久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

三角形的內角和教學設計一等獎(實用12篇)

2023-07-07 09:09:39下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了這篇《三角形的內角和教學設計一等獎(實用12篇)》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《三角形的內角和教學設計一等獎(實用12篇)》。

篇1:《三角形內角和》教學設計

教學目標:

1、教會學生主動探究新識的方法,學會運用轉化遷移數學思想。

2、學生通過量、剪、拼、擺、分割等驗證三角形內角和方法的比較,主動掌握三角形內角和是1800,并運用所學知識解決簡單的實際問題,發展學生的觀察、歸納、概括能力和初步的空間想象力。

教學重點:理解并掌握三角形的內角和是180°。

教學難點:驗證所有三角形的內角之和都是180°。

教具準備:多媒體課件。

學具準備:量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

教學過程:

一、導入

師:知道今天我們學習什么內容嗎?我們先來解讀一下課題,三角形,你手中有么?舉起來我看看,你拿的什么三角形?你呢?師:三角形按角分類,可分為直角三角形、鈍角三角形和銳角三角形。

師:什么是內角?你能把你手中三角形的三個內角用角1、角2、角3標出來嗎?

師:還有一個關鍵字“和”,什么是三角形的內角和?

師:你認為三角形的內角和是多少度?你呢?都知道啊?是多少度啊?看來都知道了,就不用再學了吧?你還想學什么?

師:看來我們不僅要知道三角形的內角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

生:量一量的方法。

師:光量就知道了?還要算一算。

師:這種方法可行嗎?下面咱就來試試,請同學們4人一組,分工合作,先測量內角,再計算求和。小組長把計算的過程記錄下來。開始吧。

驗證:量角、求和

小組匯報

生一:我們組量的是銳角三角形,三個角分別是50度、60度、70度,銳角三角形的內角和是180度。

生二:我們組量的是直角三角形,三個角分別是90度、35度、55度,直角三角形的內角和是180度。

生三:我們組量的是鈍角三角形,三個角分別是120度、40度、20度,鈍角三角形的內角和是180度。

師:從剛才的交流中,你發現了什么?

生:不管是銳角三角形、直角三角形,還是鈍角三角形,內角和都是180度。

師:下面同學測量得出180度的請你舉手,有沒有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時候容易出現誤差,得出的結論就難以讓人信服。看來似乎用量的方法還不能充分證明。(劃問號)

師:還敢接受更大挑戰嗎?把量角器和你的工具都收起來,只借助這張三角形紙片證明出三角形的內角和是180度,你有辦法嗎?或許下面的同學還有別的方法,下面就請同學們互相交流交流,動手試一試吧!

師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒有破壞三角形,就這樣輕輕的一折,就解決了問題,真是很巧妙。

師:你們小組每個同學都動腦筋了,謝謝你們。

師:還有那個小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

師:其實大家能用3種方法證明已經很不簡單了,現在我們就能很自信的說三角形的內角和是180度。(擦別的)

師:其實對我來說重要的不是知識的結論,讓老師感動的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創造性的方法。現在我們再來一塊回顧一下。

師:這幾種方法都足以說明三角形的內角和是180度。(結論)

師:剛才同學們發揮自己的聰明才智,想了很多方法來證明。王老師也有一種方法能證明。老師這里有一個活動角,借助課本的一邊就構成了一個三角形,請你睜大眼睛仔細觀察,你發現了什么?

請你再仔細觀察,你發現了什么?其實兩個底角減少的度數,正是頂角增大的度數。如果我繼續按下去你覺得會怎樣?我們來看看是不是這樣,三角形呢?兩個底角呢?剛才三角形的動態過程是不是也能證明三角形的內角和是180度?

師:看來只要大家肯動腦筋,面對同一問題就會有不同的解決方法。

師:現在我們知道了“三角形的內角和是180度”,能不能用這個知識來解決一些問題啊?

生:能。

二、遷移和應用

(一)點將臺:

下面哪三個角是同一個三角形的內角?

(1)30 °、60 °、45 °、90 °

(2)52 °、46 °、54 °、80 °

(3)45 °、46 °、90 °、45 °

(二)我會算

1、已知∠1,∠2,∠3是三角形的三個內角。

(1)∠1=38° ∠2=49°求∠3

(2)∠2=65° ∠3=73° 求∠1

2、已知∠1和∠2是直角三角形中的兩個銳角

(1)∠1=50°求∠2

(2)∠2=48°求∠1

3、已知等腰三角形的一個底角是70°,它的頂角是多少度?

(三)。變變變!

(1)一個三角形中, ∠1 、∠2、∠3。

(2)如果把∠3剪掉,變成了幾邊形?它的內角和變成多少度呢?

(3)如果再把∠2剪掉,剩下圖形的內角和是多少度呢?

三、全課小結

師:通過一節課的探索,你有什么收獲?

生答(略)

我的幾點認識:

結合《三角形的內角和》這節課,我對空間與圖形這一部分內容,簡單的談一下自己的認識。

空間與圖形這一部分內容,可以用這幾個字來概括:難理解,難受,難掌握。在本節課的教學中,三角形的內角和概念比較抽象,學生比較難理解。尤其是讓學生探究三角形的內角和是180度,對學生來說更是難上加難。如果光憑在頭腦中想,不動手實踐,對于三角形的內角和,學生也只能機械記憶是180度。那如何更好的讓學生掌握和接受呢?針對這些特點我采用了一下幾點做法:

1、根據學生的知識特點和生活經驗,在原有基礎上創造性的使用教材。

在教學本節課的內容時,學生在自己的日常生活或大部分都已經知道三角形的內角和是180。因材在這樣的情況下,我創造性的使用教材。不是讓學生通過自己動手操作之后才發現三角形的內角和是180,而是直接把問題拋給學生,你們知道三角形的內角和是多少度嗎?

你們怎么知道的?能自己證明么?這樣學生從被動學習者的角色,

立刻轉入主動學習者的角色之中。這樣既能使學生很好的掌握知識,又能使學生激發興趣,提高積極性。

2、讓學生在小組交流中進行思維的碰撞,在動手操作的實踐過程中得到知識情感價值的升華。

在探究的過程中,我們采用了小組合作學習方式,這樣既能給學生提供交流的空間,又能在短時間內有效學習。學生先交流方法,商定出可行的辦法和方略,然后合作進行實踐。學生會為了一個問題爭的面紅耳赤,在這個過程中我們驚喜的看到生在交流和動手操作過程中得到了提高。通過自己的實踐證明,學生發現三角形的內角和的確是180度。

總之,在教學空間與圖形的內容時,一定要讓學生看到“圖形“,讓學生想象”空間”。

篇2:《三角形內角和》教學設計

教學內容

人教版小學數學第八冊第五單元第85頁例5

任務分析

教材分析: 《三角形的內角和》是義務教育課程標準實驗教科書(數學)四年級下冊第五單元《三角形》中的一個教學內容。這部分內容是在學生學習了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學的。它是三角形的一個重要性質,有助于學生理解三角形的三個內角之間的關系,也是進一步學習的基礎。教材通過實際操作,引導學生用實驗的方法探索并歸納出這一規律,即任意一個三角形,它的內角和都是180度。教材在編寫上也深刻的體現出了讓學生探究的特點,通過動手操作探究發現三角形內角和為180度。教學內容的核心思想體現在讓學生經歷猜想―驗證―結論的過程,來認識和體驗三角形內角和的特點。

學情分析:通過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與基礎技能。在四年級上冊《角的度量》的學習中,學生有接觸到兩把三角尺的內角和是180°;并在相關的補充習題和數學練習冊的練習中,也有要求測量任意三角形的三個內角的度數并求出它們的和的練習,很多學生已經知道了三角形的內角和是180°。但是要真正理解和掌握需要進行驗證,因此,學生在這節課上的主要任務是通過實驗操作驗證三角形的內角和是180°。

教學目標

1、通過實驗、操作、推理歸納出三角形內角和是180°。

2、能運用三角形的內角和是180°這一規律,求三角形未知角的度數并運用解決實際生活問題。

3、通過拼擺,感受數學的轉化思想。

教學重點

探究發現和驗證“三角形的內角和180度”。

教學難點

驗證三角形的內角和是180度。

教學準備

多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

教學過程

一、復習舊知,學習鋪墊

1、一個平角是多少度?等于幾個直角?

2、如下圖,已經∠ 1=35°,∠2=78°,求∠3是多少度?

二、探究新知,理解規律

1、說明三角形的三個內角和

說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?

師(指出):三角形的這三個角叫做三角形的三個內角,這三個內角的度數和叫做三角形的內角和。

板書課題:“三角形的內角和”。

揭示課題:今天我們一起來探究三角形的內角和有什么規律。

2、探究三角形的內角和規律

探究1:量一量,算一算

以小組為單位,用量角器計算出三種三角形的內角和各是多少度?

生討論匯報,并引導學生發現:三角形的內角和接近180°。

師:三角形的內角和接近180°,那它到底與180° 有怎樣的關系呢?

學生預設:有學生可能會說出三角形的內角和就是180°,這時老師可以提問,為什么就是180°?我們要進行驗證,你有什么辦法呢?

探究2:擺一擺,拼一拼

引導:我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內角和有誤差。能不能換一種方法減少度量的次數,減少誤差呢?

生可能很難想到,可以提示學生:把三個內角拼成一個角就只要量一次角。讓我們一起動手做一做

如圖:

(1)

銳角的三個內角拼成了一個平角,引導學生說出:銳角三角形的內角和是180°.

(2)

讓學生小組合作用同樣的方法,發現:直角三角形的內角和也是180°.

(3)

讓學生獨立用同樣的方法,發現:鈍角三角形的內角和也是180°.

引導學生歸納:三角形的內角和是180°。

是不是所有的三角形的內角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

板書:三角形的內角和是180°

三、鞏固練習,應用規律

1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數嗎?

學生獨立完成,并說出原因:因為三角形的內角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

= 180°-140°-25° =180°-(140°+25°)

=40°-25° =180°-165°

=15° =15°

2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

學生分析:因為等腰三角形的兩個底角相等,又因為三角形的內角和是180°,所以

(180°-80°)÷2

=100°÷2

=50°

四、拓展練習,深化規律

1、求出下面各角的度數。

(1) (2)

2、判斷

(1)三角形任意兩個內角的和大于第三個角。( )

(2)銳角三角形任意兩個內角的和大于直角。( )

(3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?

( ) ( )

五、課堂小結,分享提升

1、談談這節課你有什么收獲?

2、課后思考題

三角形的內角和是180°,那長方形、正方形的內角和呢?(根據三角形的內角和是180°求,參考課本88頁第12題,完成89頁16題)

板書設計

篇3:《三角形內角和》教學設計

探索三角形內角和的度數以及已知兩個角度數求第三個角度數。

教學目標:

1、通過測量、撕拼、折疊等探索活動,使學生發現三角形內角和的度數是180?

2、已知三角形兩個角的度數,會求第三個角的度數。

3、培養學生動手實踐,動腦思考的習慣。

教學重點:

了解三角形三個內角的度數。

教學難點:

理解三角形三個內角大小的關系。

教具學具準備:

課件三角形若干量角器剪刀。

教材與學生

教材創設了一個有趣的問題情境,通過對大小兩個三角形內角和的大小比較來激發學生探索的興趣。教材為了得到三角形內角和是180的結論安排了兩個活動,通過學生測量,折疊,撕拼來找到答案。

學生在已有的會用量角器來度量一個角的度數的基礎上,會首先想到這種方法。但測量的誤差會導致測量不同,因此,學生會想到采取其他更好的辦法,通過親手實踐,得出結論。

教學過程:

一、呈現真實狀態。

師:今天我們來研究三角形內角和度數。這里有兩個三角形,一個是大三角形,一個是小三角形(圖略),到底哪一個三角形的內角和比較大呢?

學生各抒己見。

二、提出問題:

師;剛才我們觀察三角形哪個內角和大,同學們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。

(1)以小組為單位請同學們拿出量角器,量一量,算一算圖中大小兩個三角形內角和度數,并做好記錄,記錄每個內角的度數。

(2)組內交流。

(3)全班交流。由小組匯報測出結果(三角形內角和)

(4)師小結:我們通過測量發現,每個三角形的內角和測出結果接近180。

三。自主探索、研究問題、歸納總結:

師引導提問:三角形的內角和會不會就是180呢?

(一)組內探索:

(1)以小組為單位探索更好的辦法。

(2)以小組為單位邊展示邊匯報探索的過程與發現的結果。

(有的小組想不出來,可以安排小組和小組之間進行交流,目的是讓學生通過實踐發現結果,在探索中發現問題,在討論中解決問題,是學生學習到良好的學習方法)

(3)把你沒有想到的方法動手做一次

(使學生更直觀地理解三角形的內角和是180的證明過程)

(4)根據學生的反饋情況教師進行操作演示。

(二)教師演示

撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示

2.師:這三個內角放在一起你有什么發現?

生:發現三個內角拼成一個平角。

師:平角是多少度呢?說明什么?

生:180?說明三個內角和剛好等于180。

師:這種方法是不是適用各種三角形呢?

3。學生每人動手實踐,看看是不是不同的三角形是否都有這個特點,也能拼出一個平角呢?

進行實驗后,結果發現同樣存在這一規律,三角形三個內角和是180。

折疊法:師:剛才我們通過測量發現三角形內角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發現三角形的三個內角剛好拼成一個平角,進一步說明三個內角和是180,現在再來演示另一種實驗,再次證明我們的發現。

你們也來試一試好嗎?

在學生完成這一實踐后肯定這一發現

三角形三個內角和等于180?

:充分發揮了學生的主觀能動性,讓學生大膽去思考發言,把課堂交給學生,最后老師在演示達成共識,這樣學生學到知識印象頗深,也理解最為透徹,提高課堂教學的效率

四。鞏固練習,知識升華。

1.完成課本第28頁的“試一試”第三題。

2.想一想:鈍角三角形最多有幾個鈍角?為什么?

銳角三角形中的兩個內角和能小于90嗎?

3.有一個四邊形,你能不用量角器而算出它的四個內角和嗎?

試一試,看誰算得快。

師:誰來說說自己的計算過程?

角的和叫做三角形的內角和。(板書課題)下面請大家認真觀察這兩個算式,從結果上看,你發現了什么?

生:它們的內角和都是 180 度。

師:觀察的真仔細!(點擊課件,出示多種多樣的三角形后提問)同學們,咱們都知道,這兩個三角形是特殊三角形,在我們的生活中還有許許多多不是這個樣子的三角形,請看大屏幕,這些任意三角形,它們的內角和是不是都是 180 度呢?

[回答可能有二]:

(一種全部說是:)

師:請問,你們是怎么想的,為什么這么認為?

生: ……

師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧!(師在課題“內角和”下面劃上橫線,打上問號)

(一種有一部分同學說是,有一部分同學說不是:)

師:看來,大家的意見不一致, 想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧!(師在課題“內角和”下面劃上橫線,打上問號)

(二)動手操作,探究新知

師:老師看你們有答案了,哪位同學愿意說一說你的奇思妙想?

生:我準備用量的方法。

師:然后呢?

生:然后把它們三個內角的度數相加起來,就知道了三角形的內角和是多少?

師:說的真不錯,還有沒有其它的方法?

生:我是把三角形的三個角剪下來,拼在一起( 師鼓勵: 你的想法很有創意, 等一會兒用你的行動來驗證你的猜想吧!)

生:……

(如生一時想不到,師可引導:他是把三個內角的度數相加在一起,我們能不能想辦法把三個內角放在一起進行觀察,看看能不能發現些什么呢?)

師: 好啦, 老師相信咱們班的同學個個都是小數學家, 一定能找出更多的方法的, 請你們在研究之前,也像老師一樣,在三個內角上編上序號,角一、角二、角三,現在就請同學們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!

開始吧!(學生研究,師巡回指導)預設時間:5 分鐘

師:老師看各小組已經研究好了,哪位同學愿意上來交流一下?

師:請你告訴大家,你是怎么研究的,最后發現了什么結果?

( 預設: 如果第一類同學說的是量的方法)

師:你是用什么來研究的?

生:量角器。

師: 那請你說一下你度量的結果好嗎?

( 生匯報度量結果)

師: 剛才有的同學測量的結果是180 度,有的同學測量的結果是179 度,有的同學測量的結果是182 度,各不相同,但是這些結果都比較接近于多少?

生:180 度。

師:那到底三角形的內角和是不是180 度呢?還有哪位同學有其它的方法進行驗證嗎?

生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們三個角組成的度數。

師:他演示的真好,你們聽明白了嗎? 李 老師把他的過程給大家在大屏幕上演示一下。

(師邊講解邊點擊 FLASH :把三角形按照三個內角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調個頭,插在角一角二的中間,這樣它們三個內角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發現?)

師:好極了,剛才這個小組的同學用拼的方法得到XX 三角形的內角和是180 度,你們還有別的方法嗎?

生:我們還用了折的方法(生介紹方法)

師: 你們聽明白了嗎? 李老師把他的過程給大家在大屏幕上演示一下。

(師邊講解邊點擊 FLASH :先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向對邊對折,再把角二向里對折,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們三個內角就形成了一個大角,這個大角是個什么角呢?)

生:是個平角。180 度。

師:除了用了量、拼、折的方法來研究以外,剛才在操作的過程中老師還發現了一個同學用了一種方法來進行研究,大家想知道嗎?

師:請這位同學來說給大家聽聽吧!

生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內角和是360 度,那么一個三角形的內角和就是180 度。

師:剛才我們用量、拼、折、推理的方法都得到了三角形的內角和是 180 度,同學們,現在我們回想一下,剛才測量的不同結果是一個準確數還是一個近似數?為什么會出現這種情況呢?

生 1 :量的不準。

生 2 :有的量角器有誤差。

師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準確一些,那么任意一個三角形的內角和也將是 180 度。

師:同學們,我們剛才用不同的方法,不同的三角形研究了三角形的內角和,得到了一個相同的發現,這個發現就是?

生:三角形的內角和是180 度。(師板書)

師:把你們偉大的發現讀一讀吧!

(三)拓展應用,深化認識

師:請看老師手上的這兩個三角形,左邊這個內角和是多少度?(生: 180 度)右邊呢(生:也是 180 度)

師:現在老師把它們拼在一起,這個大三角形的內角和又是多少度呢?

(生答后師引導歸納得出:三角形的內角和與形狀大小無關,組成的大三角形的內角和依然是 180 度。)

師:剛才我們在討論學習三角形知識的時候,三角形中的兩個好朋友卻爭執了起來,想知道怎么回事嗎?讓我們一起去看看吧!(出示課件,課件內容:一個大一些的直角三角形說:“我的個頭比你大,我的內角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)

師:到底誰說的對呢?今天我們就用我們今天學到的知識來為它們解決解決吧!

師:真不錯,你們當了一回小法官,幫助三角形兄弟解決了問題,它倆很感謝你們,三角形王國中還有很多生活中的問題,小博士們,你們愿意解答嗎?

師:好,請看大屏幕!

(出示基礎練習)在一個三角形中角一是 140 度,角三是 25 度,求角二的度數。

生答后,師提問:你是怎樣想的?

生陳述后,師鼓勵:說的真好!

出示自行車、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習。

(出示)小紅的爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是 70 度,它的頂角是多少度?

師:看來啊,三角形的知識在咱們生活中還有著這么廣泛的運用呢!昨天,我們班發生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現情境)他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?

(預設:師:根據三角形的內角和是180 度,你能求出下面四邊形、五邊形、六邊形的內角和嗎?

師:太棒了,這位同學把這個四邊形分割成了二個三角形求出了它的內角和,你能像他一樣棒求出五邊形和六邊形的內角和嗎?

師: 同學們,今天我們一起學習了三角形的內角和,你有哪些收獲呢?

師:嗯,真不錯, 你們知道嗎? 三角形的內角和等于 180 度是 法國著名的數學家帕斯卡 在 1635 年他 12 歲時獨自發現的, 今天憑著同學們的聰明智慧也研究出了三角形的內角和是180 度,老師為你們感到驕傲,老師相信在你們的勤奮學習和刻苦鉆研下,你們就是下一個“帕斯卡”!

師:好,下課!同學們再見!

篇4:《三角形內角和》教學設計

教學內容:

教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。

教學目標:

1.通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。

2.能運用三角形的內角和是180°這一結論,求三角形中未知角的度數。

3.培養學生動手動腦及分析推理能力。

重點難點:

掌握三角形的內角和是180°。

教學準備:

三角形卡片、量角器、直尺。

導學過程

一、復習

1、什么是平角?平角是多少度?

2、計算角的度數。

3、回憶三角形的相關知識。(出示直角三角形、銳角三角形、鈍角三角形)

二、新知

(設計意圖:讓學生經歷質疑驗證結論這樣的思維過程,真正整體感知三角形內角和的知識,真正驗證了“實踐出真知” 的道理,這樣的教學,將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數學知識背景,滲透數學知識之間的聯系,有效地避免了新知識的“橫空出現”。同時,培養學生的綜合素養)

1、讀學卡的學習目標、任務目標,做到心里有數。

2、揭題:課件演示什么是三角形的內角和。

3、猜想:三角形的內角和是多少度。

4、驗證:

(1)初證:用一副三角板說明直角三角形的內角和是180°。

(2)質疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再證:請按學卡提示,拿出學具,選擇自己喜歡的方式驗證三角形的內角和 是180°(師巡視)

(4)匯報結論(清楚明白的給小組加優秀10分)

5、結論:修改板書,把“?”去掉,寫“是”。

6、追問:把兩塊三角板拼在一起,拼成的大三角形的內角和是多少?說明三角形無論大小它的內角和都是180°(課件演示)

7、看微課感知“偉大的發現”(設計意圖:讓學生感受自己所做的和帕斯卡發現三角形內角和是180°的過程是一樣的,從而培養孩子的自信心和創造力。)

三、知識運用(課件出示練習題,生解答)

1、填空

(1)一個三角形,它的兩個內角度數之和是110 ,第三個內角是( ).

(2)一個直角三角形的一個銳角是50,則另一個銳角是( )。

(3)等邊三角形的3個內角都是( )。

(4)一個等腰三角形,它的一個底角是50,那么它的頂角是( )。

(5)一個等腰三角形的頂角是60,這個三角形也是( )三角形。

2、判斷

(1)一個三角形中最多有兩個直角。 ( )

(2)銳角三角形任意兩個內角的和大于90。 ( )

(3)有一個角是60的等腰三角形不一定是等邊三角形。 ( )

(4)三角形任意兩個內角的和都大于第三個內角。 ( )

(5)直角三角形中的兩個銳角的和等于90。 ( )

四、拓展探究

根據所學的知識,你能想辦法求出四邊形、五邊形的內角和嗎?

1、小組討論。2、匯報結果。3、課件提示幫助理解。

五、自我評價根據學卡要求給自己評出“優”“良好”“合格”。

六、談談自己本節課的收獲。

教學反思

今天我講了《三角形內角和》這部分內容,學生其實通過不同途徑已經知道三角形內角和是180°,是不是說這節課的重難點就已經突破了,只要學生能應用知識解決問題就算是達到這節課的教學目標了呢?我想研究的過程,學生對于這一內容的認識就不深刻,聰明的孩子還會懷疑三角形內角和是180°嗎?。因此這個結論必須由實踐操作得出結論。所以最終我把本課定為一個實踐探究課。

如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學生由已知順利轉向對未知的探求,怎樣直接轉向研究三個角的“和”的問題呢?因此我只設計了三個簡單的問題然學生快速進入主題。

如何驗證內角和是180°,是我一直比較糾結的環節。由于小學生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節課我們除了要尊重知識的嚴謹還應該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結果充滿自信,否則拼個差不多也可以簡單的認同了內角和是180°。

本節課的練習的設置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內角和體會三角形內角和跟大小無關、跟形狀無關,到已知兩個角的度數求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內角和是多少度,求被剪開的三角形,形成的新圖形的內角和是多少度,這些都是對三角形內角和的一次拓展。讓學生的認知發生沖突,提出挑戰。

給學生一個平臺,她會給你一片精彩。通過動手操作來驗證內角和是否是180°,學生最容易出現的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現,我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。

前邊驗證時間過多,到練習時間就有些少,特別是求四邊形和六邊形內角和時,給的時間過短,學生沒有充分思維。

總而言之,這次的公開課,給了我一次學習和鍛煉的機會。在教案設計時,該怎么樣把每一個環節落實到位,怎么樣說好每一句話,預設好每一個環節,在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數學團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學中,能夠在一個輕松和諧的教學氛圍中與學生共同去探討,去發現,去學習。

篇5:《三角形內角和》教學設計

【教材內容】:

北師大版四年級數學下冊。

【教學目標】:

1、探索與發現三角形的內角和是180°,已知三角形的兩個角度,會求出第三個角度。

2、培養學生動手操作和合作交流的能力,促進掌握學習數學的方法。

3、培養學生自主學習、積極探索的好習慣,激發學生學習數學應用數學的興趣。

【教學重點和難點】:

重點掌握三角形的內角和是180°,會應用三角形的內角和解決實際問題;難點是探索性質的過程。

【教材分析】

《三角形內角和》屬于空間與圖形的范疇,是在學生已經接觸了三角形的穩定性和三角形的分類相關知識后對三角形的進一步研究,探索三個內角的和。教材中安排了學生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發現三角形的內角和是180°。擴充了學生認識圖形的一般規律從直觀感性的認識到具體的性質探索,更加深入的培養了學生的空間觀念。

【教學過程】

一、創設情境,激發興趣。

出示課件,提出兩個兩個疑問:

1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內角和比你大,是這樣的嗎?

2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內角和各不相同,是這樣的嗎?老師發現它們爭論的焦點是三角形的內角和的問題,那什么是三角形的內角?什么又是三角形的內角和呢?

二、初建模型,實際驗證自己的猜想

在第一步的基礎上學生自然想到要量出三角形每個角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。這時教師要組織學生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內角,并計算出它們的總和是多少?把小組的測量結果和討論結果記錄下來以便全班進行交流。

三、再建模型,徹底的得出正確的結論

因為在上一環節學生已經得出三角形的內角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產生一些誤差。有的同學難免可能猜想三角形的內角和就是180度呢?我們繼續研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內角和都是180度呢?教師放手讓學生去思考、去動手操作,對有困難和有疑問的同學進行提示和指導。然后讓學生到前面演示驗證的方法,教師借助多媒體進行演示。

四、應用新知,鞏固練習

1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數。(1小題屬于基本練習)

2、試一試,在直角三角形中已知其中的一個角求另一個角的度數

3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數求三角形的頂角。

4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內角和是360度,對嗎?

五、拓展與延伸

通過三角形的內角和是180度的事實來探討四邊形、五邊行的內角和。

篇6:《三角形內角和》教學設計

教學目標:

1、通過測量一量、拼一拼、折一折三個活動,探索和發現三角形三個內角的度數和等于180°。

2、已知三角形兩個角的度數,會求出第三個角的度數。

3、經歷三角形內角和的研究方法,感受數學研究方法。

教學重點:

1、探索和發現三角形三個內角的度數和等于180°。

2、已知三角形兩個角的度數,會求出第三個角的度數。

教學難點:

掌握探究方法(猜想-驗證-歸納總結),學會用“轉化”的數學思想探究三角形內角和。

教學用具:

表格、課件。

學具準備:

各種三角形、剪刀、量角器。

一、創設情境揭示課題。

1、一天兩個三角形發生了爭執,他們請你們來評評理。大三角形說:“我的個頭大,所以我的內角和一定比你大。”小三角形很不甘心地說:“我有一個鈍角,我的內角和一定比你大。”。誰說得有道理呢?今天讓我們來做一回裁判吧。

生1:大三角形大(個子大)

生2:小三角形大(有鈍角)

(教師不做判斷,讓學生帶著問題進入新課)

2、什么是三角形的內角和?(板書:內角和)

講解:三角形內兩條邊所夾的角就叫做這個三角形的內角。每個三角形都有三個內角,這三個內角的度數加起來就是三角形的內角和。

二、自主探究,合作交流。

(一)提出問題:

1、你認為誰說得對?你是怎么想的?

2、你有什么辦法可以比較一下這兩個三角形的內角和呢?

生1:用量角器量一量三個內角各是多少度,把它們加起來,再比較。

生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

(二)探索與發現

活動一:量一量

(1)①了解活動要求:(屏幕顯示)

A、在練習本上畫一個三角形,量一量三角形三個內角的度數并標注。(測量時要認真,力求準確)

B、把測量結果記錄在表格中,并計算三角形內角和。

C、討論:從剛才的測量和計算結果中,你發現了什么?

(引導生回顧活動要求)

②小組合作。

③匯報交流。

你們測量了幾個三角形?它們的內角和分別是多少?從測量和計算結果中你們發現了什么?

(引導學生發現每個三角形的三個內角和都在180°,左右。)

(2)提出猜想

剛才我們通過測量和計算發現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書:猜測)

活動二:拼一拼,驗證猜想

這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

引導:180°,跟我們學過的什么角有關?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內角轉換成一個平角呢?

(1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內角和就是180°)。

(2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?

(3)分組匯報,討論質疑

(4)課件演示,驗證結果

活動三:折一折

師生一起活動,教師先讓學生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

(把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向對折,使它們的頂點與角1的頂點互相重合,也證明了三角形內角和等于180°,)。

討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?

提問:還有沒有其它的方法?

3、回顧兩種方法,歸納總結,得出結論。

(1)引導學生得出結論。

孩子們,三角形內角和到底等于多少度呢?”

學生答:“180°!”

(2)總結方法,齊讀結論

我們通過動作操作,折一折,拼一拼,把三角形的三個內角轉換成了一個平角,成功的得到了這個結論,讓我們為自己的成功鼓掌!齊讀結論。(板書:得到結論)

(3)解釋測量誤差

為什么我們剛才通過測量,計算出來的三角形內角和不是180°,呢?

那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實際上,三角形內角和就等于180°

(三)回顧問題:

現在你知道這兩個三角形誰說得對了嗎?(都不對!)

為什么?請大家一起,自信肯定的告訴我。

生:因為三角形內角和等于1800180°。(齊讀)

三、鞏固深化,加深理解。

1、試一試:數學書28頁第3題

∠A=180°—90°—30°

2、練一練:數學書29頁第一題(生獨立解決)

∠A=180°—75°—28°

3、小法官:數學書29頁第二題

四、回顧課堂,滲透數學方法。

1、總結:猜想—驗證—歸納—應用的數學方法。

2、介紹:三角形內角和等于180度這個結論的由來;數學領域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

篇7:《三角形內角和》教學設計

教材內容:

北師大版義務教育課程標準實驗教材四年級下冊。

教學目標:

1、經歷觀察、猜想、實驗、驗證等數學活動,探索并發現三角形的內角和180°。在實驗活動中,體驗探索的過程和方法。

2、掌握三角形內角和是180°這一性質,并能應用這一性質解決一些簡單的問題。

3、經歷探究過程,發展推理能力,感受數學的邏輯美。

教學難點、重點:

經歷觀察、猜想、實驗、驗證等數學活動,探索并發現三角形的內角和規律。

教具準備:

直角三角形、銳角三角形、鈍角三角形各3個,大三角形、小三角形各1個。

學具準備:

直角三角形、銳角三角形、鈍角三角形各3個。

教學設計意圖:

“三角形的內角和180°”是三角形的一個重要性質,教材通過多種方法的操作實驗,讓學生確信這一個性質的正確性。根據學生已有的知識經驗和教材的內容特點,本著“學生的數學學習過程是一個自主構建自己對數學知識的理解過程”的教學理念,采用探究式教學方式,讓學生經歷觀察、猜想、實驗、反思等數學活動,體驗知識的形成過程。整個教學設計力求改變學生的學習方式,突出學生的主體性。在教師的組織引導下,讓學生在開放的學習過程中,自始至終處于積極狀態,主動參與學習過程,自主地進行探索與發現,多角度和多樣化地解決問題,從而實現知識的自我建構,掌握科學研究的方法,形成實事求事的科學探究精神。

教學過程:

活動一:設疑激趣

師:我們已經認識了三角形,關于三角形你知道了什么?

生1:三角形有3條邊、3個角。

生2:三角形按角分可以分為銳角三角形、直角三角形、鈍角三角形;三角形按邊分可以分為等腰三角形和不等邊三角形。

生3:每種三角形都至少有兩個銳角。

師:三角形有3個角,這3個角又叫三角形的內角。三角形按內角的不同分為銳角三角形、直角三角形、鈍角三角形。

師:能不能畫一個含有兩個直角或兩個鈍角的三角形呢?為什么?

生1:我試著畫過,畫不出來。

生2:因為每個三角形至少有兩個銳角,所以不可能畫出含有兩個直角或兩個鈍角的三角形。

生3:三角形的內角和是180°,兩個直角的和已經是180°,所以不可能。

師:你能解釋一下什么是“三角形的內角和”嗎?你是怎樣知道“三角形的內角和是180°”的?

生:把三角形的三個內角的度數相加就是三角形的內角和。“三角形的內角和是180°”我是從書上看到的。

師:你驗證過了嗎?

生:沒有。

師:三角形的內角和是不是180°?咱們還沒有認真地研究過,接下來,我們就一起來研究三角形的內角和。

設計意圖:“我們已經認識了三角形,關于三角形你知道什么?”課一開始,教師就設計了一個空間容量比較大的問題,旨在讓學生自主復習三角形的有關知識,引出三角形的內角概念。然后創設一個能激發學生探究欲望的問題:“能不能畫出一個含有兩個直角或兩個鈍角的三角形呢?”有的學生通過動手畫,發現一個三角形中不可能有兩個直角或兩個鈍角;有的學生認為三角形的內角和是180°,兩個直角的和已是180°,所以不可能。這種認識可能來自于書本,也可能來自于家長的輔導,但學生對于“三角形的內角和是180°”的體驗是沒有的,學生對所學的知識僅僅還是一種機械的識記,因此“三角形的內角和是否為180°”就成了學生急切需要探究的問題。

活動二:自主探究

師:請同學們拿出課前準備的材料,自己想辦法驗證三角形的內角和是不是180°?

學生動手操作驗證。

師:請大家靜靜地思考1分鐘,將剛才的實驗過程在腦中梳理一下。現在請把自己的研究過程、結果跟大家交流一下。

生1:我是用量角器測量的,我量的是直角三角形:

90°+42°+47°=179°

生2:我量的也是直角三角形:

90°+43°+48°=181°

生3:我量的是銳角三角形:

32°+65°+83°=180°

生4:我量的是鈍角三角形:

120°+32°+30°=182°

生5:……

師:看到這些度量結果,你有什么想法?

生1:為什么他們測量的結果會不相同?

生2:也許我們測量的方法不精確。

生3:也許我們的量角器不標準。

生4:也可能三角形的內角和不一定都是180°。

師:是呀,用量角器度量容易出現誤差,但這些度量的結果還是比較接近的,都在180°左右。

師:有沒有沒使用量角器來驗證的呢?

生:我是用三個相同的三角形來接的(如圖)。∠1、∠2、∠3剛好拼成一個平角,所以三角形的內角和是180°。

師:你怎么知道這三個角拼成的大角剛好是一個平角呢?有辦法驗證嗎?

生1:用量角器測量不就知道了嗎?

生2:用三角板的兩個直角去拼來驗證。

生3:因為平角的兩條邊成一條直線,所以可用直尺來檢驗。

生4:再拿三個相同的三角形按上面的方法進行拼,這樣6個相同的三角形,中間就可以拼出一個周角(如圖),周角的一半剛好是平角。

師:通過剛才的驗證,可以說明∠1、∠2、∠3拼成的角是平角,那么銳角三角形的三個內角能拼成一個平角嗎?鈍角三角形呢?請大家試一試。師:如果現在只有一個三角形怎么辦?

生:我是將銳角三角形的三個角分別撕下來,拼成一個平角,平角是180°所以銳角三角形的內角和是180°。

師:直角三角形、鈍角三角形行嗎?來試一試。

生1:老師,不剪下三角形的三個內角也可以驗證。只要將三角形的三個內角折拼在一起,看看是不是拼成一個平角就可以了。

師:大家就用折拼的方法試一試。

學生操作驗證。

師:剛才我們除了用量角器度量的方法,同學們還想出了其他一些方法:用三個相同的三角形拼、剪拼、折拼等方法,這些方法形式上看起來不一樣,其實有共同點嗎?

生:都是將三角形的三個內角拼在一起,組成一個平角來驗證三角形的內角和是不是180°。

師:通過上面的實驗,你可以得出什么結論?

生:三角形的內角和是180°

師:是任意三角形嗎?剛才我們才驗證了幾個三角形呀?怎么就可以說是任意三角形呢?

生:三角形按角分只有銳角三角形、直角三角形、鈍角三角形三種,剛才我們都驗證過了。

師:(出示一個大三角形)它的內角和是多少度?如果將這個三角形縮小(出示一個小三角形),它的內角和又是多少度?為什么?

生:三角形的三條邊縮短了,可它的三個角的大小沒變,所以它的內角和還是180。

師生小結:三角形不論形狀、大小,它的內角和總是180。

設計意圖:學生明確探究主題后,教師只為學生提供探究所需的材料,而不直接給出實驗的方法和程序,激勵學生自己想辦法實驗驗證,獲得結論。然后引導學生交流、評價、反思與提升。驗證過程中較好地體現了解決同一問題思維方法,驗證策略的多樣性。促進了學生發散思維能力的提高,提升了思維品質。

活動三:應用拓展

1、計算下面各個三角形中的∠B的度數。

師:(圖2)怎樣求∠B?

生:180°―90°―55°=35°

師:還有不同的解法嗎?

生:180°÷2―55°=35°,因為三角形的內角和是180°,其中一個直角是90°,另外兩個銳角的和剛好是90。

師:是不是任意一個直角三角形的兩銳角和都是90°呢?能驗證一下嗎?

生:因為任意三角形的內角和是180°,其中一個直角是90°,所以其他兩個銳角的和肯定是90。

師:有沒有反對意見或表示懷疑的?從中我們可以發現一條什么規律?

生:直角三角形的兩個銳角和是90°

2、一個等腰三角形頂角是90°,兩個底角分別是多少度?

3、等邊三角形的每個內角是多少度?

師:現在你能解決為什么一個三角形里不能有兩個直角或兩個鈍角嗎?

生:略。

師:通過這節課的學習,你還有什么疑問或還想研究什么問題?

生:三角形有內角和,三角形有外角和嗎?

師:你知道三角形的外角在哪兒嗎?三角形有外角和,它的外角和是多少度呢?有興趣的同學請課后研究。

課末,教師激勵學生提出新的問題:通過這節課的學習,你還有什么疑問或者還想研究什么問題?培養學生的問題意識,同時讓學生帶著問題走出教室,拓展學生數學學習的時間和空間。

篇8:《三角形內角和》的教學設計

【設計理念】

新課標重視讓學生經歷數學知識的形成過程,要求教師創設有效的問題情境激發學生的參與欲望,提供足夠的時間和空間讓學生經歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數學問題的活動經驗,發展空間觀念和推理能力。

【教材內容】新人教版義務教育課程標準實驗教科書四年級下冊數學第67頁例6、“做一做”及練習十六的第1、2、3題。

【教材分析】

三角形的內角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。教材很重視知識的探索與發現,安排兩次實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內角和是180°。

【學情分析】

1、在學習本課時,學生已經有了探索三角形內角和的知識基礎:知道直角和平角的度數,會用量角器度量角的度數;認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經知道了等腰三角形和正三角形。

2、已經有一部分學生知道了三角形內角和是180°,只是知其然而不知所以然。

【教學目標】

1、通過“量、剪、拼”等活動發現、驗證三角形的內角和是180°,并能運用這個知識解決一些簡單的問題。

2、在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數學活動經驗,發展空間觀念和推理能力。

3、在參與數學學習活動的過程中,獲得成功的體驗,感受數學探究的嚴謹與樂趣。

【教學重點】

探索發現、驗證“三角形內角和是180°”,并運用這個知識解決實際問題。

【教學難點】驗證“三角形的內角和是180°”。

【教(學)具準備】

多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

【教學步驟】

一、復習舊知 引出課題

1、你已經知道有關三角形的哪些知識?

2、出示課題:三角形的內角和

設計意圖:也自然導入新課。

二、提出問題 引發猜想

1、提出問題:看到這個課題,你有什么問題想問的?

預設:

(1)三角形的內角指的是哪些角?

(2)三角形的內角和是什么意思?

(3)三角形的內角一共是多少度?

2、引發猜想

猜一猜:三角形的內角和是多少度?你是怎么猜的?

設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內容,無疑激發了學生的學習興趣,培養了學生的問題意識。由于學生在平時使用三角板時已經若隱若現地有了特殊的直角三角形的內角和是180度這一感覺,因此本環節,要求學生猜一猜三角形的內角和是多少,并說說是怎么猜的,以激發學生已有知識經驗,并體會到猜想要合理且有根據,同時也為推理驗證的引出作必要的鋪墊。

三、操作驗證 形成結論

1、交流驗證方法:

(1)用什么方法證明三角形的內角和是180度呢?

預設: ①量算法 ②剪拼法 ③折拼法等

(2)三角形的個數有無數個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

2、動手驗證

3、全班匯報交流

4、小結:剛才通過大家的動手操作驗證了三角形的內角和是180°度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。

5、方法拓展

推理驗證:用直角三角形的內角和來證明其他三角形內角和是180°的方法。

6、形成結論:任意三角形的內角和是180°。

設計意圖:《標準》指出:“教師應激發學生的積極性,向學生提供充分從事數學活動的`機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。”猜測后先獨立思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發現了三角形內角和是180°這個結論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養學生嚴謹、科學正確的研究態度,讓學生在活動中積累基本的數學活動經驗,為后續的學習提供了經驗支撐。

四、應用結論 解決問題

1、鞏固新知:想一想,算一算。

2、解決問題:等腰三角形風箏的頂角是多少度?

3、辨析訓練,完善結論。

五、課堂總結,歸納研究方法

今天這節課你學到了哪些知識?你是怎樣得到這些知識的?

六、課后延伸:用今天所學的方法繼續研究四邊形的內角和。

七、板書設計:

三角形的內角和

猜測: 三角形的內角和是180°?

驗證: 量 拼

結論: 任意三角形的內角和是180°

篇9:《三角形內角和》的教學設計

教學目標:

1、通過測量一量、拼一拼、折一折三個活動,探索和發現三角形三個內角的度數和等于180°。

2、已知三角形兩個角的度數,會求出第三個角的度數。

3、經歷三角形內角和的研究方法,感受數學研究方法。

教學重點:

1、探索和發現三角形三個內角的度數和等于180°。

2、已知三角形兩個角的度數,會求出第三個角的度數。

教學難點:掌握探究方法(猜想-驗證-歸納總結),學會用“轉化”的數學思想探究三角形內角和。

教學用具:表格、課件。

學具準備:各種三角形、剪刀、量角器。

一、創設情境揭示課題。

1、一天兩個三角形發生了爭執,他們請你們來評評理。大三角形說:“我的個頭大,所以我的內角和一定比你大。”小三角形很不甘心地說:“我有一個鈍角,我的內角和一定比你大。”。誰說得有道理呢?今天讓我們來做一回裁判吧。

生1:大三角形大(個子大)

生2:小三角形大(有鈍角)

(教師不做判斷,讓學生帶著問題進入新課)

2、什么是三角形的內角和?(板書:內角和)

講解:三角形內兩條邊所夾的角就叫做這個三角形的內角。每個三角形都有三個內角,這三個內角的度數加起來就是三角形的內角和。

二、自主探究,合作交流。

(一)提出問題:

1、你認為誰說得對?你是怎么想的?

2、你有什么辦法可以比較一下這兩個三角形的內角和呢?

生1:用量角器量一量三個內角各是多少度,把它們加起來,再比較。

生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

(二)探索與發現

活動一:量一量

(1)①了解活動要求:(屏幕顯示)

A、在練習本上畫一個三角形,量一量三角形三個內角的度數并標注。(測量時要認真,力求準確)

B、把測量結果記錄在表格中,并計算三角形內角和。

C、討論:從剛才的測量和計算結果中,你發現了什么?

(引導生回顧活動要求)

②小組合作。

③匯報交流。

你們測量了幾個三角形?它們的內角和分別是多少?從測量和計算結果中你們發現了什么?

(引導學生發現每個三角形的三個內角和都在180°,左右。)

(2)提出猜想

剛才我們通過測量和計算發現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書:猜測)

活動二:拼一拼,驗證猜想

這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

引導:180°,跟我們學過的什么角有關?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內角轉換成一個平角呢?

(1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內角和就是180°)。

(2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?

(3)分組匯報,討論質疑

(4)課件演示,驗證結果

活動三:折一折

師生一起活動,教師先讓學生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

(把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向對折,使它們的頂點與角1的頂點互相重合,也證明了三角形內角和等于180°,)。

討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?

提問:還有沒有其它的方法?

3、回顧兩種方法,歸納總結,得出結論。

(1)引導學生得出結論。

孩子們,三角形內角和到底等于多少度呢?”

學生答:“180°!”

(2)總結方法,齊讀結論

我們通過動作操作,折一折,拼一拼,把三角形的三個內角轉換成了一個平角,成功的得到了這個結論,讓我們為自己的成功鼓掌!齊讀結論。(板書:得到結論)

(3)解釋測量誤差

為什么我們剛才通過測量,計算出來的三角形內角和不是180°,呢?

那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實際上,三角形內角和就等于180°

(三)回顧問題:

現在你知道這兩個三角形誰說得對了嗎?(都不對!)

為什么?請大家一起,自信肯定的告訴我。

生:因為三角形內角和等于1800180°。(齊讀)

三、鞏固深化,加深理解。

1、試一試:數學書28頁第3題

∠A=180°-90°-30°

2、練一練:數學書29頁第一題(生獨立解決)

∠A=180°-75°-28°

3、小法官:數學書29頁第二題

四、回顧課堂,滲透數學方法。

1、總結:猜想—驗證—歸納—應用的數學方法。

2、介紹:三角形內角和等于180度這個結論的由來;數學領域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

3、課堂延伸活動:探索——多邊形內角和

板書設計:

探索與發現(一)

三角形內角和等于180°

篇10:《三角形內角和》的教學設計

教學目標:

1、通過量、剪、拼、擺等直觀操作的方法,讓學生探索并發現三角形內角和等于180度。

2、在活動交流中培養學生合作學習的意識和能力,讓學生經歷猜測探索總結的數學學習過程,在實驗活動中體驗探索的過程和方法。

3、通過運用三角形內角和的性質解決一些簡單的問題,使學生體會數學與現實生活的聯系,體會到數學的價值,增加學生學數學的信心和興趣。

教學重點:

探索發現三角形內角和等于180并能應用。

教學難點:

三角形內角和是180的探索和驗證。

教學過程:

一、創設情境,提出問題

師:大家喜歡猜謎語嗎?

生:喜歡。

師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩定性能堅。三竿首尾連,學問不簡單。

(打一幾何圖形))

生:三角形。

師:三角形中都有哪些學問?

生:三角形有三條邊,三個角,具有穩定性。

生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。

生:三角形的內有和是180。

生:(一臉疑惑)

師:(板書:三角形的內角和是180),你有什么疑惑?生:什么是內角?

生:每個三角形的內角和都是180嗎?

(根據學生的問題,在三角形的內角和是180后面加上一個?)

二、自主探索,實踐驗證

1、理解內角師:什么是內角?

生:我認為三角形的內角就是指三角形的三個角。

師:三角形的每個角都是三角形的內角,每個三角形都有三個內角。

2、理解內角和。

師:那三角形的內角和又是指什么?

生:我認為三角形的內角和就是把三角形的三個內角的度數加起來的和。

師:為了方便,我們將三角形的每個內角編上序號1、2、3、我們叫它1、2、3,這三個角的度數和,就是這個三角形的內角和。

3、實踐驗證

師:每個三角形的內角和都是180嗎?用什么方法來驗證呢?

生:量一量每個角的度數,然后加起來看看是不是180。

師:請大家拿出課前準備的三角形,親自量一量,算一算。(學生動手量一量)

師:誰愿意把你的勞動成果和大家分享一下?

生:我量的這個三角形的三個內角的度數分別是60、60、60,加起來一共是180。

師:這位同學量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。

生:我量這個三角形的三個內角的度數分別是45、45、90,加起來一共是180。

師:這是我們三角尺中的一個,也比較特殊,是一個等腰直角三角形。

生:我量的是三角尺中的另一個,三個內角的度數分別是60、30、90,加起來一共是180生:我量的是鈍角三角形,三個內角的度數分別是85、60、38,加起來一共是183。

師:你發現了什么?

生:有的三角形的內角和是180,而有的三角形的內角和卻不是180。

師:看來三角形的內角和不一定是180。

生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結果也不夠精確。雖然不都是三個內角加起來不都是180,但都接近180。

生:都接近180就能說一定是180嗎?

師:科學來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學們小組合作,發揮小組成員的智慧,充分利用大家的學具進行驗證,比一比哪些組的方法富有新意,開始!

(學生在小組內進行探索驗證。教師巡視,參與到學生的研究中)

師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。

生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內角都向內折,三個內角就拼成了一個平角,也就是180,所以我們小組得出三角形的內角和是180。

師:你折的只是銳角三角形,只能證明銳角三角形的內角和是180,直角三角形,鈍角三角形是不是也是這樣的?

生:我們小組也有折的直角三角形,鈍角三角形。

(其它的成員展示不同的三角形)

師:看這個小組的同學想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!

師:哪個小組和他們的方法不一樣?

生:我們小組把三角形的三個內角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內角都可以拼成平角,所以我們小組得出結論,三角形的內角和是180。

師:這個小組的方法簡便,易操作,很好。

生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180。師:你們小組很聰明,從長方形的內角和聯想到直角三角形的內角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

4、小結

師:剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內角和都是1800,你還有什么疑問嗎?

生:沒有。

師:(去掉問號)那就讓我們大聲地讀出來三角形的內角和是1800。

三、鞏固應用,加深理解

1、說一說每個三角形的內角和是多少度

師:(出示一個大三角形)這個大三角形的內角和是多少度?

生:180

師:(出示一個小三角形)這個小三角形的內角和是多少度?

生:180

師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內角和是多少度?

生:180

師:為什么每個三角形的內角和是1800,而合起來還是180呢?另外那180去哪兒了?

生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內角,所以少了180

師:(演示)把一個大三角形分成兩個三角形,每個三角形的內角和是多少度?

生:180

2、求下面各角的度數

師:如果老師告訴你一個三角形的兩個角的度數,你能說出第三個角的度數嗎?

(出)

生:三角形內角和是180,在第一個三角形中,用180-75-28,A=77

生:用180-90-35,C=55。

生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。

生:第三個三角形中,用180-20-45,B=115。

3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?

生:等腰三角形的兩個底角相等,所以用180-70-704、

師:三角形的內角和在我們的生活中應用很廣泛,老師給大家帶來一個在建筑中應用的例子。

在設計這座大橋時,如果設計師將斜拉的鋼索與橋柱形成的夾角設計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?

生:用量角器量一量

師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

師:你真是個善于觀察、善于思考的孩子,努力學習,將來一定會成為一名優秀的建筑師。

四、回顧總結,拓展延伸

師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?

生:我知道了三角形的內角和是180。

生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內角和都是180。

生:把一個大三角形分成兩個小三角形,每個三角形的內角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內角和還是180。

生:我可以用撕、拼、折等方法來驗證三角形的內角和是180。

師:這個同學不僅學會了知識,而且學會了方法,我們只有學會了方法,才能更好地去探究更多的知識。

師:那你現在知道為什么一個三角形內只能有一個直角或一個鈍角嗎?

生:兩個直角的度數之和是180,再加上一個角,三個角的度數之和超過了180,所以一個三角形中最多只能有一個直角。

生:兩個鈍角的度數之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。

師:我們學習知識,必須知其然并知其所以然。

師:三角形中還有許許多多的學問,讓我們在以后的學習中繼續去研究。

篇11:《三角形內角和》的教學設計

本節微課視頻是蘇教版數學教科書四年級下冊第78~79頁的教學內容。在教學之前,學生已經掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經構成學生進一步學習的認知基礎。《三角形的內角和》是三角形的一個重要性質。學生在學習四年級上冊“角的度量”時,通過測量三角尺三個角的度數,知道三角尺三個角加起來的和是180度,再加上課前的預習,大部分的學生已經能得出結論:三角形的內角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節課的重點不是結論,而是驗證結論的過程。教材組織學生對不同形狀、不同大小的三角形的內角和進行探索,通過轉化、推理、比較、操作和驗證,總結概括出“所有三角形的內角和都是180度”的規律,從而進一步發展學生的空間觀念,提高學生的自主學習能力和推理能力。

下面就具體談談微課的教學設計:

一、教學目標

1、通過測量、轉化、觀察和比較等活動探索發現并驗證“三角形的內角和是180度”的規律,并且能利用這一結論解決求三角形中未知角的度數等實際問題。

2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養學生的'聯想意識和動手操作能力。體驗驗證結論的過程與方法,提高學生分析和解決問題的能力。

3、使學生通過操作的過程獲得發現規律的喜悅,獲得成就感,從而激發學生積極主動學習數學的興趣。

二、教學重點和難點

重點:讓學生親自驗證并總結出三角形的內角和是180度的結論

難點:對不同驗證方法的理解和掌握。

三、教學過程

(一)質疑――發現問題,提出問題

出示學生熟悉的一副三角尺,讓學生說說每塊三角尺中各個內角的度數。試著計算每塊三角尺的三個內角的度數加起來的和是多少度?

交流:不同三角尺的內角和都是一樣的嗎?三角尺的內角和有什么特征?

引導學生得出三角尺的三個內角的度數和是180度。

提問:三角尺的形狀是什么三角形?三角尺的內角和是180度,我們還可以說成是什么?(得出結論:直角三角形的內角和是180度。)

你有什么辦法驗證這一結論呢?(動手操作,尋找答案)

方法一:拿出不同的直角三角形,分別測量三個內角的度數,再求和。(提示存在誤差,但三個內角的和都在180度左右)

方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內角和是360度,因此能得出一個直角三角形的三個內角和是180度。

啟發:直角三角形的內角和是180度,這一結論讓你聯想到了什么?你能提出什么新的數學問題呢?

引導:從直角三角形的內角和聯想到所有三角形的內角和,提出問題:所有三角形的內角和都是180度嗎?

(二)探究――分析問題,解決問題

出示三個三角形:直角三角形、銳角三角形和鈍角三角形。

引導:直角三角形的內角和是180度了,由此我們聯想到銳角三角形和鈍角三角形的內角和也有可能是180度。

提問:你有什么辦法來驗證這一猜想呢?

拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發現規律。

方法一:可以像上面那樣先測量每個三角形的三個內角的度數,再計算出它們的和,看看能發現什么規律。學生測量計算,教師巡視指導。

引導:測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學要重新測定和確認,計算出它們的和,發現其中的規律。

方法二:既然是求三角形的內角和,我們就可以想辦法把三角形的3個內角拼在一起,看看拼成了什么角。那怎樣才能把3個內角拼在一起呢?我們可以將三角形中的3個內角撕下來,再拼在一起,會發現拼成了一個平角,是180度。

方法三:把三角形的三個內角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內角折過來拼在一起,同樣會發現拼成一個平角,是180度。

方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內角和是180度進行推理。180+180=360度,360-90-90=180度。

(三)歸納――獲得結論

交流:回顧以上3個三角形的內角和的探索過程,你發現了什么規律?

總結:通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內角和都是180度這一結論。

(四)拓展――鞏固練習

1、將一個大三角形剪成兩個小三角形,每個小三角形的內角和是多少度?

2、在一個三角形中,根據兩個內角的度數,求第三個內角的度數?

篇12:《三角形的內角和》教學設計

《三角形的內角和》教學設計

學情分析:

學生已經掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。

教學目標:

1、知識與技能:通過操作活動探索發現和驗證“三角形的內角和是180度”的規律。

2、過程與方法:通過量一量、剪一剪、拼一拼,培養學生的合作能力、動手實踐能力,并運用新知識解決問題的能力。

3、情感態度:使學生體驗數學學習成功的喜悅,激發學生主動學習數學的興趣。

教學重點:

探索發現和驗證三角形的內角和是180度。

教學難點:

對不同探究方法的指導和學生對規律的靈活應用。

教具準備:

教師準備:多媒體課件、不同類形大小不一的三角形若干個、記錄表

學生準備:量角器、直尺、剪刀

教學過程:

一、激趣導入

多媒體展示三角形

出示謎語:形狀似座山,穩定性能堅

三竿首尾連,學問不簡單?????(打一圖形名稱)

(預設:三角形)

師:誰能介紹介紹三角形?

(生1:三角形有三條邊、三個頂點、三個角。

生2:三角形按角分類,分為鈍角三角形、銳角三角形、直角三角形。)

師:你喜歡哪種三角形?(鈍角三角形、銳角三角形、直角三角形)

師:同學們會畫三角形嗎?請你在練習本上畫一個你喜歡的三角形。

師:鈍角、直角、銳角三角形三兄弟吵起來了?我們快去看一看。

師:今天我們就來研究一下三角形的內角和。

二、學習目標

1、通過動手操作,使學生理解并掌握三角形內角和是180度的結論。

2、能運用三角形的內角和是180度這一規律,求三角形中未知角的'度數。

3、培養動手動腦及分析推理能力。

三、自主學習(展示量角法)

1.理解三角形的內角、內角和

(1)板書展示三角形

師:要想知道什么是三角形的內角和,我們得先知道什么是三角形的內角?(三角形里面的三個角都是三角形的內角。)

師:你能過來指指嗎?同意嗎?內角有幾個?

師:為了研究方便,我們把三角形的三個內角分別標上∠1、∠2、∠3。

師:你能像老師一樣把你的三角形標上∠1、∠2、∠3嗎?

(2)三角形的內角和

師:什么是三角形的內角和?

(三角形三個角的度數的和,就是三角形的內角和,即:∠1+∠2+∠3)

師:就是把∠1+∠2+∠3加起來。

師:根據我們以前的經驗,我們怎么知道∠1、∠2、∠3的度數呢?(預設:用量角器量)

師:請同學們拿出量角器,量一量你畫的三角形的三個內角,并算出他們的和。(4分鐘)

學生測量(1分40)匯報結果(5人)。

教師填寫測量匯報單。

師:觀察匯報的結果,你有什么發現?(所有三角形內角和度數不一樣、三角形內角和都在180度左右)

四、合作探究

師:這是同學們親自測量發現的,沒有得到統一的結果,這個辦法不能使人信服,有沒有別的方法驗證?老師給每個小組都提供了很多個三角形,現在請你們以小組為單位,拿出三角形來研究研究三角形的內角和到底是多少度。?(8分鐘)(剪拼法)

1、操作驗證探索三角形內角和的規律(6分鐘)

(1)操作驗證:小組合作

拿出裝有學具的信封[信封里面有老師為學生事先準備的各種類型的三角形若干個(小組之間的三角形大小都不同)];拿出自備的直尺?剪刀

(老師要給學生充裕的時間,保證學生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)

2、學生匯報

(1)轉化法:

生:兩個同樣的直角三角形可以拼成一個長方形,長方形每個直角都是90度,內角和就是360度,所以三角形的內角和就是360度的一半180度。

師:他們用長方形的內角和來研究今天所學的知識,得到三角形的內角和是180度。

(2)折拼法

生:把三角形三個內角分別向下邊折疊,拼成了一個平角,平角是180度,所以三角形的內角和是180度。

師:他們是用折拼法驗證三角形的內角和是180度(動手能力真強)

(3)剪拼法

生:把三角形三個內角撕下來,拼成一個平角,平角是180,所以三角形的內角和是180度。(師:提問怎樣能很快的找到三個角?把他們做上標記。)

標記上之后再拼一拼,可見標記的方法很科學。(20分鐘)

3、教師演示

師:我們再來感受一下怎么驗證三角形的內角和的?

師:這是什么三角形?把他折一折。

師:這是什么三角形?我們也可以把他折一折。你有什么發現?(折完以后都有一個平角,平角是180度,所以三角形的內角和是180度)

師分別通過剪拼法驗證直角三角形、鈍角三角形、銳角三角形內角和。

師:注意觀察。

師:演示完畢有什么發現?(預設這些三角形剪接后都拼成了平角)平角是180度,所以三角形的內角和是180度。

師:剛剛我們研究了什么三角形。他們的內角和都是180度,那我們研究的這些三角形能不能代表所有的三角形,能。(因為三角形按角分類只能分成這三種。)(22分鐘)

4、演示任意一個三角形的內角和都是180度。

出示一些三角形,讓學生指出內角和。

師:你有什么發現?(無論是什么樣的三角形他的內角和都是180度,與三角形的形狀大小沒有關系。)(板書三角形的內角和是180度。)

師:那我們再看看剛剛匯報的結果。為什么之前測量的時候并沒有得到這樣得到結果呢?(測量的不夠精確,存在誤差)

師:如果測量儀器再精密一些,測量的更準確一些都可以得到三角形內角和是180度。現在確定這個結論了嗎?(25分鐘)

師:除了這節課大家想到的方法,還有很多方法也能證明三角形的內角和是180°到初中我們還有更嚴密的方法證明三角形的內角和是180°。早在300多年前就有一位法國著名的科學家帕斯卡,他在12歲時就驗證了任何三角形的內角和都是180°

師:你們能用今天的發現做一些練習嗎?

五、測評反饋

1、判斷。

(1)直角三角形的兩個銳角的和是90°。

(2)一個等腰三角形的底角可能是鈍角。

(3)三角形的內角和都是180°,與三角形的大小無關。

4、剪一剪。

把一個三角形紙板沿直線剪一刀,剩下的紙板的內角和是多少度?

六、課后作業

69頁第1題、第3題。

七、板書設計

下載三角形的內角和教學設計一等獎(實用12篇)word格式文檔
下載三角形的內角和教學設計一等獎(實用12篇).doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    三角形內角和教學設計

    三角形內角和教學設計 一、教學目標: 1、通過小組猜想、探索、驗證三角形的內角和等于180°,并能運用知識解決簡單問題。 2、經歷三角形內角和的探究過程,體驗“猜想——驗證......

    《三角形內角和》教學設計

    《三角形的內角和是180°》教學設計 教學思路: 由在數學王國里,銳角、直角、鈍角三角形內角和大小的爭論,引出什么是內角與內角和,并開始討論內角和的大小。引導學生經歷對三個......

    三角形內角和教學設計

    冀教版教材小學數學四年級下冊 《三角形內角和》4+4N教學模式講析課 ——承德縣上谷學區中心校 一、創設情境 創設情境的目的:是以情境問題的解決為需求,激發學生在情境中發......

    三角形內角和教學設計[★]

    《三角形的內角和》教學設計 沈蕓 教學內容 義務教育課程標準實驗教科書(蘇教版)四年級數學(下)第28-29頁 教學目標 認知目標 1. 讓學生運用量、拼、擺等方法,主動探索并掌......

    三角形內角和教學設計

    《三角形的內角和》教學設計 新華實驗小學安利 教材內容:人教版四年級下冊數學第85頁例6 教學目標: 1、通過“量一量”“算一算”“拼一拼”“折一折”的方法,讓學生推理歸納三......

    《三角形內角和》教學設計

    《三角形內角和》教學設計 【教材內容】 北京市義務教育程改革實驗教材(北京版)第九冊數學 【教材分析】 《三角形內角和》是北京市義務教育程改革實驗教材(北京版)第九冊第三單......

    《三角形內角和》 教學設計

    《三角形內角和》 教學設計 【教學內容】四年級下冊教科書第24頁“探索與發現:三角形內角和。” 【學習目標】 1.讓學生親自動手,通過量、剪、拼等直觀操作活動,探索、發現并證......

    三角形內角和教學設計

    三角形內角和教學設計 一、教材分析: 教材的小標題為“探索與發現”,說明這部分內容要求學生自主探索,并發現有關三角形內角和性質。 教材創設了一個有趣的問題情境,以此激發學......

主站蜘蛛池模板: 亚洲综合熟女久久久30p| 国精无码欧精品亚洲一区| 无人区乱码一区二区三区| 99久热re在线精品99 6热视频| 天天做天天爱天天爽综合网| 国产免费爽爽视频在线观看| 樱花草在线社区www中国中文| 国产精品亚洲精品日韩己满十八小| 国产精一品亚洲二区在线播放| 亚洲精品久久无码av片| 免费观看啪啪黄的网站| 无码办公室丝袜ol中文字幕| 99国产精品无码专区| 色狠狠av一区二区三区| 国产做无码视频在线观看| 小13箩利洗澡无码视频免费网站| 中文字幕+乱码+中文字幕一区| 五十路熟妇无码专区| 亚洲国产熟妇无码一区二区69| 狠狠躁夜夜躁人人爽天天| 97人人超碰国产精品最新| 国产欧美成人一区二区a片| 久久精品中文字幕免费| 国产v亚洲v天堂无码| 嗯~啊~快点?死我网站| 肥臀浪妇太爽了快点再快点| 国产在线午夜不卡精品影院| 国产无遮挡又黄又大又爽| 国产女厕偷窥系列在线视频| 日本大尺度吃奶呻吟视频| 男女啪啪做爰高潮无遮挡| 欧美中文亚洲v在线| 亚洲 另类 熟女 字幕| 亚洲v天堂v手机在线| 97无码免费人妻超级碰碰碰| 精品国产亚洲一区二区三区在线观看| 狠狠躁夜夜躁人人爽天天| 亚洲色成人www永久在线观看| 美女视频黄频大全免费| 国内精品久久久久久99| 中文字幕一区二区三区四区五区|