四、小結:
http://www.ffkj.net
1、本節內容的設計方案不只一種,只要合符條件即可。
2、設計方案時,關鍵是列一元二次方程。
3、一元二次方程的解一般有兩個,要根據實際情況舍去不合題意的解。
本節課我們通過列方程解決實際問題,進一步了解了一元二次方程是刻畫現實世界中數量關系的一個有效數學模型,并且知道在解決實際問題時,要根據具體問題的實際意義檢驗結果的合理性。
另外,還應注意用配方法解題的技能
http://www.ffkj.net