第一篇:利用放縮法證明數列不等式的技巧“揭秘”
龍源期刊網 http://.cn
利用放縮法證明數列不等式的技巧“揭秘” 作者:顧冬生
來源:《新高考·高三數學》2013年第06期
數列型不等式的證明題,常常需要用放縮的方法來解決,但放縮的技巧讓人目不暇接,極具思考性和挑戰性,能全面而綜合地考查同學們的潛能與后繼學習能力,常常成為高考壓軸題及各級各類競賽題命題的極好素材.同學們往往覺得就像魔術師在玩魔術,忽有忽無,變幻莫測,很精彩,但不知道怎么玩的,無法抓住其中的關鍵處.現在讓我們一起來“揭秘”,發現這些放縮變形的本質.
第二篇:放縮法證明數列不等式
放縮法證明數列不等式
基礎知識回顧:
放縮的技巧與方法:
(1)常見的數列求和方法和通項公式特點:
① 等差數列求和公式:錯誤!未找到引用源。,錯誤!未找到引用源。(關于錯誤!未找到引用源。的一次函數或常值函數)
② 等比數列求和公式:錯誤!未找到引用源。,錯誤!未找到引用源。(關于錯誤!未找到引用源。的指數類函數)③ 錯位相減:通項公式為“等差錯誤!未找到引用源。等比”的形式
④ 裂項相消:通項公式可拆成兩個相鄰項的差,且原數列的每一項裂項之后正負能夠相消,進而在求和后式子中僅剩有限項
(2)與求和相關的不等式的放縮技巧:
① 在數列中,“求和看通項”,所以在放縮的過程中通常從數列的通項公式入手
② 在放縮時要看好所證不等式中不等號的方向,這將決定對通項公式是放大還是縮小(應與所證的不等號同方向)
③ 在放縮時,對通項公式的變形要向可求和數列的通項公式靠攏,常見的是向等比數列與可裂項相消的數列進行靠攏。
④ 若放縮后求和發現放“過”了,即與所證矛盾,通常有兩條道路選擇:第一個方法是微調:看能否讓數列中的一些項不動,其余項放縮。從而減小放縮的程度,使之符合所證不等式;第二個方法就是推翻了原有放縮,重新進行設計,選擇放縮程度更小的方式再進行嘗試。
(3)放縮構造裂項相消數列與等比數列的技巧:
① 裂項相消:在放縮時,所構造的通項公式要具備“依項同構”的特點,即作差的兩項可視為同一數列的相鄰兩項(或等距離間隔項)
② 等比數列:所面對的問題通常為“錯誤!未找到引用源。常數”的形式,所構造的等比數列的公比也要滿足錯誤!未找到引用源。,如果題目條件無法體現出放縮的目標,則可從所證不等式的常數入手,常數可視為錯誤!未找到引用源。的形式,然后猜想構造出等比數列的首項與公比,進而得出等比數列的通項公式,再與原通項公式進行比較,看不等號的方向是否符合條件即可。例如常數錯誤!未找到引用源。,即可猜想該等比數列的首項為錯誤!未找到引用源。,公比為錯誤!未找到引用源。,即通項公式為錯誤!未找到引用源。
注:此方法會存在風險,所猜出的等比數列未必能達到放縮效果,所以是否選擇利用等比數列進行放縮,受數列通項公式的結構影響
(4)與數列中的項相關的不等式問題:
① 此類問題往往從遞推公式入手,若需要放縮也是考慮對遞推公式進行變形
② 在有些關于項的不等式證明中,可向求和問題進行劃歸,即將遞推公式放縮變形成為可“累加”或“累乘”的形式,即錯誤!未找到引用源。或錯誤!未找到引用源。(累乘時要求不等式兩側均為正數),然后通過“累加”或“累乘”達到一側為錯誤!未找到引用源。,另一側為求和的結果,進而完成證明 應用舉例:
類型一:與前n項和相關的不等式 例1.【2017屆江蘇泰州中學高三摸底考試】已知數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和錯誤!未找到引用源。滿足:錯誤!未找到引用源。(錯誤!未找到引用源。為常數,且錯誤!未找到引用源。,錯誤!未找到引用源。).
(1)求錯誤!未找到引用源。的通項公式;
(2)設錯誤!未找到引用源。,若數列錯誤!未找到引用源。為等比數列,求錯誤!未找到引用源。的值;(3)在滿足條件(2)的情形下,設錯誤!未找到引用源。,數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。,若不等式錯誤!未找到引用源。對任意的錯誤!未找到引用源。恒成立,求實數錯誤!未找到引用源。的取值范圍.
例2.記錯誤!未找到引用源。.對數列錯誤!未找到引用源。和錯誤!未找到引用源。的子集錯誤!未找到引用源。,若錯誤!未找到引用源。,定義錯誤!未找到引用源。;若錯誤!未找到引用源。,定義錯誤!未找到引用源。.例如:錯誤!未找到引用源。時,錯誤!未找到引用源。.現設錯誤!未找到引用源。是公比為3的等比數列,且當錯誤!未找到引用源。時,錯誤!未找到引用源。.錯誤!未找到引用源。
(1)求數列的通項公式;錯誤!未找到引用源。錯誤!未找到引用源。錯誤!未找到引用源。(2)對任意正整數,若,求證:;錯誤!未找到引用源。錯誤!未找到引用源。(3)設,求證:.類型
二、與通項運算相關的不等式 例3.設函數錯誤!未找到引用源。,數列錯誤!未找到引用源。滿足:錯誤!未找到引用源。.(1)求證:錯誤!未找到引用源。時,錯誤!未找到引用源。;(2)求證:錯誤!未找到引用源。(錯誤!未找到引用源。);(3)求證:錯誤!未找到引用源。(錯誤!未找到引用源。).
例4.已知錯誤!未找到引用源。是數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和,且對任意錯誤!未找到引用源。,有錯誤!未找到引用源。.其中錯誤!未找到引用源。為實數,且錯誤!未找到引用源。.(1)當錯誤!未找到引用源。時,①求數列錯誤!未找到引用源。的通項;
②是否存在這樣的正整數錯誤!未找到引用源。,使得錯誤!未找到引用源。成等比數列?若存在,給出錯誤!未找到引用源。滿足的條件,否則,請說明理由.(2)當錯誤!未找到引用源。時,設錯誤!未找到引用源。,① 判定錯誤!未找到引用源。是否為等比數列;
②設錯誤!未找到引用源。,若錯誤!未找到引用源。對錯誤!未找到引用源。恒成立,求錯誤!未找到引用源。的取值范圍.方法、規律歸納: 常見的放縮變形:
(1)錯誤!未找到引用源。,(2)錯誤!未找到引用源。
注:對于錯誤!未找到引用源。還可放縮為:錯誤!未找到引用源。(3)分子分母同加常數:錯誤!未找到引用源。(4)錯誤!未找到引用源。
錯誤!未找到引用源。可推廣為:錯誤!未找到引用源。
錯誤!未找到引用源。實戰演練: 1.【江蘇省無錫市普通高中2018屆高三上學期期中】已知數列錯誤!未找到引用源。滿足錯誤!未找到引用源。記數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。,錯誤!未找到引用源。
(1)求證:數列錯誤!未找到引用源。為等比數列,并求其通項錯誤!未找到引用源。;
(2)求錯誤!未找到引用源。;
(3)問是否存在正整數錯誤!未找到引用源。,使得錯誤!未找到引用源。成立?說明理由.2.【江蘇省常州市2018屆高三上學期武進區高中數學期中試卷】在數列錯誤!未找到引用源。中,錯誤!未找到引用源。,錯誤!未找到引用源。,錯誤!未找到引用源。,其中錯誤!未找到引用源。.
⑴ 求證:數列錯誤!未找到引用源。為等差數列;
⑵ 設錯誤!未找到引用源。,錯誤!未找到引用源。,數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。,若當錯誤!未找到引用源。且錯誤!未找到引用源。為偶數時,錯誤!未找到引用源。恒成立,求實數錯誤!未找到引用源。的取值范圍;
⑶ 設數列錯誤!未找到引用源。的前錯誤!未找到引用源。項的和為錯誤!未找到引用源。,試求數列錯誤!未找到引用源。的最大值.【答案】⑴見解析⑵錯誤!未找到引用源。⑶錯誤!未找到引用源。
3.【江蘇省徐州市2018屆高三上學期期中考試】已知數列的前項和為,滿足,.數列
滿足(1)求數列(2)若和,且. 的通項公式;,數列的前項和為,對任意的,(,都有,求實數的取值范圍;
(3)是否存在正整數,使,請說明理由.)成等差數列,若存在,求出所有滿足條件的,若不存在,4.已知數列錯誤!未找到引用源。、錯誤!未找到引用源。,其中,錯誤!未找到引用源。,數列錯誤!未找到引用源。滿足錯誤!未找到引用源。,錯誤!未找到引用源。,數列錯誤!未找到引用源。滿足錯誤!未找到引用源。.
(1)求數列錯誤!未找到引用源。、錯誤!未找到引用源。的通項公式;
(2)是否存在自然數錯誤!未找到引用源。,使得對于任意錯誤!未找到引用源。有錯誤!未找到引用源。恒成立?若存在,求出錯誤!未找到引用源。的最小值;
(3)若數列錯誤!未找到引用源。滿足錯誤!未找到引用源。,求數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和錯誤!未找到引用源。.
5.【江蘇省啟東中學2018屆高三上學期第一次月考】設數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。,且滿足錯誤!未找到引用源。,錯誤!未找到引用源。為常數.
(1)是否存在數列錯誤!未找到引用源。,使得錯誤!未找到引用源。?若存在,寫出一個滿足要求的數列;若不存在,說明理由.(2)當錯誤!未找到引用源。時,求證: 錯誤!未找到引用源。.
(3)當錯誤!未找到引用源。時,求證:當錯誤!未找到引用源。時,錯誤!未找到引用源。.
6.【江蘇省泰州中學2018屆高三上學期開學考試】已知兩個無窮數列
分別滿足,其中(1)若數列(2)若數列①若數列②若數列,設數列的前項和分別為的通項公式;,使得,稱數列
.都為遞增數列,求數列滿足:存在唯一的正整數“墜點數列”,求 為“墜點數列”,數列
為“墜點數列”.為“墜點數列”,是否存在正整數,使得,若存在,求的最大值;若不存在,說明理由.7.【江蘇省南京師范大學附屬中學2017屆高三高考模擬一】已知數集錯誤!未找到引用源。具有性質錯誤!未找到引用源。對任意的錯誤!未找到引用源。,使得錯誤!未找到引用源。成立.(1)分別判斷數集錯誤!未找到引用源。與錯誤!未找到引用源。是否具有性質錯誤!未找到引用源。,并說明理由;
(2)求證: 錯誤!未找到引用源。;
(2)若錯誤!未找到引用源。,求錯誤!未找到引用源。的最小值.8.記等差數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。.(1)求證:數列錯誤!未找到引用源。是等差數列;
(2)若 錯誤!未找到引用源。,對任意錯誤!未找到引用源。,均有錯誤!未找到引用源。是公差為錯誤!未找到引用源。的等差數列,求使錯誤!未找到引用源。為整數的正整數錯誤!未找到引用源。的取值集合;
(3)記錯誤!未找到引用源。,求證: 錯誤!未找到引用源。.9.已知數列{an}的前n項和為Sn,數列{bn},{cn}滿足(n+1)bn=an+1錯誤!未找到引用源。,(n+2)cn=錯誤!未找到引用源。,其中n∈N*.
(1)若數列{an}是公差為2的等差數列,求數列{cn}的通項公式;
(2)若存在實數λ,使得對一切n∈N*,有bn≤λ≤cn,求證:數列{an}是等差數列.
10.已知各項不為零的數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。,且錯誤!未找到引用源。,錯誤!未找到引用源。,錯誤!未找到引用源。.
(1)若錯誤!未找到引用源。成等比數列,求實數錯誤!未找到引用源。的值;(2)若錯誤!未找到引用源。成等差數列,①求數列錯誤!未找到引用源。的通項公式;
②在錯誤!未找到引用源。與錯誤!未找到引用源。間插入錯誤!未找到引用源。個正數,共同組成公比為錯誤!未找到引用源。的等比數列,若不等式錯誤!未找到引用源。對任意的錯誤!未找到引用源。恒成立,求實數錯誤!未找到引用源。的最大值.
放縮法證明數列不等式
基礎知識回顧:
放縮的技巧與方法:
(1)常見的數列求和方法和通項公式特點:
① 等差數列求和公式:錯誤!未找到引用源。,錯誤!未找到引用源。(關于錯誤!未找到引用源。的一次函數或常值函數)
② 等比數列求和公式:錯誤!未找到引用源。,錯誤!未找到引用源。(關于錯誤!未找到引用源。的指數類函數)③ 錯位相減:通項公式為“等差錯誤!未找到引用源。等比”的形式
④ 裂項相消:通項公式可拆成兩個相鄰項的差,且原數列的每一項裂項之后正負能夠相消,進而在求和后式子中僅剩有限項
(2)與求和相關的不等式的放縮技巧:
① 在數列中,“求和看通項”,所以在放縮的過程中通常從數列的通項公式入手
② 在放縮時要看好所證不等式中不等號的方向,這將決定對通項公式是放大還是縮小(應與所證的不等號同方向)
③ 在放縮時,對通項公式的變形要向可求和數列的通項公式靠攏,常見的是向等比數列與可裂項相消的數列進行靠攏。
④ 若放縮后求和發現放“過”了,即與所證矛盾,通常有兩條道路選擇:第一個方法是微調:看能否讓數列中的一些項不動,其余項放縮。從而減小放縮的程度,使之符合所證不等式;第二個方法就是推翻了原有放縮,重新進行設計,選擇放縮程度更小的方式再進行嘗試。
(3)放縮構造裂項相消數列與等比數列的技巧:
① 裂項相消:在放縮時,所構造的通項公式要具備“依項同構”的特點,即作差的兩項可視為同一數列的相鄰兩項(或等距離間隔項)
② 等比數列:所面對的問題通常為“錯誤!未找到引用源。常數”的形式,所構造的等比數列的公比也要滿足錯誤!未找到引用源。,如果題目條件無法體現出放縮的目標,則可從所證不等式的常數入手,常數可視為錯誤!未找到引用源。的形式,然后猜想構造出等比數列的首項與公比,進而得出等比數列的通項公式,再與原通項公式進行比較,看不等號的方向是否符合條件即可。例如常數錯誤!未找到引用源。,即可猜想該等比數列的首項為錯誤!未找到引用源。,公比為錯誤!未找到引用源。,即通項公式為錯誤!未找到引用源。注:此方法會存在風險,所猜出的等比數列未必能達到放縮效果,所以是否選擇利用等比數列進行放縮,受數列通項公式的結構影響
(4)與數列中的項相關的不等式問題:
① 此類問題往往從遞推公式入手,若需要放縮也是考慮對遞推公式進行變形
② 在有些關于項的不等式證明中,可向求和問題進行劃歸,即將遞推公式放縮變形成為可“累加”或“累乘”的形式,即錯誤!未找到引用源。或錯誤!未找到引用源。(累乘時要求不等式兩側均為正數),然后通過“累加”或“累乘”達到一側為錯誤!未找到引用源。,另一側為求和的結果,進而完成證明 應用舉例:
類型一:與前n項和相關的不等式 例1.【2017屆江蘇泰州中學高三摸底考試】已知數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和錯誤!未找到引用源。滿足:錯誤!未找到引用源。(錯誤!未找到引用源。為常數,且錯誤!未找到引用源。,錯誤!未找到引用源。).
(1)求錯誤!未找到引用源。的通項公式;
(2)設錯誤!未找到引用源。,若數列錯誤!未找到引用源。為等比數列,求錯誤!未找到引用源。的值;(3)在滿足條件(2)的情形下,設錯誤!未找到引用源。,數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。,若不等式錯誤!未找到引用源。對任意的錯誤!未找到引用源。恒成立,求實數錯誤!未找到引用源。的取值范圍.
【答案】(1)錯誤!未找到引用源。(2)錯誤!未找到引用源。(3)錯誤!未找到引用源。
(2)由(1)知,錯誤!未找到引用源。,即錯誤!未找到引用源。,若數列錯誤!未找到引用源。為等比數列,則有錯誤!未找到引用源。,而錯誤!未找到引用源。,錯誤!未找到引用源。,錯誤!未找到引用源。,故錯誤!未找到引用源。,解得錯誤!未找到引用源。,再將錯誤!未找到引用源。代入錯誤!未找到引用源。,得錯誤!未找到引用源。,例2.記錯誤!未找到引用源。.對數列錯誤!未找到引用源。和錯誤!未找到引用源。的子集錯誤!未找到引用源。,若錯誤!未找到引用源。,定義錯誤!未找到引用源。;若錯誤!未找到引用源。,定義錯誤!未找到引用源。.例如:錯誤!未找到引用源。時,錯誤!未找到引用源。.現設錯誤!未找到引用源。是公比為3的等比數列,且當錯誤!未找到引用源。時,錯誤!未找到引用源。.錯誤!未找到引用源。
(1)求數列的通項公式;錯誤!未找到引用源。錯誤!未找到引用源。錯誤!未找到引用源。(2)對任意正整數,若,求證:;錯誤!未找到引用源。錯誤!未找到引用源。(3)設,求證:.【答案】(1)錯誤!未找到引用源。(2)詳見解析(3)詳見解析 【解析】
試題分析:(1)根據及時定義,列出等量關系,解出首項,寫出通項公式;(2)根據子集關系,進行放縮,轉化為等比數列求和;(3)利用等比數列和與項的大小關系,確定所定義和的大小關系:設錯誤!未找到引用源。,則錯誤!未找到引用源。因此由錯誤!未找到引用源。,因此錯誤!未找到引用源。中最大項必在A中,由(2)得錯誤!未找到引用源。.試題解析:(1)由已知得錯誤!未找到引用源。.于是當錯誤!未找到引用源。時,錯誤!未找到引用源。.又錯誤!未找到引用源。,故錯誤!未找到引用源。,即錯誤!未找到引用源。.所以數列錯誤!未找到引用源。的通項公式為錯誤!未找到引用源。.(2)因為錯誤!未找到引用源。,錯誤!未找到引用源。,所以錯誤!未找到引用源。.因此,錯誤!未找到引用源。.綜合①②③得,錯誤!未找到引用源。.類型
二、與通項運算相關的不等式 例3.設函數錯誤!未找到引用源。,數列錯誤!未找到引用源。滿足:錯誤!未找到引用源。.(1)求證:錯誤!未找到引用源。時,錯誤!未找到引用源。;(2)求證:錯誤!未找到引用源。(錯誤!未找到引用源。);(3)求證:錯誤!未找到引用源。(錯誤!未找到引用源。). 【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析.
故錯誤!未找到引用源。,則有:錯誤!未找到引用源。錯誤!未找到引用源。例4.已知錯誤!未找到引用源。是數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和,且對任意錯誤!未找到引用源。,有錯誤!未找到引用源。.其中錯誤!未找到引用源。為實數,且錯誤!未找到引用源。.(1)當錯誤!未找到引用源。時,①求數列錯誤!未找到引用源。的通項;
②是否存在這樣的正整數錯誤!未找到引用源。,使得錯誤!未找到引用源。成等比數列?若存在,給出錯誤!未找到引用源。滿足的條件,否則,請說明理由.(2)當錯誤!未找到引用源。時,設錯誤!未找到引用源。,① 判定錯誤!未找到引用源。是否為等比數列;
②設錯誤!未找到引用源。,若錯誤!未找到引用源。對錯誤!未找到引用源。恒成立,求錯誤!未找到引用源。的取值范圍.【答案】(1)①錯誤!未找到引用源。;②不存在;(2)①當錯誤!未找到引用源。且錯誤!未找到引用源。時,數列錯誤!未找到引用源。是以錯誤!未找到引用源。為首項,錯誤!未找到引用源。為公比的等比數列,當錯誤!未找到引用源。時,錯誤!未找到引用源。,不是等比數列;②錯誤!未找到引用源。.
方法、規律歸納: 常見的放縮變形:
(1)錯誤!未找到引用源。,(2)錯誤!未找到引用源。
注:對于錯誤!未找到引用源。還可放縮為:錯誤!未找到引用源。(3)分子分母同加常數:錯誤!未找到引用源。(4)錯誤!未找到引用源。
錯誤!未找到引用源。可推廣為:錯誤!未找到引用源。
錯誤!未找到引用源。實戰演練: 1.【江蘇省無錫市普通高中2018屆高三上學期期中】已知數列錯誤!未找到引用源。滿足錯誤!未找到引用源。記數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。,錯誤!未找到引用源。
(1)求證:數列錯誤!未找到引用源。為等比數列,并求其通項錯誤!未找到引用源。;
(2)求錯誤!未找到引用源。;
(3)問是否存在正整數錯誤!未找到引用源。,使得錯誤!未找到引用源。成立?說明理由.【答案】(1)錯誤!未找到引用源。(2)錯誤!未找到引用源。(3)當錯誤!未找到引用源。為偶數時,錯誤!未找到引用源。都成立,(3)詳見解析
(3)假設存在正整數錯誤!未找到引用源。,使得錯誤!未找到引用源。成立,因為錯誤!未找到引用源。,錯誤!未找到引用源。,所以只要錯誤!未找到引用源。
即只要滿足 ①:錯誤!未找到引用源。,和②:錯誤!未找到引用源。,對于①只要錯誤!未找到引用源。就可以; 對于②,當錯誤!未找到引用源。為奇數時,滿足錯誤!未找到引用源。,不成立,當錯誤!未找到引用源。為偶數時,滿足錯誤!未找到引用源。,即錯誤!未找到引用源。令錯誤!未找到引用源。,因為錯誤!未找到引用源。
即錯誤!未找到引用源。,且當錯誤!未找到引用源。時,錯誤!未找到引用源。,所以當錯誤!未找到引用源。為偶數時,②式成立,即當錯誤!未找到引用源。為偶數時,錯誤!未找到引用源。成立.2.【江蘇省常州市2018屆高三上學期武進區高中數學期中試卷】在數列錯誤!未找到引用源。中,錯誤!未找到引用源。,錯誤!未找到引用源。,錯誤!未找到引用源。,其中錯誤!未找到引用源。.
⑴ 求證:數列錯誤!未找到引用源。為等差數列;
⑵ 設錯誤!未找到引用源。,錯誤!未找到引用源。,數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。,若當錯誤!未找到引用源。且錯誤!未找到引用源。為偶數時,錯誤!未找到引用源。恒成立,求實數錯誤!未找到引用源。的取值范圍;
⑶ 設數列錯誤!未找到引用源。的前錯誤!未找到引用源。項的和為錯誤!未找到引用源。,試求數列錯誤!未找到引用源。的最大值.【答案】⑴見解析⑵錯誤!未找到引用源。⑶錯誤!未找到引用源。
要使錯誤!未找到引用源。對錯誤!未找到引用源。且錯誤!未找到引用源。為偶數恒成立,只要使錯誤!未找到引用源。對錯誤!未找到引用源。且錯誤!未找到引用源。為偶數恒成立,即使錯誤!未找到引用源。對錯誤!未找到引用源。為正偶數恒成立,錯誤!未找到引用源。,錯誤!未找到引用源。,故實數錯誤!未找到引用源。的取值范圍是錯誤!未找到引用源。; ⑶由⑴得錯誤!未找到引用源。,錯誤!未找到引用源。,錯誤!未找到引用源。,錯誤!未找到引用源。,設錯誤!未找到引用源。,錯誤!未找到引用源。,錯誤!未找到引用源。錯誤!未找到引用源。
錯誤!未找到引用源。當錯誤!未找到引用源。時,錯誤!未找到引用源。,即錯誤!未找到引用源。,當錯誤!未找到引用源。時,錯誤!未找到引用源。,即錯誤!未找到引用源。,錯誤!未找到引用源。,因此數列錯誤!未找到引用源。的最大值為錯誤!未找到引用源。.
【點睛】本題考查數列與不等式的綜合應用,涉及等差數列的判定與證明,其中證明(1)的關鍵是分析得到錯誤!未找到引用源。與錯誤!未找到引用源。的關系式.
3.【江蘇省徐州市2018屆高三上學期期中考試】已知數列滿足,且
. 的前項和為,滿足,.數列(1)求數列(2)若和的通項公式;,數列的前項和為,對任意的,(,都有,求實數的取值范圍;
(3)是否存在正整數,使,請說明理由.
【答案】(1)(2))成等差數列,若存在,求出所有滿足條件的,若不存在,(3)不存在
(2)由(1)得于是所以,兩式相減得所以由(1)得因為對 即所以恒成立,都有,,恒成立,記所以因為從而數列于是,為遞增數列,所以當.
(),使
成等差數列,則,時取最小值,(3)假設存在正整數即,若為偶數,則若為奇數,設于是當時,為奇數,而為偶數,上式不成立.,則,與
矛盾;,即,此時
4.已知數列錯誤!未找到引用源。、錯誤!未找到引用源。,其中,錯誤!未找到引用源。,數列錯誤!未找到引用源。滿足錯誤!未找到引用源。,錯誤!未找到引用源。,數列錯誤!未找到引用源。滿足錯誤!未找到引用源。.
(1)求數列錯誤!未找到引用源。、錯誤!未找到引用源。的通項公式;
(2)是否存在自然數錯誤!未找到引用源。,使得對于任意錯誤!未找到引用源。有錯誤!未找到引用源。恒成立?若存在,求出錯誤!未找到引用源。的最小值;
(3)若數列錯誤!未找到引用源。滿足錯誤!未找到引用源。,求數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和錯誤!未找到引用源。.
【答案】(1)錯誤!未找到引用源。;(2)存在,錯誤!未找到引用源。;(3)錯誤!未找到引用源。. 【解析】試題分析:
(1)根據題設條件用累乘法能夠求出數列{an}的通項公式.b1=2,bn+1=2bn可知{bn}是首項為2,公比為2的等比數列,由此能求出{bn}的通項公式.(2)bn=2n.假設存在自然數m,滿足條件,先求出錯誤!未找到引用源。,將問題轉化成錯誤!未找到引用源。可求得錯誤!未找到引用源。的取值范圍;(3)分n是奇數、n是偶數兩種情況求出Tn,然后寫成分段函數的形式。
試題解析:(1)由錯誤!未找到引用源。,即錯誤!未找到引用源。. 又錯誤!未找到引用源。,所以錯誤!未找到引用源。錯誤!未找到引用源。錯誤!未找到引用源。.當錯誤!未找到引用源。時,上式成立,因為錯誤!未找到引用源。,所以錯誤!未找到引用源。是首項為2,公比為2的等比數列,故錯誤!未找到引用源。.(3)當錯誤!未找到引用源。為奇數時,錯誤!未找到引用源。錯誤!未找到引用源。錯誤!未找到引用源。錯誤!未找到引用源。; 當錯誤!未找到引用源。為偶數時,錯誤!未找到引用源。錯誤!未找到引用源。錯誤!未找到引用源。錯誤!未找到引用源。.因此錯誤!未找到引用源。.
點睛:數列求和時,要根據數列項的特點選擇不同的方法,常用的求和方法有公式法、裂項相消法、錯位相減法、分組求和等。
5.【江蘇省啟東中學2018屆高三上學期第一次月考】設數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。,且滿足錯誤!未找到引用源。,錯誤!未找到引用源。為常數.
(1)是否存在數列錯誤!未找到引用源。,使得錯誤!未找到引用源。?若存在,寫出一個滿足要求的數列;若不存在,說明理由.
(2)當錯誤!未找到引用源。時,求證: 錯誤!未找到引用源。.
(3)當錯誤!未找到引用源。時,求證:當錯誤!未找到引用源。時,錯誤!未找到引用源。. 【答案】(1)不存在,理由見解析(2)證明見解析(3)證明見解析
當錯誤!未找到引用源。時,錯誤!未找到引用源。,兩式相減得錯誤!未找到引用源。,即錯誤!未找到引用源。,錯誤!未找到引用源。,錯誤!未找到引用源。,錯誤!未找到引用源。,當錯誤!未找到引用源。時,錯誤!未找到引用源。,即錯誤!未找到引用源。,綜上,錯誤!未找到引用源。.
6.【江蘇省泰州中學2018屆高三上學期開學考試】已知兩個無窮數列的前項和分別為(1)若數列.分別滿足,其中,設數列都為遞增數列,求數列的通項公式;(2)若數列①若數列②若數列滿足:存在唯一的正整數“墜點數列”,求 為“墜點數列”,數列,使得,稱數列為“墜點數列”.為“墜點數列”,是否存在正整數,使得,若存在,求的最大值;若不存在,說明理由.【答案】(1)
.(2)①,② 6.7.【江蘇省南京師范大學附屬中學2017屆高三高考模擬一】已知數集錯誤!未找到引用源。具有性質錯誤!未找到引用源。對任意的錯誤!未找到引用源。,使得錯誤!未找到引用源。成立.(1)分別判斷數集錯誤!未找到引用源。與錯誤!未找到引用源。是否具有性質錯誤!未找到引用源。,并說明理由;
(2)求證: 錯誤!未找到引用源。;
(2)若錯誤!未找到引用源。,求錯誤!未找到引用源。的最小值.【答案】(1)不具有(2)見解析(3)錯誤!未找到引用源。.(2)因為集合錯誤!未找到引用源。具有性質錯誤!未找到引用源。,所以對錯誤!未找到引用源。而言,存在錯誤!未找到引用源。,使得錯誤!未找到引用源。,又因為錯誤!未找到引用源。,所以錯誤!未找到引用源。,所以錯誤!未找到引用源。,同理可得錯誤!未找到引用源。,將上述不等式相加得: 錯誤!未找到引用源。,所以錯誤!未找到引用源。.(3)由(2)可知錯誤!未找到引用源。,又錯誤!未找到引用源。,所以錯誤!未找到引用源。,所以錯誤!未找到引用源。,構成數集錯誤!未找到引用源。,經檢驗錯誤!未找到引用源。具有性質錯誤!未找到引用源。,故錯誤!未找到引用源。的最小值為錯誤!未找到引用源。.點睛:本題是一道新定義的遷移信息并利用信息的信息遷移題。求解第一問時,直接運用題設條件中所提供的條件信息進行驗證即可;解答第二問時,先運用題設條件中定義的信息可得錯誤!未找到引用源。,同理可得錯誤!未找到引用源。,再將上述不等式相加得: 錯誤!未找到引用源。即可獲證錯誤!未找到引用源。;證明第三問時,充分借助(2)的結論可知錯誤!未找到引用源。,又錯誤!未找到引用源。,所以錯誤!未找到引用源。可得錯誤!未找到引用源。,因此構成數集錯誤!未找到引用源。,經檢驗錯誤!未找到引用源。具有性質錯誤!未找到引用源。,進而求出錯誤!未找到引用源。的最小值為錯誤!未找到引用源。.8.記等差數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。.(1)求證:數列錯誤!未找到引用源。是等差數列;
(2)若 錯誤!未找到引用源。,對任意錯誤!未找到引用源。,均有錯誤!未找到引用源。是公差為錯誤!未找到引用源。的等差數列,求使錯誤!未找到引用源。為整數的正整數錯誤!未找到引用源。的取值集合;
(3)記錯誤!未找到引用源。,求證: 錯誤!未找到引用源。.【答案】(1)見解析(2)錯誤!未找到引用源。(3)見解析
解:(1)設等差數列錯誤!未找到引用源。的公差為錯誤!未找到引用源。,則錯誤!未找到引用源。,從而錯誤!未找到引用源。,所以當錯誤!未找到引用源。時,錯誤!未找到引用源。,即數列錯誤!未找到引用源。是等差數列.(2)因為的任意的錯誤!未找到引用源。都是公差為錯誤!未找到引用源。,的等差數列,所以錯誤!未找到引用源。是公差為錯誤!未找到引用源。,的等差數列,又錯誤!未找到引用源。,所以錯誤!未找到引用源。,所以錯誤!未找到引用源。,顯然,錯誤!未找到引用源。滿足條件,當錯誤!未找到引用源。時,因為錯誤!未找到引用源。,所以錯誤!未找到引用源。,所以錯誤!未找到引用源。不是整數,綜上所述,正整數錯誤!未找到引用源。的取值集合為錯誤!未找到引用源。.(3)設等差數列錯誤!未找到引用源。的公差為錯誤!未找到引用源。,則錯誤!未找到引用源。,所以錯誤!未找到引用源。,即數列錯誤!未找到引用源。是公比大于錯誤!未找到引用源。,首項大于錯誤!未找到引用源。的等比數列,記公比為錯誤!未找到引用源。.以下證明: 錯誤!未找到引用源。,其中錯誤!未找到引用源。為正整數,且錯誤!未找到引用源。,因為錯誤!未找到引用源。,所以錯誤!未找到引用源。,所以錯誤!未找到引用源。,當錯誤!未找到引用源。時,錯誤!未找到引用源。,當錯誤!未找到引用源。時,因為錯誤!未找到引用源。為減函數,錯誤!未找到引用源。,所以錯誤!未找到引用源。,所以錯誤!未找到引用源。,綜上,錯誤!未找到引用源。,其中錯誤!未找到引用源。錯誤!未找到引用源。
錯誤!未找到引用源。,即錯誤!未找到引用源。.9.已知數列{an}的前n項和為Sn,數列{bn},{cn}滿足(n+1)bn=an+1錯誤!未找到引用源。,(n+2)cn=錯誤!未找到引用源。,其中n∈N*.
(1)若數列{an}是公差為2的等差數列,求數列{cn}的通項公式;
(2)若存在實數λ,使得對一切n∈N*,有bn≤λ≤cn,求證:數列{an}是等差數列. 【答案】(1)cn=1.(2)見解析.10.已知各項不為零的數列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。,且錯誤!未找到引用源。,錯誤!未找到引用源。,錯誤!未找到引用源。.
(1)若錯誤!未找到引用源。成等比數列,求實數錯誤!未找到引用源。的值;(2)若錯誤!未找到引用源。成等差數列,①求數列錯誤!未找到引用源。的通項公式; ②在錯誤!未找到引用源。與錯誤!未找到引用源。間插入錯誤!未找到引用源。個正數,共同組成公比為錯誤!未找到引用源。的等比數列,若不等式錯誤!未找到引用源。對任意的錯誤!未找到引用源。恒成立,求實數錯誤!未找到引用源。的最大值.
【答案】(1)錯誤!未找到引用源。(2)錯誤!未找到引用源。(3)錯誤!未找到引用源。
(3)錯誤!未找到引用源。,在錯誤!未找到引用源。與錯誤!未找到引用源。間插入錯誤!未找到引用源。個正數,組成公比為錯誤!未找到引用源。的等比數列,故有錯誤!未找到引用源。,即錯誤!未找到引用源。,
第三篇:放縮法證明數列不等式
放縮法證明不等式
1、設數列?an?的前n項的和Sn?
43an?
13?
2n
n?
1?
3(n?1,2,3,?)
n
(Ⅰ)求首項a1與通項an;(Ⅱ)設Tn?
an?4?2
n
n
2Sn
(n?1,2,3,?),證明:?Ti?
i?1
解:易求
Sn?Tn?
(其中n為正整數)
n
n
432
n
an??
n
13?
?2
n?1
??
?
4n
?23
n
??
?2
n?1
?
?
?2
n?1
?1??2?1?
n
Sn
?2
n?1
?1??2?1?
?
1?1?
??n?n?1
?
2?2?12?1?
所以:
?
i?1
Ti?
313?1?
??1?n?1??2?2?12?1?22、求證:(1)
1?1?法1:數歸(兩邊都可以)
法2:放縮裂項 法3:定積分放縮(2)
22??
?n?N)
?
???
1n1n
?
31n?
11n
法1:放縮一:
?
n(n?1)
??
(n?2)
Sn?
??
?
??1n
1n
?(1336
?
?
?
?
52)?(15
??
1653
?
?
???
1n?1
?
1n)
=1?
1336
121400?
??1??1
121400
?1?
23893600(1
?1?
24003600
.放縮二:
1n
1n?1
?
(n?1)(n?1)
?
2n?1
?
n?1),(n?2)
Sn??54
?
?
??
1n
?(11
?
2)?
111111111(?????????)22435n?2nn?1n?1
?
1111151115
(???)??(?)?.223nn?142233
放縮三:
1n
?
1n?
?(n?
112)(n?
12)
?(1n?
?
1n?
12)?2(12n?1
?
12n?1),(n?1)
Sn?
?
?
??
1n
?1?2(13
?
?
?
???
12n?1
?
12n?1)?1?2(13
?
12n?1)?
法2:數歸——加強命題:常用的放縮公式:
1n(n?1)
2n?
n?1?
1n
???
1n
?
?
1n
?
1n(n?1)1n
;n?
n?1?2n?n?
n?1;
???n
n?
2n?1;
ab
?
a?mb?m
(b?a?0,m?0)
1k
?
k(k?1)(k?1)?
1n?11k(k?1)
?
?1?11*
?(k?2,k?N)??
2?k(k?1)k(k?1)?
1n?k?
n?kn1k!?
?
1n?2
?...?
?
kn?11
(k?3)
(k?2)
;2?12
n?1n
k!k(k?1)(k?2)
n
an?
例3:已知:
?1
(n?N
?),求證:?ai?
i?1
n2
?
法1:均值不等式:即證
?
?
715n2
?...?
2?12
n?1
n
?1
?
?
n2
也即:
?
?
715
?...?
2?12
n
n?1
n
?1
?
而
:
?
?
715
?...?
2?12
n?1
?1
?n
???
法2:放縮后裂項求和
an?
2?1212
n?1n
?1?(?
2?12(2?1
?
n
n)1
?
?
?
n?1
=
?1
?
?
2?1(2
n?1
n
?1)(2?1)
n
=
?
2?1
n
n?1
?1)
法3:數歸,但是直接去證是不行的,要轉化為一個加強命題
4.定義數列如下:a1?2,an?1?an?an?1,n?N
?
證明:(1)對于n?N恒有an?1?an成立。
2?
?
(2)當n?2且n?N,有an?1?anan?1?a2a1?1成立。
(3)1?
2006
?
1a1
?
1a2
???
1a2006
?1。
解:(1)用數學歸納法易證。
(2)由an?1?an?an?1得:an?1?1?an(an?1)?an?1?an?1(an?1?1)……
a2?1?a1(a1?1)以上各式兩邊分別相乘得:
an?1?1?anan?1?a2a1(a1?1),又a1?2?an?1?anan?1?a2a1?1(3)要證不等式1?
2006
?
1a1
?
1a2
???
1a2006
?1,可先設法求和:
1a1
?
1a2
???
a2006,再進行適當的放縮。
?an?1?1?an(an?1)
?
1an?1?11an1a1
?
1an?1
?
1an
??
1an?11a2
?
1an?1?11a2006
?????
?(1a1?11
?
1a2?11)?(1a2?1
?
1a3?1)???(1a2006?1
?
1a2007?1)
?
a1?1
?
a2007?11
?1?
a1a2?a2006
?1
又a1a2?a2006?a1
2006
?2
2006
?1?
1a1a2?a2006
?1?
2006
?原不等式得證。
5.已知數列?an?中an?
i
i
n
nn
2?1,求證:?ai(ai?1)?3.i?1
方法一:ai(ai?1)?
n
i
2?12?1
?
i
i
i
(2?1)(2?2)
?
i
i?1
i?1
(2?1)(2?1)
?
i?1
?1
?
12?1
i
.?
?
i?1
ai(ai?1)?
(2?1)
?(12?1
?
12?1)?(12?1
?
12?1)???(12
n?1
?1
?
12?1
n)?3?
12?1
n
?3.方法二:
ai(ai?1)?
i
i
(2?1)
?
i
12?2?
i
?
12?2
i
?
122?
i
?
2?2
i
i?1
.(i?2)
n
?
?
i?1
ai(ai?1)?2?
?
???
n?1
?2?(1?
12)?3?n?1
n?1
?3.n
法3:數歸證?
?
i?1
ai(ai?1)?3?
12?1
n
?3.(即轉化為證明加強命題)
6、已知函數f?x??ln?1?x??x,數列?an?滿足:
a1?
2,ln2?lnan?1?an?1an?f
?an?1an?.
(1)求證:ln?1?x??x;(2)求數列?an?的通項公式;
(3)求證不等式:a1?a2???an?n?ln2?ln?n?2?. 解:(1)f?x??ln?1?x??x,f'?x??
11?x
?1??
x1?x,當?1?x?0時,f'?x??0,即y?f(x)是單調遞增函數;當x?0時,f'?x??0,即y?f(x)是單
調遞減函數.
所以f'?0??0,即x?0是極大值點,也是最大值點
f?x??ln?1?x??x?f?0??0?ln?1?x??x,當x?0時取到等號.(2)法1:數學歸納法(先猜想,再證明)
法2:由ln2?lnan?1?an?1an?f?an?1an?得2an?1?an?1an?1,an?1?
12?an,an?1?1?
12?an
?1?
an?12?an,1an?1?
1?
1an?1
?1,即數列?
?
?1
??2,公差為?1,是等差數列,首項為?
a?11?an?1?
nn?1
∴
an?1
??n?1?an?
.
(3)法1:
a1?a2???an?1?
11?1
?1?
12?1
???1?
11??1
?n???????
23n?1n?1??
又∵x?0時,有x?ln?1?x?,令x?
1n?1?1?2
?0,則
1?n?2?
?ln?1??ln ?n?1n?1?n?1?1
∴n??
?
3???
345n?1n?2???
?n?ln?ln?ln???ln?ln??? n?1?234nn?1??n?
2?n?2
?n?l?n??
n?1?2
?n??ln?
?
?343
???ln?2
n? ?nl?
∴a1?a2???an?n?ln2?ln?n?2? . 法2:積分法要證原命題,即證:?
?1?2
?
??ln(n?2)?ln2 n?1?1
????
11??1???????3n?1??2
?1?2
n?2
?
1x
dx?lnx
n?22
法3:數歸證明:?7.1、(1)求證:2
n
?
???
?
??ln(n?2)?ln2 n?1?
?
?2n?1(n?2,n?N)
nn?1n01
法1:2?Cn?Cn?...?Cn?Cn;
法2:數學歸納法 法3:函數法(求導)
8.若n?N,證明:()+()+…+(n
n
*
n
n
n?1n)+(n
nn)?
n
ee?1
提示:借助e?1?x證明
x
第四篇:放縮法證明數列不等式經典例題
放縮法證明數列不等式
主要放縮技能: 1.1111111???2??? nn?1n(n?1)nn(n?1)n?1n
114411????2(?)
22n4n?1(2n?1)(2n?1)2n?12n?1n2?4
2.???? ????2)
? ??
??
??
?
? 4.2n2n2n?1115.n ????(2?1)2(2n?1)(2n?2)(2n?1)(2n?1?1)2n?1?12n?16.n?22(n?1)?n11??? n(n?1)?2n?1n(n?1)?2n?1n?2n(n?1)?2n?1
x2?x?n*c?(n?N)例1.設函數y?的最小值為,最大值為,且abnnn2x?1
(1)求cn;(2)證明:
例2.證明:16?1?
例3.已知正項數列?an?的前n項的和為sn,且an?
2(1)求證:數列sn是等差數列; 11117?????? 444c14c2c3cn4????17 1?2sn,n?N*; an??
(2)解關于數列n的不等式:an?1?(sn?1?sn)?4n?8
(3)記bn?2sn,Tn?331111?Tn??????
?,證明:1 2b1b2b3bn
例4.已知數列?an?滿足:?n?2?an?an?1; ?是公差為1的等差數列,且an?1?nn??
(1)求an;(2
????2 例5.在數列?an?中,已知a1?2,an?1an?2an?an?1;
(1)求an;(2)證明:a1(a1?1)?a2(a2?1)?a3(a3?1)???an(an?1)?3
2n?1an例6.數列?an?滿足:a1?2,an?1?; n(n?)an?22
5112n
(1)設bn?,求bn;(2)記cn?,求證:?c1?c2?c3???cn? 162n(n?1)an?1an
例7.已知正項數列?an?的前n項的和為sn滿足:sn?1,6sn?(an?1)(an?2);
(1)求an;
(2)設數列?bn?滿足an(2n?1)?1,并記Tn?b1?b2?b3???bn,b
求證:3Tn?1?log2n
(a?3)(函數的單調性,貝努力不等式,構造,數學歸納法)
例8.已知正項數列?an?滿足:a1?1,nan?1(n?1)an??1,anan?1
記b1?a1,bn?n[a1?
(1)求an;
(2)證明:(1?
2111????](n?2)。222a2a3an?11111)(1?)(1?)?(1?)?4 b1b2b3bn4
第五篇:利用放縮法證明不等式舉例
利用放縮法證明不等式舉例
高考中利用放縮方法證明不等式,文科涉及較少,但理科卻常常出現,且多是在壓軸題中出現。放縮法證明不等式有法可依,但具體到題,又常常沒有定法,它綜合性強,形式復雜,運算要求高,往往能考查考生思維的嚴密性,深刻性以及提取和處理信息的能力,較好地體現高考的甄別功能。本文旨在歸納幾種常見的放縮法證明不等式的方法,以冀起到舉一反三,拋磚引玉的作用。
一、放縮后轉化為等比數列。
例1.{bn}滿足:b1?1,bn?1?bn?(n?2)bn?
3(1)用數學歸納法證明:bn?n
(2)Tn?
解:(1)略
(2)?bn?1?3?bn(bn?n)?2(bn?3)
又?bn?n
?bn?1?3?2(bn?3),n?N
迭乘得:bn?3?
2?n?1211111???...?,求證:Tn? 3?b13?b23?b33?bn2*(b1?3)?2n?1 11?n?1,n?N* bn?32
?Tn?1111111 ???...????234n?1n?12222222
2點評:把握“bn?3”這一特征對“bn?1?bn?(n?2)bn?3”進行變形,然后去
掉一個正項,這是不等式證明放縮的常用手法。這道題如果放縮后裂項或者用數學歸納法,似乎是不可能的,為什么?值得體味!
二、放縮后裂項迭加
例2.數列{an},an?(?1)
求證:s2n?n?11,其前n項和為sn
n
2解:s2n?1?
令bn?11111 ???...??2342n?12n1,{bn}的前n項和為Tn 2n(2n?1)
1111?(?)2n(2n?2)4n?1n當n?2時,bn?
?s2n?Tn?
?111111111111???(?)?(?)?...?(?)
212304344564n?1n71 ??104n2
點評:本題是放縮后迭加。放縮的方法是加上或減去一個常數,也是常用的放縮手法。值得注意的是若從第二項開始放大,得不到證題結論,前三項不變,從第四項開始放大,命題才得證,這就需要嘗試和創新的精神。
例3.已知函數f(x)?ax?b?c(a?0)的圖象在(1,f(1))處的切線方程為 x
y?x?
1(1)用a表示出b,c
(2)若f(x)?lnx在[1,??)上恒成立,求a的取值范圍
(3)證明:1?
解:(1)(2)略
(3)由(II)知:當a?111n ??...??ln(n?1)?23n2(n?1)1時,有f(x)?lnx(x?1)2
111令a?,有f(x)?(x?)?lnx(x?1).22x
11且當x?1時,(x?)?lnx.2x
k?1??11k?1k111令x?,有ln?[?]?[(1?)?(1?)], kk2kk?12kk?1
111即ln(k?1)?lnk?(?),k?1,2,3,?,n.2kk?1
將上述n個不等式依次相加得
ln(n?1)?
整理得 11111?(????)?, 223n2(n?1)
1?111n?????ln(n?1)?.23n2(n?1)
點評:本題是2010湖北高考理科第21題。近年,以函數為背景建立一個不等關系,然后對變量進行代換、變形,形成裂項迭加的樣式,證明不等式,這是一種趨勢,應特別關注。當然,此題還可考慮用數學歸納法,但仍需用第二問的結論。
三、放縮后迭乘
例4
.a1?1,an?1?1(1?4an?n?N*).16
(1)求a2,a3
(2)
令bn?{bn}的通項公式
(3)已知f(n)?6an?1?3an,求證:f(1)f(2)f(3)...f(n)?
解:(1)(2)略 1 2
21n1n1()?()? 3423
13231?f(n)?n?n?2?n?n?1?1?n 42424
111211(1?n)(1?n?1)1?n?n?2n?11?n1?1?n???11141?n?11?n?11?n?1444
11?n?f(n)?1?n?14
11111?1?21?n1?n?...??1?f(1)f(2)...f(n)?1?11?11?122
n?144由(2)得an?
點評:裂項迭加,是項項相互抵消,而迭乘是項項約分,其原理是一樣的,都似多米諾骨牌效應。只是求n項和時用迭加,求n項乘時用迭乘。