久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

八年級(jí)數(shù)學(xué)下冊(cè)《17.2 實(shí)際問題與反比例函數(shù)》教案 新人教版(合集5篇)

時(shí)間:2019-05-12 17:15:44下載本文作者:會(huì)員上傳
簡(jiǎn)介:寫寫幫文庫小編為你整理了多篇相關(guān)的《八年級(jí)數(shù)學(xué)下冊(cè)《17.2 實(shí)際問題與反比例函數(shù)》教案 新人教版》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《八年級(jí)數(shù)學(xué)下冊(cè)《17.2 實(shí)際問題與反比例函數(shù)》教案 新人教版》。

第一篇:八年級(jí)數(shù)學(xué)下冊(cè)《17.2 實(shí)際問題與反比例函數(shù)》教案 新人教版

17.2 實(shí)際問題與反比例函數(shù)(1)

一、教學(xué)目標(biāo)

1.利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題

2.滲透數(shù)形結(jié)合思想,提高學(xué)生用函數(shù)觀點(diǎn)解決問題的能力

二、重點(diǎn)、難點(diǎn)

1.重點(diǎn):利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題 2.難點(diǎn):分析實(shí)際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式

三、例題的意圖分析

教材第57頁的例1,數(shù)量關(guān)系比較簡(jiǎn)單,學(xué)生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實(shí)際上是利用了反比例函數(shù)的定義,同時(shí)也是要讓學(xué)生學(xué)會(huì)分析問題的方法。

教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實(shí)際問題,此題的實(shí)際背景較例1稍復(fù)雜些,目的是為了提高學(xué)生將實(shí)際問題抽象成數(shù)學(xué)問題的能力,掌握用函數(shù)觀點(diǎn)去分析和解決問題的思路。

補(bǔ)充例題一是為了鞏固反比例函數(shù)的有關(guān)知識(shí),二是為了提高學(xué)生從圖象中讀取信息的能力,掌握數(shù)形結(jié)合的思想方法,以便更好地解決實(shí)際問題

四、課堂引入

寒假到了,小明正與幾個(gè)同伴在結(jié)冰的河面上溜冰,突然發(fā)現(xiàn)前面有一處冰出現(xiàn)了裂痕,小明立即告訴同伴分散趴在冰面上,匍匐離開了危險(xiǎn)區(qū)。你能解釋一下小明這樣做的道理嗎?

五、例習(xí)題分析

例1.見教材第57頁

分析:(1)問首先要弄清此題中各數(shù)量間的關(guān)系,容積為104,底面積是S,深度為d,滿足基本公式:圓柱的體積 =底面積×高,由題意知S是函數(shù),d是自變量,改寫后所得的函數(shù)關(guān)系式是反比例函數(shù)的形式,(2)問實(shí)際上是已知函數(shù)S的值,求自變量d的取值,(3)問則是與(2)相反

例2.見教材第58頁

分析:此題類似應(yīng)用題中的“工程問題”,關(guān)系式為工作總量=工作速度×工作時(shí)間,由于題目中貨物總量是不變的,兩個(gè)變量分別是速度v和時(shí)間t,因此具有反比關(guān)系,(2)問涉及了反比例函數(shù)的增減性,即當(dāng)自變量t取最大值時(shí),函數(shù)值v取最小值是多少? 例1.(補(bǔ)充)某氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓P(千帕)是氣體體積V(立方米)的反比例函數(shù),其圖像如圖所示(千帕是一種壓強(qiáng)單位)

(1)寫出這個(gè)函數(shù)的解析式;

(2)當(dāng)氣球的體積是0.8立方米時(shí),氣球內(nèi)的氣壓是多少千帕?

(3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈ǎ瑸榱税踩鹨姡瑲馇虻捏w積應(yīng)不小于多少立方米?

分析:題中已知變量P與V是反比例函數(shù)關(guān)系,并且圖象經(jīng)過點(diǎn)A,利用待定系數(shù)法可以求出P與V的解析式,得P?96V,(3)問中當(dāng)P大于144千帕?xí)r,氣球會(huì)爆炸,即當(dāng)P不超過144千帕?xí)r,是安全范圍。根據(jù)反比例函數(shù)的圖象和性質(zhì),P隨V的增大而減小,可 1

先求出氣壓P=144千帕?xí)r所對(duì)應(yīng)的氣體體積,再分析出最后結(jié)果是不小于

23立方米

六、隨堂練習(xí)

1.京沈高速公路全長658km,汽車沿京沈高速公路從沈陽駛往北京,則汽車行完全程所需時(shí)間t(h)與行駛的平均速度v(km/h)之間的函數(shù)關(guān)系式為

2.完成某項(xiàng)任務(wù)可獲得500元報(bào)酬,考慮由x人完成這項(xiàng)任務(wù),試寫出人均報(bào)酬y(元)與人數(shù)x(人)之間的函數(shù)關(guān)系式

333.一定質(zhì)量的氧氣,它的密度?(kg/m)是它的體積V(m)的反比例函數(shù),當(dāng)V=10時(shí),?=1.43,(1)求?與V的函數(shù)關(guān)系式;(2)求當(dāng)V=2時(shí)氧氣的密度? 答案:?=14.3V,當(dāng)V=2時(shí),?=7.15

七、課后練習(xí)

1.小林家離工作單位的距離為3600米,他每天騎自行車上班時(shí)的速度為v(米/分),所需時(shí)間為t(分)

(1)則速度v與時(shí)間t之間有怎樣的函數(shù)關(guān)系?

(2)若小林到單位用15分鐘,那么他騎車的平均速度是多少?

(2)如果小林騎車的速度最快為300米/分,那他至少需要幾分鐘到達(dá)單位?

答案:v?3600t,v=240,t=12 2.學(xué)校鍋爐旁建有一個(gè)儲(chǔ)煤庫,開學(xué)初購進(jìn)一批煤,現(xiàn)在知道:按每天用煤0.6噸計(jì)算,一學(xué)期(按150天計(jì)算)剛好用完.若每天的耗煤量為x噸,那么這批煤能維持y天(1)則y與x之間有怎樣的函數(shù)關(guān)系?(2)畫函數(shù)圖象

(3)若每天節(jié)約0.1噸,則這批煤能維持多少天?

課后反思:

第二篇:八年級(jí)數(shù)學(xué)《實(shí)際問題與反比例函數(shù)》說課稿

【小編寄語】查字典數(shù)學(xué)網(wǎng)小編給大家整理了八年級(jí)數(shù)學(xué)《實(shí)際問題與反比例函數(shù)》說課稿,希望能給大家?guī)韼椭?

《實(shí)際問題與反比例函數(shù)(第三課時(shí))》說課稿

一、數(shù)學(xué)本質(zhì)與教學(xué)目標(biāo)定位

《實(shí)際問題與反比例函數(shù)(第三課時(shí))》是新人教版八年級(jí)下冊(cè)第十七章第二節(jié)的課題,是在前面學(xué)習(xí)了反比例函數(shù)、反比例函數(shù)的圖象和性質(zhì)的基礎(chǔ)上的一節(jié)應(yīng)用課。體現(xiàn)反比例函數(shù)是解決實(shí)際問題有效的數(shù)學(xué)模型,經(jīng)歷找出常量和變量,建立并表示函數(shù)模型,討論函數(shù)模型,解決實(shí)際問題的過程。

本節(jié)課的教學(xué)目標(biāo)分以下三個(gè)方面:

1、知識(shí)與技能目標(biāo):

(1)通過對(duì)杠桿原理等實(shí)際問題與反比例函數(shù)關(guān)系的探究,使學(xué)生能夠從函數(shù)的觀點(diǎn)來解決一些實(shí)際問題;

(2)通過對(duì)實(shí)際問題中變量之間關(guān)系的分析,建立函數(shù)模型,運(yùn)用已學(xué)過的反比例函數(shù)知識(shí)加以解決,體會(huì)數(shù)學(xué)建模思想和學(xué)以致用的數(shù)學(xué)理念。

2、能力訓(xùn)練目標(biāo)

分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型解決問題,進(jìn)一步運(yùn)用函數(shù)的圖像、性質(zhì)挖掘杠桿原理中蘊(yùn)涵的道理。

3.情感、態(tài)度與價(jià)值觀目標(biāo):

(1)利用函數(shù)探索古希臘科學(xué)家阿基米德發(fā)現(xiàn)的杠桿定律,使學(xué)生的求知欲望得到激發(fā),再通過自己所學(xué)知識(shí)解決了身邊的問題,大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

(2)訓(xùn)練學(xué)生能把思考的結(jié)果用語言很好地表達(dá)出來,同時(shí)要讓學(xué)生很好地交流和合作.二、學(xué)習(xí)內(nèi)容的基礎(chǔ)以及其作用

在17.1學(xué)習(xí)了反比例函數(shù)的概念及函數(shù)的圖像和性質(zhì)基礎(chǔ)上,《實(shí)際問題與反比例函數(shù)》這一節(jié)重點(diǎn)介紹反比例函數(shù)在現(xiàn)實(shí)生活中的廣泛性,以及如何應(yīng)用反比例函數(shù)的知識(shí)解決現(xiàn)實(shí)生活中的實(shí)際問題。

本節(jié)課的探究的例題和練習(xí)題都是現(xiàn)實(shí)生活中的常見問題,反映了數(shù)學(xué)與實(shí)際的關(guān)系,即數(shù)學(xué)理論來源于實(shí)際又發(fā)過來服務(wù)實(shí)際,這樣有助于提高學(xué)生把抽象的數(shù)學(xué)概念應(yīng)用于實(shí)際問題的能力。在數(shù)學(xué)課上涉及了物理學(xué)力學(xué)的實(shí)際問題,運(yùn)用到古希臘科學(xué)家阿基米德發(fā)現(xiàn)的杠桿定理,其本質(zhì)體現(xiàn)的是力與力臂兩個(gè)量的發(fā)比例關(guān)系,最后落實(shí)到運(yùn)用數(shù)學(xué)來解決。通過學(xué)習(xí),讓學(xué)生進(jìn)一步加深對(duì)反比例函數(shù)的運(yùn)用和理解,更深層次體會(huì)建立反比例模型解決實(shí)際問題的思想,鞏固和提高所學(xué)知識(shí),鼓勵(lì)學(xué)生將所學(xué)知識(shí)應(yīng)用到生活中去。

三、教學(xué)診斷分析

本節(jié)課容易了解的地方是:杠桿是我們?cè)谏钪谐3S龅降奈锢砟P停酶軛U定理容易建立函數(shù)關(guān)系式。

而我認(rèn)為本節(jié)課有兩個(gè)問題學(xué)生比較難理解:(1)是注意在實(shí)際問題中函數(shù)自變量的取值范圍,用數(shù)學(xué)知識(shí)去解決實(shí)際問題。在講課時(shí)注意提醒學(xué)生關(guān)注實(shí)際問題的意義;(2)從函數(shù)的角度深層次挖掘變量的關(guān)系,在這一過程中學(xué)生逐漸建立運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)解釋一些現(xiàn)象,實(shí)現(xiàn)從靜到動(dòng)的轉(zhuǎn)變。授課時(shí)教師要按照學(xué)生的認(rèn)知規(guī)律有層次、有步驟地引導(dǎo)學(xué)生分析解決問題。學(xué)生可以在我設(shè)計(jì)的問題的提示下來進(jìn)行探究,學(xué)生若能發(fā)現(xiàn)其他的規(guī)律,教師應(yīng)表揚(yáng),并讓同學(xué)自己來講解。

四、教法特點(diǎn)以及預(yù)期效果分析

教法特點(diǎn):

1、在研究性學(xué)習(xí)中應(yīng)以問題情境和學(xué)習(xí)任務(wù)為驅(qū)動(dòng).教學(xué)過程中 ,教師不應(yīng)把現(xiàn)成的結(jié)論和方法直接告訴學(xué)生,應(yīng)以問題情境和學(xué)習(xí)任務(wù)為驅(qū)動(dòng),激發(fā)學(xué)生的探索精神和求知欲望.同時(shí),又要營造一種寬松、和諧、積極民主的學(xué)習(xí)氛圍,使每位學(xué)生都成為問題的探索者、研究中的發(fā)現(xiàn)者.2、注重觀察能力的培養(yǎng).教學(xué)過程中應(yīng)注重對(duì)學(xué)生觀察的目的性、敏銳性和思辨性結(jié)合的培養(yǎng) ,優(yōu)化觀察的對(duì)象,透過現(xiàn)象看本質(zhì),迅速從繁雜無序問題中捕捉最有價(jià)值的信息.此能力是發(fā)現(xiàn)問題和解決問題的關(guān)鍵.3、合作意識(shí)和合作能力的培養(yǎng).合作意識(shí)和合作能力是現(xiàn)代人才必備的基本素質(zhì)之一.現(xiàn)代社會(huì)中,幾乎任何一項(xiàng)工作都要許多人通力合作才能完成(如上述眾多結(jié)論的獲得),是否具有協(xié)作精神,能否與他人合作,已成為決定一個(gè)人能否成功的重要因素.教師要?jiǎng)?chuàng)設(shè)一切為學(xué)生合作的情境和機(jī)會(huì),使學(xué)生學(xué)會(huì)與他人合作.4、數(shù)學(xué)應(yīng)用意識(shí)的培養(yǎng).作為數(shù)學(xué)教師 ,我們的主要任務(wù)是,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光去觀察和分析實(shí)際問題,提高對(duì)數(shù)學(xué)的興趣,增強(qiáng)學(xué)好數(shù)學(xué)的信心,達(dá)到培養(yǎng)創(chuàng)新精神和能力的目的.以上問題的解決過程,實(shí)際上就是要求學(xué)生作為主體去面對(duì)解決的問題,主動(dòng)去探索、討論,尋找問題解決的途徑,用數(shù)學(xué)的方法和技術(shù)來處理實(shí)際模型,最終得出結(jié)論.5、數(shù)學(xué)審美能力的培養(yǎng).數(shù)學(xué)是真的典范 ,同時(shí)又是美的科學(xué).教師應(yīng)引導(dǎo)學(xué)生去發(fā)現(xiàn)美、體驗(yàn)美、感受美和創(chuàng)造美,這樣能夠使學(xué)生的思維得到鍛煉、智力得到開發(fā)、情操得到陶冶和創(chuàng)新能力得到提高.它是鼓舞學(xué)生奮發(fā)向上,引導(dǎo)學(xué)生積極創(chuàng)造的重要因素.預(yù)期效果分析:

(1)教學(xué)難點(diǎn)的突破

本節(jié)的難點(diǎn)在于把實(shí)際問題利用反比例函數(shù)轉(zhuǎn)化為數(shù)學(xué)問題加以解決,課前預(yù)設(shè)通過師生共分析分析錯(cuò)處再獨(dú)立解題的三個(gè)環(huán)節(jié),以達(dá)到學(xué)生逐步掌握轉(zhuǎn)化的方法。

(2)教學(xué)重點(diǎn)的落實(shí)

在探索實(shí)際問題與反比例函數(shù)時(shí),教學(xué)活動(dòng)設(shè)計(jì)了學(xué)生通過現(xiàn)觀察后歸納再比較后小結(jié)的循環(huán)上升的思維進(jìn)程進(jìn)行引導(dǎo),在實(shí)際教學(xué)活動(dòng)中學(xué)生通過自主探索能發(fā)現(xiàn)并歸納,使學(xué)生所學(xué)知識(shí)進(jìn)一步內(nèi)化和系統(tǒng)化。

總之 ,學(xué)生是具有學(xué)習(xí)的自主性、探索性、協(xié)作性和實(shí)踐性.本節(jié)課是學(xué)生對(duì)科學(xué)探索與研究的初步嘗試,但是它對(duì)學(xué)生今后的學(xué)習(xí)和15.1分式的意義說課稿

教材《上教版九年制義務(wù)教育課本數(shù)學(xué)七年級(jí)第二冊(cè)》P51-P53

一、教材分析

1.地位、作用和前后聯(lián)系。

本節(jié)課的主要內(nèi)容是分式的概念以及掌握分式有意義、無意義、分式值為0的條件.它是在學(xué)生掌握了整式的四則運(yùn)算、多項(xiàng)式的因式分解,并以六年級(jí)第一學(xué)期的分?jǐn)?shù)知識(shí)為基礎(chǔ),對(duì)比引出分式的概念,把學(xué)生對(duì)式的認(rèn)識(shí)由整式擴(kuò)充到有理式.學(xué)好本節(jié)知識(shí)是為進(jìn)一步學(xué)習(xí)分式知識(shí)打下扎實(shí)的基礎(chǔ),是以后學(xué)習(xí)函數(shù)、方程等問題的關(guān)鍵。

2.學(xué)情分析

我校初二年級(jí)學(xué)生基礎(chǔ)比較差,學(xué)習(xí)能力較弱.但通過預(yù)初年級(jí)分?jǐn)?shù)的學(xué)習(xí),頭腦中已形成了分?jǐn)?shù)的相關(guān)知識(shí),知道分?jǐn)?shù)的分子、分母都是具體的數(shù),因此學(xué)生可能會(huì)用學(xué)習(xí)分?jǐn)?shù)的思維定勢(shì)去認(rèn)知、理解分式.但是在分式中,它的分母不是具體的數(shù),而是抽象的含有字母的整式,會(huì)隨著字母取值的變化而變化.為了學(xué)生能切實(shí)掌握所學(xué)知識(shí),在教學(xué)中特別設(shè)計(jì)了幾組練習(xí);對(duì)于教材中的例題和練習(xí)題,將作適當(dāng)?shù)难由焱卣购妥兪教幚?二、目標(biāo)分析

教育目標(biāo)的確立應(yīng)該建立在學(xué)生的學(xué)習(xí)過程上,而學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)應(yīng)該包括三個(gè)層次:學(xué)習(xí)數(shù)學(xué)基礎(chǔ)知識(shí);形成一定的數(shù)學(xué)能力;完善自我的精神品格。結(jié)合我校學(xué)生的實(shí)際情況,我對(duì)本節(jié)課的教學(xué)目標(biāo)確定如下:

? 知識(shí)技能目標(biāo) ①理解分式的概念.②能求出分式有意義的條件.? 過程性目標(biāo)

①通過對(duì)分式與分?jǐn)?shù)的類比,學(xué)生親身經(jīng)歷探究整式擴(kuò)充到分式的過程,初步學(xué)會(huì)運(yùn)用類比轉(zhuǎn)化的思想方法研究數(shù)學(xué)問題.②學(xué)生通過類比方法的學(xué)習(xí),提高了對(duì)事物之間是普遍聯(lián)系又是變化發(fā)展的辯證觀點(diǎn)的再認(rèn)識(shí).? 情感與態(tài)度目標(biāo)

① 通過聯(lián)系實(shí)際探究分式的概念,能夠體會(huì)到數(shù)學(xué)的應(yīng)用價(jià)值.② 在合作學(xué)習(xí)過程中增強(qiáng)與他人的合作意識(shí).三、教學(xué)方法

1.師生互動(dòng)探究式教學(xué) 以教學(xué)大綱為依據(jù),滲透新的教育理念,遵循教師為主導(dǎo)、學(xué)生為主體的原則,結(jié)合初二學(xué)生的求知心理和已有的認(rèn)知水平開展教學(xué).學(xué)生通過熟悉的現(xiàn)實(shí)生活情景,發(fā)現(xiàn)有些數(shù)量關(guān)系僅用整式來表示是不夠的,引發(fā)認(rèn)知沖突,提出需要學(xué)習(xí)新的知識(shí).引導(dǎo)學(xué)生類比分?jǐn)?shù)探究分式的概念,形成師生互動(dòng),體現(xiàn)了數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上.2.自主探索、研討發(fā)現(xiàn).知識(shí)是通過學(xué)生自己動(dòng)口、動(dòng)腦,積極思考、主動(dòng)探索獲得.學(xué)生在討論、交流、合作、探究活動(dòng)中形成分式概念、掌握分式有意義、分式值為0的條件.在活動(dòng)中注重引導(dǎo)學(xué)生體會(huì)用類比的方法(如類比分?jǐn)?shù)的概念形成分式的概念)擴(kuò)展知識(shí)的過程,培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性.3.設(shè)計(jì)理念.根據(jù)《上海市中小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)(試行本)》中明確指出以學(xué)生發(fā)展為本,堅(jiān)持全體學(xué)生的全面發(fā)展,關(guān)注學(xué)生個(gè)性的健康發(fā)展和可持續(xù)發(fā)展。

本節(jié)課的教學(xué),是在學(xué)生已有的分?jǐn)?shù)知識(shí)基礎(chǔ)上,創(chuàng)設(shè)情景,產(chǎn)生認(rèn)知沖突,引導(dǎo)學(xué)生開展觀察特點(diǎn)、類比歸納、討論交流等探究活動(dòng),在活動(dòng)中向?qū)W生滲透類比思想、特殊與一般的辯證唯物主義觀點(diǎn).4.教學(xué)重點(diǎn)與難點(diǎn):重點(diǎn):分式的概念.難點(diǎn):理解和掌握分式有意義、值為0的條件.突破點(diǎn):由于部分學(xué)生容易忽略分式分母的值不能為0,所以在教學(xué)中,采取類比分?jǐn)?shù)的意義,加強(qiáng)對(duì)分式的分母不能為0的教學(xué).四、教學(xué)過程分析

1、教學(xué)流程圖

2、流程說明:根據(jù)教材的結(jié)構(gòu)特點(diǎn),緊緊抓住新舊知識(shí)的內(nèi)在聯(lián)系,運(yùn)用類比、聯(lián)想、轉(zhuǎn)化的思想,突破難點(diǎn).本節(jié)課的教學(xué)設(shè)計(jì)思路:

? 創(chuàng)設(shè)情景 從實(shí)際問題引入,提出表示數(shù)量關(guān)系僅用整式是不夠的,體現(xiàn)了數(shù)學(xué)源于生活.? 形成概念 類比分?jǐn)?shù)知識(shí),得到分式概念.由分式的概念,類比分?jǐn)?shù)得到分式有意義的條件.? 反饋訓(xùn)練 為了更好地理解、掌握分式的基本概念,根據(jù)不同學(xué)生的學(xué)習(xí)需要,按照分層遞進(jìn)的教學(xué)原則,設(shè)計(jì)安排了2個(gè)由淺入深的例題.例1是熟悉分式有意義的條件,其變式是訓(xùn)練學(xué)生掌握分式無意義的條件;例2是如何求分式的值為0.同時(shí)配有三個(gè)由低到高、層次不同的鞏固性練習(xí),體現(xiàn)漸進(jìn)性原則,希望學(xué)生能將知識(shí)轉(zhuǎn)化為技能.? 歸納小結(jié) 由學(xué)生總結(jié)、歸納、反思,加深對(duì)知識(shí)的理解,并且能熟練運(yùn)用所學(xué)知識(shí)解決問題.

第三篇:《實(shí)際問題與反比例函數(shù)》參考教案

26.2 實(shí)際問題與反比例函數(shù)(1)

教學(xué)目標(biāo)

一、知識(shí)與技能

1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.

2.能綜合利用幾何、方程、反比例函數(shù)的知識(shí)解決一些實(shí)際問題.

二、過程與方法

1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.

2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力.

三、情感態(tài)度與價(jià)值觀

1.積極參與交流,并積極發(fā)表意見.

2.體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.

教學(xué)重點(diǎn)

掌握從實(shí)際問題中建構(gòu)反比例函數(shù)模型. 教學(xué)難點(diǎn)

從實(shí)際問題中尋找變量之間的關(guān)系.關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析實(shí)際情況,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想.

教學(xué)過程

一、創(chuàng)設(shè)問題情境,引入新課 活動(dòng)1 問題:某校科技小組進(jìn)行野外考察,途中遇到一片十幾米寬的爛泥濕地,為了安全,迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù)的情境.

(1)請(qǐng)你解釋他們這樣做的道理.

(2)當(dāng)人和木板對(duì)濕地的壓力一定時(shí),隨著木板面積S(m2)的變化,人和木板對(duì)地面的壓強(qiáng)p(Pa)將如何變化?(3)如果人和木板對(duì)濕地的壓力合計(jì)600N,那么: ①用含S的代數(shù)式表示P,P是S的反比例函數(shù)嗎?為什么?

/ 6

②當(dāng)木板面積為0.2m2時(shí),壓強(qiáng)是多少? ③如果要求壓強(qiáng)不超過6000Pa,木板面積至少要多大? ④在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象.

⑤請(qǐng)利用圖象對(duì)(2)(3)作出直觀解釋,并與同伴交流. 設(shè)計(jì)意圖:

展示反比例函數(shù)在實(shí)際生活中的應(yīng)用情況,激發(fā)學(xué)生的求知欲和濃厚的學(xué)習(xí)興趣.

師生行為:

學(xué)生分四個(gè)小組進(jìn)行探討、交流.領(lǐng)會(huì)實(shí)際問題的數(shù)學(xué)煮義,體會(huì)數(shù)與形的統(tǒng)一.

教師可以引導(dǎo)、啟發(fā)學(xué)生解決實(shí)際問題. 在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:

①能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題; ②能積極地與小組成員合作交流; ③是否有強(qiáng)烈的求知欲.

生:在物理中,我們?cè)鴮W(xué)過,當(dāng)人和木板對(duì)濕地的壓力一定時(shí),隨著木板面積S的增大,人和木板對(duì)地面的壓強(qiáng)p將減小.

生:在(3)中,①p=

(S>0)p是S的反比例函數(shù);②當(dāng)S= 0.2m2時(shí).p=3000Pa;③如果要求壓強(qiáng)不超過6000Pa,根據(jù)反比例函數(shù)的性質(zhì),木板面積至少0.1m2;那么,為什么作圖象在第一象限作呢?因?yàn)樵谖锢韺W(xué)中,S>0,p>0.④圖象如下圖

/ 6

師:從此活動(dòng)中,我們可以發(fā)現(xiàn),生活中存在著大量的反比例函數(shù)的現(xiàn)實(shí).從這節(jié)課開始我們就來學(xué)習(xí)“17.2實(shí)際問題與反比例函數(shù)”,你會(huì)發(fā)現(xiàn)有了反比例函數(shù),很多實(shí)際問題解決起來會(huì)很方便.

二、講授新課 活動(dòng)2 [例1]市煤氣公司要在地下修建一個(gè)容積為104m3的圓柱形煤氣儲(chǔ)存室.(1)儲(chǔ)存室的底面積S(單位:m2)與其深度d(單位:m)有怎樣的函數(shù)關(guān)系?(2)公司決定把儲(chǔ)存室的底面積S定為500m2,施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)多深?(3)當(dāng)施工隊(duì)按(2)中的計(jì)劃挖進(jìn)到地下15m時(shí),碰上了堅(jiān)硬的巖石,為了節(jié)約建設(shè)資金,公司臨時(shí)改變計(jì)劃把儲(chǔ)存室的深改為15m,相應(yīng)的,儲(chǔ)存室的底面積應(yīng)改為多少才能滿足需要(保留兩位小數(shù)).

設(shè)計(jì)意圖:

讓學(xué)生體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,讓學(xué)生充分認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具,此活動(dòng)讓學(xué)生從實(shí)際問題中尋找變量之間的關(guān)系.而關(guān)鍵是充分運(yùn)用反比例函數(shù)分析實(shí)際情況,建立函數(shù)模型,并且利用函數(shù)的性質(zhì)解決實(shí)際問題.

師生行為:

先由學(xué)生獨(dú)立思考,然后小組內(nèi)合作交流,教師和學(xué)生最后合作完成此活動(dòng). 在此活動(dòng)中,教師有重點(diǎn)關(guān)注: ①能否從實(shí)際問題中抽象出函數(shù)模型; ②能否利用函數(shù)模型解釋實(shí)際問題中的現(xiàn)象; ③能否積極主動(dòng)的闡述自己的見解.

生:我們知道圓柱的容積是底面積×深度,而現(xiàn)在容積一定為104m3,所以S·d=104.

變形就可得到底面積S與其深度d的函數(shù)關(guān)系,即S=所以儲(chǔ)存室的底面積S是其深度d的反比例函數(shù).

/ 6

生:根據(jù)函數(shù)S=,我們知道給出一個(gè)d的值就有唯一的S的值和它相對(duì)應(yīng),反過來,知道S的一個(gè)值,也可求出d的值.

題中告訴我們“公司決定把儲(chǔ)存室的底面積5定為500m2,即S=500m2,”施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)多深,實(shí)際就是求當(dāng)S= 500m2時(shí),d=?m.根據(jù)S=,得500=,解得d=20.

即施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)20米.

生:當(dāng)施工隊(duì)按(2)中的計(jì)劃挖進(jìn)到地下15m時(shí),碰上了堅(jiān)硬的巖石.為了節(jié)約建設(shè)資金,公司臨時(shí)改變計(jì)劃,把儲(chǔ)存室的深度改為15m,即d=15m,相應(yīng)的儲(chǔ)存室的底面積應(yīng)改為多少才能滿足需要;即當(dāng)d=15m,S=?m2呢? 根據(jù)S=,把d=15代入此式子,得S=≈666.67.

當(dāng)儲(chǔ)存室的探為15m時(shí),儲(chǔ)存室的底面積應(yīng)改為666.67m2才能滿足需要. 師:大家完成的很好.當(dāng)我們把這個(gè)“煤氣公司修建地下煤氣儲(chǔ)存室”的問題轉(zhuǎn)化成反比例函數(shù)的數(shù)學(xué)模型時(shí),后面的問題就變成了已知函數(shù)值求相應(yīng)自變量的值或已知自變量的值求相應(yīng)的函數(shù)值,借助于方程,問題變得迎刃而解,三、鞏固提高 活動(dòng)3 練習(xí):如圖,某玻璃器皿制造公司要制造一種窖積為1升(1升=1立方分米)的圓錐形漏斗.

(1)漏斗口的面積S與漏斗的深d有怎樣的函數(shù)關(guān)系?(2)如果漏斗口的面積為100厘米2,則漏斗的深為多少? 設(shè)計(jì)意圖:

/ 6

讓學(xué)生進(jìn)一步體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,讓學(xué)生充分認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具,更進(jìn)一步激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的欲望.

師生行為:

由兩位學(xué)生板演,其余學(xué)生在練習(xí)本上完成,教師可巡視學(xué)生完成情況,對(duì)“學(xué)困生”要提供一定的幫助,此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:

①學(xué)生能否順利建立實(shí)際問題的數(shù)學(xué)模型;

②學(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),體驗(yàn)用數(shù)學(xué)模型解決實(shí)際問題的樂趣;

③學(xué)生能否注意到單位問題.

生:解:(1)根據(jù)圓錐體的體積公式,我們可以設(shè)漏斗口的面積為Scm,漏斗的深為dcm,則容積為1升=l立方分米=1000立方厘米.

所以,S·d=1000,S=

. ,中,得100=,d=30(cm).(2)根據(jù)題意把S=100cm2代入S=所以如果漏斗口的面積為100cm2,則漏斗的深為30cm. 活動(dòng)4 練習(xí):(1)已知某矩形的面積為20cm2,寫出其長y與寬x之間的函數(shù)表達(dá)式.(2)當(dāng)矩形的長為12cm時(shí),求寬為多少?當(dāng)矩形的寬為4cm,求其長為多少?(3)如果要求矩形的長不小于8cm,其寬至多要多少? 設(shè)計(jì)意圖:

進(jìn)一步讓學(xué)生體會(huì)從實(shí)際問題中建立函數(shù)模型的過程,即將實(shí)際問題置于已有的知識(shí)背景之中,然后用數(shù)學(xué)知識(shí)重新理解這是什么?可以看成什么? 師生行為

由學(xué)生獨(dú)立完成,教師根據(jù)學(xué)生完成情況及時(shí)給予評(píng)價(jià). 生:解:(1)根據(jù)矩形的面積公式,我們可以得到20=xy. 所以y=,即長y與寬x之間的函數(shù)表達(dá)式為y=

/ 6

(2)當(dāng)矩形的長為12cm時(shí)求寬為多少?即求當(dāng)y=12cm時(shí),x=?cm,則把y=12cm代入y=中得12=,解得x=(cm).

當(dāng)矩形的寬為4cm,求長為多少?即當(dāng)x=4cm時(shí),y=?cm,則 把x=4cm代入y=

中,有y=

=5(cm).

所以當(dāng)矩形的長為12cm時(shí),寬為cm;當(dāng)矩形的寬為4cm時(shí),其長為5cm.

(3)y=小于8cm,此反比例函數(shù)在第一象限y隨x的增大而減小,如果矩形的長不即y≥8cm,所以 即寬至多是m.

≥8cm,因?yàn)閤>0,所以20≥8x.x≤(cm).

四、課時(shí)小結(jié)

本節(jié)課是用函數(shù)的觀點(diǎn)處理實(shí)際問題,并且是蘊(yùn)含著體積、面積這樣的實(shí)際問題,而解決這些問題,關(guān)鍵在于分析實(shí)際情境,建立函數(shù)模型,并進(jìn)一步明確數(shù)學(xué)問題,將實(shí)際問題置于已有的知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新解釋這是什么?可以是什么?逐步形成考察實(shí)際問題的能力,在解決問題時(shí),應(yīng)充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想.

/ 6

第四篇:八年級(jí)數(shù)學(xué)下冊(cè) 17.2 實(shí)際問題與反比例函數(shù)教案 新人教版

17.2實(shí)際問題與反比例函數(shù)(1)

一、教學(xué)目標(biāo)

1.利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題

2.滲透數(shù)形結(jié)合思想,提高學(xué)生用函數(shù)觀點(diǎn)解決問題的能力

二、重點(diǎn)、難點(diǎn)

1.重點(diǎn):利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題

2.難點(diǎn):分析實(shí)際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式

三、例題的意圖分析

教材第57頁的例1,數(shù)量關(guān)系比較簡(jiǎn)單,學(xué)生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實(shí)際上是利用了反比例函數(shù)的定義,同時(shí)也是要讓學(xué)生學(xué)會(huì)分析問題的方法。

教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實(shí)際問題,此題的實(shí)際背景較例1稍復(fù)雜些,目的是為了提高學(xué)生將實(shí)際問題抽象成數(shù)學(xué)問題的能力,掌握用函數(shù)觀點(diǎn)去分析和解決問題的思路。

補(bǔ)充例題一是為了鞏固反比例函數(shù)的有關(guān)知識(shí),二是為了提高學(xué)生從圖象中讀取信息的能力,掌握數(shù)形結(jié)合的思想方法,以便更好地解決實(shí)際問題

四、課堂引入

寒假到了,小明正與幾個(gè)同伴在結(jié)冰的河面上溜冰,突然發(fā)現(xiàn)前面有一處冰出現(xiàn)了裂痕,小明立即告訴同伴分散趴在冰面上,匍匐離開了危險(xiǎn)區(qū)。你能解釋一下小明這樣做的道理嗎?

五、例習(xí)題分析

例1.見教材第57頁

4分析:(1)問首先要弄清此題中各數(shù)量間的關(guān)系,容積為10,底面積是S,深度為d,滿足基本公式:圓柱的體積 =底面積×高,由題意知S是函數(shù),d是自變量,改寫后所得的函數(shù)關(guān)系式是反比例函數(shù)的形式,(2)問實(shí)際上是已知函數(shù)S的值,求自變量d的取值,(3)問則是與(2)相反

例1.(補(bǔ)充)某氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓P(千帕)是氣體體積V(立方米)的反比例函數(shù),其圖像如圖所示(千帕是一種壓強(qiáng)單位)

(1)寫出這個(gè)函數(shù)的解析式;

(2)當(dāng)氣球的體積是0.8立方米時(shí),氣球內(nèi)的氣壓是多少千帕?

(3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈ǎ瑸榱税踩鹨姡瑲馇虻捏w積應(yīng)不小于多少立方米?

分析:題中已知變量P與V是反比例函數(shù)關(guān)系,并且圖象經(jīng)過點(diǎn)A,利用待定系數(shù)法可以求出P與V的解析式,得P?96,(3)問中當(dāng)P大于144千帕?xí)r,氣球會(huì)爆炸,即當(dāng)PV不超過144千帕?xí)r,是安全范圍。根據(jù)反比例函數(shù)的圖象和性質(zhì),P隨V的增大而減小,可先求出氣壓P=144千帕?xí)r所對(duì)應(yīng)的氣體體積,再分析出最后結(jié)果是不小于

2立方米 3

六、隨堂練習(xí)

1.京沈高速公路全長658km,汽車沿京沈高速公路從沈陽駛往北京,則汽車行完全程所需時(shí)間t(h)與行駛的平均速度v(km/h)之間的函數(shù)關(guān)系式為

2.完成某項(xiàng)任務(wù)可獲得500元報(bào)酬,考慮由x人完成這項(xiàng)任務(wù),試寫出人均報(bào)酬y(元)與人數(shù)x(人)之間的函數(shù)關(guān)系式

333.一定質(zhì)量的氧氣,它的密度?(kg/m)是它的體積V(m)的反比例函數(shù),當(dāng)V=10時(shí),?=1.43,(1)求?與V的函數(shù)關(guān)系式;(2)求當(dāng)V=2時(shí)氧氣的密度? 答案:?=14.3,當(dāng)V=2時(shí),?=7.15 V

七、課后練習(xí)

1.小林家離工作單位的距離為3600米,他每天騎自行車上班時(shí)的速度為v(米/分),所需時(shí)間為t(分)

(1)則速度v與時(shí)間t之間有怎樣的函數(shù)關(guān)系?

(2)若小林到單位用15分鐘,那么他騎車的平均速度是多少?

(2)如果小林騎車的速度最快為300米/分,那他至少需要幾分鐘到達(dá)單位?

答案:v?3600,v=240,t=12 t2.學(xué)校鍋爐旁建有一個(gè)儲(chǔ)煤庫,開學(xué)初購進(jìn)一批煤,現(xiàn)在知道:按每天用煤0.6噸計(jì)算,一學(xué)期(按150天計(jì)算)剛好用完.若每天的耗煤量為x噸,那么這批煤能維持y天(1)則y與x之間有怎樣的函數(shù)關(guān)系?(2)畫函數(shù)圖象

(3)若每天節(jié)約0.1噸,則這批煤能維持多少天?

課后反思:

第五篇:《實(shí)際問題與反比例函數(shù)》參考教案1

17.2實(shí)際問題與反比例函數(shù)(1)

一、教學(xué)目標(biāo)

1.利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題

2.滲透數(shù)形結(jié)合思想,提高學(xué)生用函數(shù)觀點(diǎn)解決問題的能力

二、重點(diǎn)、難點(diǎn)

1.重點(diǎn):利用反比例函數(shù)的知識(shí)分析、解決實(shí)際問題 2.難點(diǎn):分析實(shí)際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式 3.難點(diǎn)的突破方法:

用函數(shù)觀點(diǎn)解實(shí)際問題,一要搞清題目中的基本數(shù)量關(guān)系,將實(shí)際問題抽象成數(shù)學(xué)問題,看看各變量間應(yīng)滿足什么樣的關(guān)系式(包括已學(xué)過的基本公式),這一步很重要;二是要分清自變量和函數(shù),以便寫出正確的函數(shù)關(guān)系式,并注意自變量的取值范圍;三要熟練掌握反比例函數(shù)的意義、圖象和性質(zhì),特別是圖象,要做到數(shù)形結(jié)合,這樣有利于分析和解決問題。教學(xué)中要讓學(xué)生領(lǐng)會(huì)這一解決實(shí)際問題的基本思路。

三、例題的意圖分析

教材第57頁的例1,數(shù)量關(guān)系比較簡(jiǎn)單,學(xué)生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實(shí)際上是利用了反比例函數(shù)的定義,同時(shí)也是要讓學(xué)生學(xué)會(huì)分析問題的方法。

教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實(shí)際問題,此題的實(shí)際背景較例1稍復(fù)雜些,目的是為了提高學(xué)生將實(shí)際問題抽象成數(shù)學(xué)問題的能力,掌握用函數(shù)觀點(diǎn)去分析和解決問題的思路。

補(bǔ)充例題一是為了鞏固反比例函數(shù)的有關(guān)知識(shí),二是為了提高學(xué)生從圖象中讀取信息的能力,掌握數(shù)形結(jié)合的思想方法,以便更好地解決實(shí)際問題

四、課堂引入

寒假到了,小明正與幾個(gè)同伴在結(jié)冰的河面上溜冰,突然發(fā)現(xiàn)前面有一處冰出現(xiàn)了裂痕,小明立即告訴同伴分散趴在冰面上,匍匐離開了危險(xiǎn)區(qū)。你能解釋一下小明這樣做的道理嗎?

五、例習(xí)題分析

例1.見教材第57頁

/ 3

分析:(1)問首先要弄清此題中各數(shù)量間的關(guān)系,容積為104,底面積是S,深度為d,滿足基本公式:圓柱的體積 =底面積×高,由題意知S是函數(shù),d是自變量,改寫后所得的函數(shù)關(guān)系式是反比例函數(shù)的形式,(2)問實(shí)際上是已知函數(shù)S的值,求自變量d的取值,(3)問則是與(2)相反

例2.見教材第58頁

分析:此題類似應(yīng)用題中的“工程問題”,關(guān)系式為工作總量=工作速度×工作時(shí)間,由于題目中貨物總量是不變的,兩個(gè)變量分別是速度v和時(shí)間t,因此具有反比關(guān)系,(2)問涉及了反比例函數(shù)的增減性,即當(dāng)自變量t取最大值時(shí),函數(shù)值v取最小值是多少?

例1.(補(bǔ)充)某氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓P(千帕)是氣體體積V(立方米)的反比例函數(shù),其圖像如圖所示(千帕是一種壓強(qiáng)單位)(1)寫出這個(gè)函數(shù)的解析式;

(2)當(dāng)氣球的體積是0.8立方米時(shí),氣球內(nèi)的氣壓是多少千帕?

(3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈ǎ瑸榱税踩鹨姡瑲馇虻捏w積應(yīng)不小于多少立方米?

分析:題中已知變量P與V是反比例函數(shù)關(guān)系,并且圖象經(jīng)過點(diǎn)A,利用待定系數(shù)法可以求出P與V的解析式,得P?96,(3)問中當(dāng)P大于144千帕?xí)r,V氣球會(huì)爆炸,即當(dāng)P不超過144千帕?xí)r,是安全范圍。根據(jù)反比例函數(shù)的圖象和性質(zhì),P隨V的增大而減小,可先求出氣壓P=144千帕?xí)r所對(duì)應(yīng)的氣體體積,再分析出最后結(jié)果是不小于

六、隨堂練習(xí)

1.京沈高速公路全長658km,汽車沿京沈高速公路從沈陽駛往北京,則汽車行完全程所需時(shí)間t(h)與行駛的平均速度v(km/h)之間的函數(shù)關(guān)系式為

2.完成某項(xiàng)任務(wù)可獲得500元報(bào)酬,考慮由x人完成這項(xiàng)任務(wù),試寫出人均報(bào)酬y(元)與人數(shù)x(人)之間的函數(shù)關(guān)系式

3.一定質(zhì)量的氧氣,它的密度?(kg/m3)是它的體積V(m3)的反比例函

/ 3

2立方米 3數(shù),當(dāng)V=10時(shí),?=1.43,(1)求?與V的函數(shù)關(guān)系式;(2)求當(dāng)V=2時(shí)氧氣的密度? 答案:?=

七、課后練習(xí)

1.小林家離工作單位的距離為3600米,他每天騎自行車上班時(shí)的速度為v(米/分),所需時(shí)間為t(分)

(1)則速度v與時(shí)間t之間有怎樣的函數(shù)關(guān)系?

(2)若小林到單位用15分鐘,那么他騎車的平均速度是多少?

(2)如果小林騎車的速度最快為300米/分,那他至少需要幾分鐘到達(dá)單位?

答案:v?3600,v=240,t=12 t14.3,當(dāng)V=2時(shí),?=7.15 V2.學(xué)校鍋爐旁建有一個(gè)儲(chǔ)煤庫,開學(xué)初購進(jìn)一批煤,現(xiàn)在知道:按每天用煤0.6噸計(jì)算,一學(xué)期(按150天計(jì)算)剛好用完.若每天的耗煤量為x噸,那么這批煤能維持y天

(1)則y與x之間有怎樣的函數(shù)關(guān)系?(2)畫函數(shù)圖象

(3)若每天節(jié)約0.1噸,則這批煤能維持多少天?

/ 3

下載八年級(jí)數(shù)學(xué)下冊(cè)《17.2 實(shí)際問題與反比例函數(shù)》教案 新人教版(合集5篇)word格式文檔
下載八年級(jí)數(shù)學(xué)下冊(cè)《17.2 實(shí)際問題與反比例函數(shù)》教案 新人教版(合集5篇).doc
將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    八年級(jí)數(shù)學(xué)上冊(cè)《實(shí)際問題與反比例函數(shù)》教學(xué)反思

    一、本節(jié)課的教學(xué)內(nèi)容為反比例函數(shù)的圖像與性質(zhì)的新授課第三節(jié)課,在“數(shù)形結(jié)合”的主線下,使學(xué)生具有了自我更新知識(shí)的能力,具有了可持續(xù)發(fā)展的能力。二、首先簡(jiǎn)單復(fù)習(xí)了反比例......

    《實(shí)際問題與反比例函數(shù)》說課稿

    一、數(shù)學(xué)本質(zhì)與教學(xué)目標(biāo)定位《實(shí)際問題與反比例函數(shù)(第三課時(shí))》是新人教版八年級(jí)下冊(cè)第十七章第二節(jié)的課題,是在前面學(xué)習(xí)了反比例函數(shù)、反比例函數(shù)的圖象和性質(zhì)的基礎(chǔ)上的一節(jié)......

    1 7.2實(shí)際問題與反比例函數(shù)教案

    1 7.2實(shí)際問題與反比例函數(shù)教學(xué)目標(biāo) 進(jìn)一步體驗(yàn)現(xiàn)實(shí)生活與反比例函數(shù)的關(guān)系.能解決確定反比例函數(shù)中常數(shù)志值的實(shí)際問題.會(huì)處理涉及不等關(guān)系的實(shí)際問題. 繼續(xù)培......

    實(shí)際問題與反比例函數(shù)教學(xué)設(shè)計(jì)(模版)

    實(shí)際問題與反比例函數(shù) 目標(biāo)認(rèn)知 學(xué)習(xí)目標(biāo) 1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程. 2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用......

    實(shí)際問題與反比例函數(shù)鞏固練習(xí)

    【鞏固練習(xí)】 一.選擇題 1. (2015?河北)一臺(tái)印刷機(jī)每年可印刷的書本數(shù)量y(萬冊(cè))與它的使用時(shí)間x(年)成反比例關(guān)系,當(dāng)x=2時(shí),y=20.則y與x的函數(shù)圖象大致是 A. B.CD. 2. 日常生活中有許......

    實(shí)際問題與反比例函數(shù)(教學(xué)設(shè)計(jì))

    26.2 實(shí)際問題與反比例函數(shù) 第1課時(shí) 實(shí)際問題與反比例函數(shù)(1) ——面積問題與裝卸貨物問題 一、新課導(dǎo)入 1.課題導(dǎo)入 前面我們結(jié)合實(shí)際問題討論了反比例函數(shù),看到了反比例函數(shù)......

    8下17.5《實(shí)際問題與反比例函數(shù)2》教學(xué)反思

    教學(xué)反思 《實(shí)際問題與反比例函數(shù)》(第二課時(shí)) 《實(shí)際問題與反比例函數(shù)(第二課時(shí))》是新人教版八年級(jí)下冊(cè)第十七章第二節(jié)的課題,是在前面學(xué)習(xí)了反比例函數(shù)、反比例函數(shù)的圖象和性......

    17.2.實(shí)際問題與反比例函數(shù)王波

    崇文實(shí)驗(yàn)學(xué)校八年級(jí)下數(shù)學(xué)教案主備人:王波時(shí)間:2012.1.18. 17.2實(shí)際問題與反比例函數(shù)(四) 一、學(xué)習(xí)目標(biāo):進(jìn)一步提高學(xué)生用反比例函數(shù)解決實(shí)際問題的能力。 二、學(xué)習(xí)重點(diǎn):利用反比......

主站蜘蛛池模板: 无码av无码免费一区二区| 少妇久久久久久久久久| 国产精品久久久亚洲| 亚洲精品嫩草研究院久久| 99视频精品国产免费观看| 国产精品嫩草影院一二三区入口| 夜夜躁日日躁狠狠久久av| 成人无码精品免费视频在线观看| 国产 精品 自在 线免费| 婷婷五月开心亚洲综合在线| 国产精品美女www爽爽爽视频| 大陆极品少妇内射aaaaa| 丰满的少妇愉情hd高清果冻传媒| 无码人妻精品一区二区三区66| 亚洲成a人片在线观看高清| 国产女人高潮抽搐叫床视频| 日韩一区国产二区欧美三区| 国产无套精品一区二区三区| 日韩人妻无码中文字幕一区| 18禁无遮挡羞羞污污污污网站| 亚洲欧美激情精品一区二区| 欧美毛多水多黑寡妇| 无套内内射视频网站| 国产农村一国产农村无码毛片| 精品国产久九九| 热99re久久免费视精品频| 国内精品自线在拍2020不卡| 精品久久久中文字幕人妻| 久久精品夜色国产亚洲av| 亚洲国产熟妇在线视频| 欧美极品少妇×xxxbbb| 国产偷人妻精品一区二区在线| 亚洲欧洲专线一区| 亚洲国产成人无码专区| 人人插人人插人人爽| 99e久热只有精品8在线直播| 久久久久99精品成人片三人毛片| 999久久久免费精品国产| 久久久久 亚洲 无码 av 专区| 18禁无遮挡羞羞污污污污网站| 色吊丝永久性观看网站|