久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

初一數學上冊知識點

時間:2019-05-13 13:50:22下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《初一數學上冊知識點》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《初一數學上冊知識點》。

第一篇:初一數學上冊知識點

榮升教育----------初中數學一對一輔導中心

初一數學(上)應知應會的知識點

代數初步知識

1.代數式:用運算符號“+ - ×÷??”連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)

2.列代數式的幾個注意事項:

(1)數與字母相乘,或字母與字母相乘通常使用“· ” 乘,或省略不寫;

(2)數與數相乘,仍應使用“×”乘,不用“· ”乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×11

2應寫成a; 2

33(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式; a

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做

a-b和b-a.3.幾個重要的代數式:(m、n表示整數)

(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;

(2)若a、b、c是正整數,則兩位整數是: 10a+b,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是: 5m+n;偶數是:2n,奇數是:2n+1;三個連續整數

是:n-

1、n、n+1;

(4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是: a2,非正數是:-a2.有理數

1.有理數:

(1)凡能寫成q

p(p,q為整數且p?0)形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數

統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正

榮升教育----------初中數學一對一輔導中心

數;?不是有理數;

?

?正有理數?

(2)有理數的分類:① 有理數?零

?

?負有理數?

?正整數?

?正分數?負整數?

?負分數

?

?整數?

② 有理數?

?

?分數?

?正整數??零?負整數??正分數?

?負分數

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)自然數? 0和正整數;a>0 ? a是正數;a<0 ? a是負數;

a≥0 ? a是正數或0 ? a是非負數;a≤ 0 ? a是負數或0 ? a是非正數.2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;(2)注意: a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;(3)相反數的和為0 ? a+b=0 ? a、b互為相反數.4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(a?0)?a

(a?0)??a

(2)絕對值可表示為:a??0(a?0)或a?? ;絕對值的問題經常分類討論;

?a(a?0)????a(a?0)

aa

aa

(3)

?1?a?0;

??1?a?0;

ab

ab

(4)|a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|,?

.5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0??;(3)正數

大于一切負數;(4)兩個負數比大小,絕對值大的反而??;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.-2-

榮升教育----------初中數學一對一輔導中心

6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那么a的倒數是;倒數是本身的a1

數是±1;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.7.有理數加法法則:

(1)同號兩數相加,取相同的符號,并把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;(3)一個數與0相加,仍得這個數.8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).10 有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.11 有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,即13.有理數乘方的法則:(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n , 當

n為正偶數時:(-a)n =an或(a-b)n=(b-a)n.14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

a0

無意義.榮升教育----------初中數學一對一輔導中心

(3)a2是重要的非負數,即a2≥0;若a2+|b|=0 ? a=0,b=0;

0.1?0.01?

?2

?1?1

(4)據規律2??底數的小數點移動一位,平方數的小數點移動二位.10?100??????????????

15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫

科學記數法.16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.19.特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.整式的加減

1.單項式:在代數式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數式叫單項式.2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.3.多項式:幾個單項式的和叫多項式.4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.?單項式整式整式分類為:.?

多項式?

榮升教育----------初中數學一對一輔導中心

6.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.7.合并同類項法則:系數相加,字母與字母的指數不變.8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.9.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列.一元一次方程

1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2.等式的性質:

等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式; 等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.3.方程:含未知數的等式,叫方程.4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.7.一元一次方程的標準形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).8.一元一次方程的最簡形式: ax=b(x是未知數,a、b是已知數,且a≠0).9.一元一次方程解法的一般步驟: 整理方程 ?? 去分母 ?? 去括號 ?? 移項 ?? 合并同類項 ?? 系數化為1 ??(檢驗方程的解).10.列一元一次方程解應用題:

(1)讀題分析法:???? 多用于“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量

榮升教育----------初中數學一對一輔導中心的關系填入代數式,得到方程.(2)畫圖分析法: ???? 多用于“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.11.列方程解應用題的常用公式:

(1)行程問題:距離=速度·時間速度?

距離時間

時間?

距離速度;

工作量工效

(2)工程問題:工作量=工效·工時工效?

工作量工時

工時?

部分比率;

(3)比率問題:部分=全體·比率比率?

部分全體

全體?;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價格問題:售價=定價·折·(6)周長、面積、體積問題:C

110,利潤=售價-成本,利潤率?

售價?成本

成本

?100%;

S圓=πR,C長方形=2(a+b),S長方形=ab,C圓=2πR,正方形

=4a,S正方形=a,S環形=π(R-r),V長方體=abc,V正方體=a,V圓柱=πRh,V

圓錐=πRh.

第二篇:初一上冊數學知識點最新

初一上冊數學知識點最新有哪些你知道嗎?教學中教師要鼓勵、引導學生在感性材料的基礎上,理解數學概念或通過數量關系,進行簡單的判斷、推理,從而掌握最基礎的知識,一起來看看初一上冊數學知識點最新,歡迎查閱!

初一上冊數學知識點整理

一、:代數初步知識。

1.代數式:用運算符號“+-×÷……”連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)

2.列代數式的幾個注意事項:

(1)數與字母相乘,或字母與字母相乘通常使用“?”乘,或省略不寫;

(2)數與數相乘,仍應使用“×”乘,不用“?”乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a.二、:幾個重要的代數式(m、n表示整數)。

(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;

(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續整數是:n-1、n、n+1;

(4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2.三、:有理數。

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)有理數的分類:①②

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

(3)

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:初一上冊知識點絕對值的問題經常分類討論;

(3)

(4)|a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.四、:有理數法則及運算規律。

(1)同號兩數相加,取相同的符號,并把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.2.有理數加法的運算律:

(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).3.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).4.有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.5.有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.6.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,.7.有理數乘方的法則:

(1)正數的任何次冪都是正數;

五、:乘方的定義。

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

(3)

(4)據規律底數的小數點移動一位,平方數的小數點移動二位.2.3.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.4.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.5.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.6.特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.六、:整式的加減。

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。

或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.3.多項式:幾個單項式的和叫多項式.4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)是常見的兩個二次三項式.5.整式:單項式和多項式統稱為整式.七、:整式分類為。

1.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.2.合并同類項法則:系數相加,字母與字母的指數不變.3.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.4.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.5.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列.八、:一元一次方程

1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!

2.等式的性質:

等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.3.方程:含未知數的等式,叫方程.4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!

5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數化為1……(檢驗方程的解).九、:列一元一次方程解應用題。

(1)讀題分析法:…………多用于“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.(2)畫圖分析法:…………多用于“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.十、:.列方程解應用題的常用公式。

初一上期數學知識點總結

第一章有理數

(一)正負數1.正數:大于0的數。2.負數:小于0的數。

3.0即不是正數也不是負數。

4.正數大于0,負數小于0,正數大于負數。

(二)有理數1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數??梢詫懗蓛蓚€整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點后的數字是無限不循環的。如:π)2.整數:正整數、0、負整數,統稱整數。3.分數:正分數、負分數。

(三)數軸1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)2.數軸的三要素:原點、正方向、單位長度。3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

(四)有理數的加減法

1.先定符號,再算絕對值。2.加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。

5.a-b=a+(-b)減去一個數,等于加這個數的相反數。

(五)有理數乘法(先定積的符號,再定積的大小)

1.同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。

2.乘積是1的兩個數互為倒數。3.乘法交換律:ab=ba

4.乘法結合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac

(六)有理數除法

1.先將除法化成乘法,然后定符號,最后求結果。

2.除以一個不等于0的數,等于乘這個數的倒數。

3.兩數相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數,都得0。

(七)乘方

1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)

2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。

3.同底數冪相乘,底不變,指數相加。

4.同底數冪相除,底不變,指數相減。

(八)有理數的加減乘除混合運算法則

1.先乘方,再乘除,最后加減。

2.同級運算,從左到右進行。

3.如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

(九)科學記數法、近似數、有效數字。

第二章整式

(一)整式1.整式:單項式和多項式的統稱叫整式。2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。3.系數:一個單項式中,數字因數叫做這個單項式的系數。4.次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。5.多項式:幾個單項式的和叫做多項式。6.項:組成多項式的每個單項式叫做多項式的項。7.常數項:不含字母的項叫做常數項。8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。9.同類項:多項式中,所含字母相同,并且相同字母的指數也相同的項叫做同類項。10.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。

(二)整式加減整式加減運算時,如果遇到括號先去括號,再合并同類項。1.去括號:一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同。如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反。2.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變。

初一上冊數學知識點總結

有理數及其運算板塊:

1、整數包含正整數和負整數,分數包含正分數和負分數。

正整數和正分數通稱為正數,負整數和負分數通稱為負數。

2、正整數、0、負整數、正分數、負分數這樣的數稱為有理數。

3、絕對值:數軸上一個數所對應的點與原點的距離叫做該數的絕對值,用“||”表示。

整式板塊:

1、單項式:由數與字母的乘積組成的式子叫做單項式。

2、單項式的次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數。

3、整式:單項式與多項式統稱整式。

4、同類項:字母相同,并且相同字母的指數也相同的項叫做同類項。

一元一次方程。

1、含有未知數的等式叫做方程,使方程左右兩邊的.值都相等的未知數的值叫做方程的解。

2、移項:把等式一邊的某項變號后移到另一邊,叫做移項等。

其實,七年級上冊數學知識點總結還包括很多,但是我想,萬變不離其宗。

大家平時要注意整理與積累。配合多加練習。一些知識要點及時記錄在筆記本上,一些錯題也要及時整理、復習。一個個知識點去通過。我相信只要做個有心人,就可以在數學考試中取得高分。

第三篇:初一數學上冊知識點

初一數學上冊知識點:整式的加減

本文為大家介紹的是初一數學上冊知識點,是有關整式的加減法的,希望同學們熟記這些公式并能靈活的運用。

1.單項式:在代數式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數式叫單項式.2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.3.多項式:幾個單項式的和叫多項式.4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.整式分類為:.6.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.7.合并同類項法則:系數相加,字母與字母的指數不變.8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.9.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列.

第四篇:初一數學上冊知識點總結

初一數學(上)知識點

代數初步知識

1.代數式:用運算符號+

×

÷

連接數及字母的式子稱為代數式(單獨一個數或一個字

母也是代數式)

2.幾個重要的代數式:(m、n

表示整數)

(1)a

b的平方差是:

a

2-b2;

a

b

差的平方是:(a-b)

2;

(2)若

a、b、c

是正整數,則兩位整數是:

10a+b,則三位整數是:100a+10b+c;

(3)若

m、n

是整數,則被

除商

m

n的數是:

5m+n

;偶數是:2n,奇數是:

2n+1;三個連續整數是:

n-1、n、n+1;

有理數

1.有理數:

(1)凡能寫成qp

(p,q為整數且p

1

0)

形式的數,都是有理數.正整數、0、負整數統稱整數;正

分數、負分數統稱分數;整數和分數統稱有理數.注意:0

即不是正數,也不是負數;-a

一定是負數,+a

也不一定是正數;p不是有理數;

ì

ì正整數

?正分數

ì

?

ì正整數

?正有理數í

?

整數í零

?

?

(2)有理數的分類:

??負整數

ì正分數

有理數í零

有理數í

?

?

?

?

ì負整數

?負分數

?負有理數í

?分數í

?負分數

(3)注意:有理數中,1、0、-1

是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)自然數?

0

和正整數;a>0

?

a

是正數;a<0

?

a

是負數;

a≥0

?

a

是正數或

0

?

a

是非負數;a≤

0

?

a

是負數或

0

?

a

是非正數.2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是

0;

(2)注意:

a-b+c的相反數是-a+b-c;a-b的相反數是

b-a;a+b的相反數是-a-b;

(3)相反數的和為

0

?

a+b=0

?

a、b

互為相反數.4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是

0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

ìa

(a

0)

?

ìa

(a

3

0)

?

(2)

絕對值可表示為:

a

=

í0

(a

=

0)

a

=

a

(a

0)

;絕對值的問題經常分類討論;

í

?-

a

(a

0)

?

a

a

(3)

=1?

a

0;

=

-1?

a

0;

a

a

a

(4)

|a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|,=

a

.b

b

5.有理數比大?。海?)正數的絕對值越大,這個數越大;(2)正數永遠比

0

大,負數永

遠比

0

??;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)

數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數

0,小數-大數

0.1

6.互為倒數:乘積為

1的兩個數互為倒數;注意:0

沒有倒數;若

a≠0,那么

a的倒數是;

a

倒數是本身的數是±1;若

ab=1?

a、b

互為倒數;若

ab=-1?

a、b

互為負倒數.7.有理數加法法則:

(1)同號兩數相加,取相同的符號,并把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

(3)一個數與

0

相加,仍得這個數.8.有理數加法的運算律:

(1)加法的交換律:a+b=b+a

;(2)加法的結合律:(a+b)+c=a+(b+c).9.有理數減法法則:減去一個數,等于加上這個數的相反數;即

a-b=a+(-b).10

有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個

數決定.11

有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac

.a

12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,即

無意義.0

13.有理數乘方的法則:

(1)正數的任何次冪都是正數;

(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當

n

為正奇數時:

(-a)

-b)

=-(b-a),當

n

為正偶數時:

(-a)

=a

(a-b)

=(b-a)

14.乘方的定義:

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

(3)a

是重要的非負數,即

a

≥0;若

a

+|b|=0

?

a=0,b=0;的形式,其中

a

是整數數位只有一位的n

=-a

n

或(a

n

n

n

n

n

n

.2

15.科學記數法:把一個大于

10的數記成a×10

n

數,這種記數法叫科學記數法.16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似

數的有效數字.18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學

計算的最重要的原則.19.特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能

用于證明.整式的加減

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中

不含字母的一類代數式叫單項式.2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.3.多項式:幾個單項式的和叫多項式.4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多

項式的項;多項式里,次數最高項的次數叫多項式的次數;注意:(若

a、b、c、p、q

是常數)ax

+bx+c

x

+px+q

是常見的兩個二次三項式.2

5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.ì

單項式

整式分類為:整式

?

多項式

6.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.7.合并同類項法則:系數相加,字母與字母的指數不變.8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;

若括號前邊是“-”號,括號里的各項都要變號.9.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到

?。┡帕衅饋?,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一

般應該進行升冪(或降冪)排列.一元一次方程

1.等式的性質:

等式性質

1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質

2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.2.方程:含未知數的等式,叫方程.3.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!

4.一元一次方程:只含有一個未知數,且未知數的次數是

1,并且含未知數項的系數不是

零的整式方程是一元一次方程.7.一元一次方程的標準形式:

ax+b=0(x

是未知數,a、b

是已知數,且

a≠0).8.一元一次方程的最簡形式:

ax=b(x

是未知數,a、b

是已知數,且

a≠0).9.一元一次方程一般步驟:整理方程

。去分母

…去括號

…移項

合并同類項

系數化

(檢驗方程的解).10.列方程解應用題的常用公式:

周長、面積、體積問題:C

=2πR,S

=πR

2,C

長方形=2(a+b),S

長方形=ab,C

正方形=4a,圓

S

正方形=a

2,S

環形=π(R

-r

2),V

長方體=abc,V

正方體=a

3,V

圓柱=πR

h,V

圓錐=

πR

h.3

相交線與平行線

一、知識網絡結構

二、知識要點

1、在同一平面內,兩條直線的位置關系有

種:

相交

平行,垂直

是相交的一種

特殊情況。

2、在同一平面內,不相交的兩條直線叫

平行線

。如果兩條直線只有

一個

公共點,稱這

兩條直線相交;如果兩條直線

沒有

公共點,稱這兩條直線平行。

3、兩條直線相交所構成的四個角中,有

公共頂點

且有

一條公共邊的兩個角是

鄰補角。鄰補角的性質:

鄰補角互補

。如圖

所示,與

互為鄰補角,與

互為鄰補角。

+

=

180°;

+

=

180°;

+

=

180°;

+

=

180°。

4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為

對頂角

。對頂角的性質:對頂角相等。如圖

所示,與

互為對頂角。

=

;

=。

5、兩條直線相交所成的角中,如果有一個是

直角或

90°時,稱這兩條直線互相垂直,其中一條叫做另一條的垂線。如圖

所示,當

=

90°時,⊥。

垂線的性質:

性質

1:過一點有且只有一條直線與已知直線垂直。

性質

2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

性質

3:如圖

所示,當

a

b

時,=

=

=

=

90°。

點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

6、同位角、內錯角、同旁內角基本特征:

①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣的兩個角叫

同位角

。圖

中,共有

對同位角:

是同位角;

是同位角;

是同位角;

是同位角。

②在兩條直線(被截線)

之間,并且在第三條直線(截線)的兩側,這樣的兩個角叫

內錯

。圖

中,共有

對內錯角:

是內錯角;

是內錯角。

③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫

同旁

內角

。圖

中,共有

對同旁內角:

是同旁內角;

是同旁內角。

7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

平行線的性質:

性質

1:兩直線平行,同位角相等。如圖

所示,如果

a∥b,則

=

;

=

;

=

;

=。

性質

2:兩直線平行,內錯角相等。如圖

所示,如果

a∥b,則

=

;

=。

性質

3:兩直線平行,同旁內角互補。如圖

所示,如果

a∥b,則

+

=

180°;

+

=

180°。

性質

4:平行于同一條直線的兩條直線互相平行。如果

a∥b,a∥c,則

∥。

8、平行線的判定:

判定

1:同位角相等,兩直線平行。如圖

所示,如果

=

=

=

=,則

a∥b。

判定

2:內錯角相等,兩直線平行。如圖

所示,如果

=

=,則

a∥b。

判定

3:同旁內角互補,兩直線平行。如圖

所示,如果

+

=

180°;

+

=

180°,則

a∥b。

判定

4:平行于同一條直線的兩條直線互相平行。如果

a∥b,a∥c,則

∥。

9、判斷一件事情的語句叫命題。命題由

題設

結論

兩部分組成,有

真命題

假命

之分。如果題設成立,那么結論

一定

成立,這樣的命題叫

真命題

;如果題設成立,那

么結論

不一定

成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真

命題叫定理,它可以作為繼續推理的依據。

10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移

變換,簡稱平移。

平移后,新圖形與原圖形的形狀

大小

完全相同。平移后得到的新圖形中每一點,都是

由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。

平移性質:平移前后兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。

第六章

實數

【知識點一】實數的分類

1、按定義分類:

2.按性質符號分類:

注:0

既不是正數也不是負數.【知識點二】實數的相關概念

1.相反數

(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是

0.(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.(3)互為相反數的兩個數之和等于

0.a、b

互為相反數

a+b=0.2.絕對值

|a|≥0.3.倒數

(1)0

沒有倒數

(2)乘積是

1的兩個數互為倒數.a、b

互為倒數

.4.平方根

(1)如果一個數的平方等于

a,這個數就叫做

a的平方根.一個正數有兩個平方根,它們互為

相反數;0

有一個平方根,它是

0

本身;負數沒有平方根.a(a≥0)的平方根記作.(2)一個正數

a的正的平方根,叫做

a的算術平方根.a(a≥0)的算術平方根記作

.5.立方根

如果

x3=a,那么

x

叫做

a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方

根;零的立方根是零.【知識點三】實數與數軸

數軸定義:

規定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.【知識點四】實數大小的比較

1.對于數軸上的任意兩個點,靠右邊的點所表示的數較大.2.正數都大于

0,負數都小于

0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.3.無理數的比較大小:

【知識點五】實數的運算

1.加法

同號兩數相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數相加,取絕對值

較大的加數的符號,并用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得

0;一

個數同

0

相加,仍得這個數.2.減法:減去一個數等于加上這個數的相反數.3.乘法

幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因

數有奇數個時,積為負.幾個數相乘,有一個因數為

0,積就為

0.4.除法

除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除.0

除以任何一個不等于

0的數都得

0.5.乘方與開方

(1)an

所表示的意義是

n

a

相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.(2)正數和

0

可以開平方,負數不能開平方;正數、負數和

0

都可以開立方.(3)零指數與負指數

【知識點六】有效數字和科學記數法

1.有效數字:

一個近似數,從左邊第一個不是

0的數字起,到精確到的數位為止,所有的數字,都叫做

這個近似數的有效數字.2.科學記數法:

把一個數用

(1≤

<10,n

為整數)的形式記數的方法叫科學記數法.第七章

平面直角坐標系

一、知識網絡結構

二、知識要點

1、有序數對:有順序的兩個數

a

b

組成的數對叫做有序數對,記做(a,b)。

2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

3、橫軸、縱軸、原點:水平的數軸稱為

x

軸或橫軸;豎直的數軸稱為

y

軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

4、坐標:對于平面內任一點

P,過

P

分別向

x

軸,y

軸作垂線,垂足分別在x

軸,y

軸上,對應的數

a,b

分別叫點

P的橫坐標和縱坐標,記作

P(a,b)。

5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。

6、各象限點的坐標特點①第一象限的點:橫坐標

0,縱坐標

0;②第二象限的點:橫坐標

0,縱坐標

0;③第三象限的點:橫坐標

0,縱坐標

0;④第四象限的點:橫坐標

0,縱坐標

0。

7、坐標軸上點的坐標特點①x

軸正半軸上的點:橫坐標

0,縱坐標

0;②x

軸負半軸上的點:

橫坐標

0,縱坐標

0;③y

軸正半軸上的點:橫坐標

0,縱坐標

0;④y

軸負半軸上的點:橫

0,縱坐標

0;⑤坐標原點:橫坐標

0,縱坐標

0。(填“>”、“<”或“=”)

8、點

P(a,b)到

x

軸的距離是

|b|,到

y

軸的距離是

|a|。

9、對稱點的坐標特點①關于

x

軸對稱的兩個點,橫坐標

相等,縱坐標

互為相反數;②關于

y

軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關于原點對稱的兩個點,橫坐標、縱

坐標分別互為相反數。

10、點

P(2,3)

x

軸的距離是

;

y

軸的距離是

;

P(2,3)

關于

x

軸對稱的點坐標

為(,);點

P(2,3)

關于

y

軸對稱的點坐標為(,)。

11、如果兩個點的橫坐標

相同,則過這兩點的直線與

y

軸平行、與

x

軸垂直

;如果兩點的縱坐標相同,則過這兩點的直線與

x

軸平行、與

y

軸垂直

。如果點

P(2,3)、Q(2,6),這

兩點橫坐標相同,則

PQ∥y

軸,PQ⊥x

軸;如果點

P(-1,2)、Q(4,2),這兩點縱坐標相同,則

PQ∥x

軸,PQ⊥y

軸。

12、平行于

x

軸的直線上的點的縱坐標相同;平行于

y

軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱

坐標互為相反數。如果點

P(a,b)

在一、三象限角平分線上,則

P

點的橫坐標與縱坐標相

同,即

a

=

b

;如果點

P(a,b)

在二、四象限角平分線上,則

P

點的橫坐標與縱坐標互為相

反數,即

a

=

-b。

13、表示一個點(或物體)的位置的方法:一是準確恰當地建立平面直角坐標系;二是正確寫

出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。

14、圖形的平移可以轉化為點的平移。坐標平移規律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按“左減右

加、上加下減”的規律進行。如將點

P(2,3)向左平移

個單位后得到的點的坐標為(,);

將點

P(2,3)向右平移

個單位后得到的點的坐標為(,);將點

P(2,3)向上平移

個單位

后得到的點的坐標為(,);將點

P(2,3)向下平移

個單位后得到的點的坐標為(,);將點

P(2,3)先向左平移

個單位后再向上平移

個單位后得到的點的坐標為(,);將點

P(2,3)先向左平移

個單位后再向下平移

個單位后得到的點的坐標為(,);將點

P(2,3)先向

右平移

個單位后再向上平移

個單位后得到的點的坐標為(,);將點

P(2,3)先向右平移

個單位后再向下平移

個單位后得到的點的坐標為(,)。

第八章

二元一次方程組

一、知識網絡結構

二、知識要點

1、含有未知數的等式叫方程,使方程左右兩邊的值相等的未知數的值叫方程的解。

2、方程含有兩個未知數,并且含有未知數的項的次數都是

1,這樣的方程叫二元一次方程,二元一次方程的一般形式為

(為常數,并且)。使二元一次方程的左右兩邊的值相等的未

知數的值叫二元一次方程的解,一個二元一次方程一般有無數組解。

3、方程組含有兩個未知數,并且含有未知數的項的次數都是

1,這樣的方程組叫二元一次

方程組。使二元一次方程組每個方程的左右兩邊的值相等的未知數的值叫二元一次方程組的解,一個二元一次方程組一般有一個解。

4、用代入法解二元一次方程組的一般步驟:觀察方程組中,是否有用含一個未知數的式子

表示另一個未知數,如果有,則將它直接代入另一個方程中;如果沒有,則將其中一個方程

變形,用含一個未知數的式子表示另一個未知數;再將表示出的未知數代入另一個方程中,從而消去一個未知數,求出另一個未知數的值,將求得的未知數的值代入原方程組中的任何

一個方程,求出另外一個未知數的值。

5、用加減法解二元一次方程組的一般步驟:(1)方程組的兩個方程中,如果同一個未知數的系數既不相等又不互為相反數,就用適當的數去乘方程的兩邊,使同一個未知數的系數相等

或互為相反數;(2)把兩個方程的兩邊分別相加或相減,消去一個未知數;(3)解這個一元一次方

程,求出一個未知數的值;(4)將求出的未知數的值代入原方程組中的任何一個方程,求出另

外一個未知數的值,從而得到原方程組的解。

6、解三元一次方程組的一般步驟:①觀察方程組中未知數的系數特點,確定先消去哪個未

知數;②利用代入法或加減法,把方程組中的一個方程,與另外兩個方程分別組成兩組,消

去同一個未知數,得到一個關于另外兩個未知數的二元一次方程組;③解這個二元一次方程

組,求得兩個未知數的值;④將這兩個未知數的值代入原方程組中較簡單的一個方程中,求

出第三個未知數的值,從而得到原三元一次方程組的解。

第九章

不等式與不等式組

一、知識網絡結構

二、知識要點

1、用不等號表示不等關系的式子叫不等式,不等號主要包括:、、≥、≤、≠。

2、在含有未知數的不等式中,使不等式成立的未知數的值叫不等式的解,一個含有未知數的不等式的所有的解組成的集合,叫這個不等式的解集。不等式的解集可以在數軸上表示出

來。求不等式的解集的過程叫解不等式。含有一個未知數,并且所含未知數的項的次數都是

1,這樣的不等式叫一元一次不等式。

3、不等式的性質:

①性質

1:不等式的兩邊同時加上(或減去)同一個數(或式子),不等號的方向

不變。

用字母表示為:

如果,那么

;

如果,那么

;

如果,那么

;

如果,那么。

②性質

2:不等式的兩邊同時乘以(或除以)同一個

正數,不等號的方向

不變。

用字母表示為:

如果,那么

(或);如果,那么

(或);

如果,那么

(或);如果,那么

(或);

③性質

3:不等式的兩邊同時乘以(或除以)同一個

負數,不等號的方向

改變。

用字母表示為:

如果,那么

(或);如果,那么

(或);

如果,那么

(或);如果,那么

(或);

4、解一元一次不等式的一般步驟:①去分母;②去括號;③移項;④合并同類項;

⑤系數化為

。這與解一元一次方程類似,在解時要根據一元一次不等式的具體情況靈活選擇步驟。

5、不等式組中含有一個未知數,并且所含未知數的項的次數都是

1,這樣的不等式組叫一

元一次不等式組。使不等式組中的每個不等式都成立的未知數的值叫不等式組的解,一個不

等式組的所有的解組成的集合,叫這個不等式組的解集解(簡稱不等式組的解)。不等式組的解集可以在數軸上表示出來。求不等式組的解集的過程叫解不等式組。

6、解一元一次不等式組的一般步驟:①求出這個不等式組中各個不等式的解集;②利用數軸

求出這些不等式的解集的公共部分,得到這個不等式組的解集。如果這些不等式的解集的沒

有公共部分,則這個不等式組無解

(此時也稱這個不等式組的解集為空集)。

7、求出各個不等式的解集后,確定不等式組的解的口訣:大大取大,小小取小,大小小大

取中間,大大小小無處找。

第十章

數據的收集、整理與描述

知識要點

1、對數據進行處理的一般過程:收集數據、整理數據、描述數據、分析得出結論。

2、數據收集過程中,調查的方法通常有兩種:全面調查和抽樣調查。

3、除了文字敘述、列表、劃記法外,還可以用條形圖、折線圖、扇形圖、直方圖來描述數

據。

4、抽樣調查簡稱抽查,它只抽取一部分對象進行調查,根據調查數據推斷全體對象的情況。

要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總

體的一個樣本,樣本中個體的數目叫這個樣本的容量。

5、畫頻數直方圖的步驟:①計算數差(最大值與最小值的差);②確定組距和組數;③列頻數分

布表;④畫頻數直方圖。

第五篇:初一數學上冊知識點2021

初一數學上冊知識點有哪些你知道嗎?數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬于形式科學的一種。一起來看看初一數學上冊知識點2021,歡迎查閱!

初一上冊數學知識點總結

有理數及其運算板塊:

1、整數包含正整數和負整數,分數包含正分數和負分數。正整數和正分數通稱為正數,負整數和負分數通稱為負數。

2、正整數、0、負整數、正分數、負分數這樣的數稱為有理數。

3、絕對值:數軸上一個數所對應的點與原點的距離叫做該數的絕對值,用“||”表示。

整式板塊:

1、單項式:由數與字母的乘積組成的式子叫做單項式。

2、單項式的次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數。

3、整式:單項式與多項式統稱整式。

4、同類項:字母相同,并且相同字母的指數也相同的項叫做同類項。

一元一次方程。

1、含有未知數的等式叫做方程,使方程左右兩邊的.值都相等的未知數的值叫做方程的解。

2、移項:把等式一邊的某項變號后移到另一邊,叫做移項等。

其實,七年級上冊數學知識點總結還包括很多,但是我想,萬變不離其宗。

大家平時要注意整理與積累。配合多加練習。一些知識要點及時記錄在筆記本上,一些錯題也要及時整理、復習。一個個知識點去通過。我相信只要做個有心人,就可以在數學考試中取得高分。

初一上冊數學知識點整理

一、:代數初步知識。

1.代數式:用運算符號“+-×÷……”連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)

2.列代數式的幾個注意事項:

(1)數與字母相乘,或字母與字母相乘通常使用“?”乘,或省略不寫;

(2)數與數相乘,仍應使用“×”乘,不用“?”乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a.二、:幾個重要的代數式(m、n表示整數)。

(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;

(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續整數是:n-1、n、n+1;

(4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2.三、:有理數。

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)有理數的分類:①②

(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

(4)

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

(3)

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:初一上冊知識點絕對值的問題經常分類討論;

(3)

(4)|a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理數比大?。?1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.四、:有理數法則及運算規律。

(1)同號兩數相加,取相同的符號,并把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.2.有理數加法的運算律:

(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).3.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).4.有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.5.有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.6.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,.7.有理數乘方的法則:

(1)正數的任何次冪都是正數;

五、:乘方的定義。

(1)求相同因式積的運算,叫做乘方;

(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

(3)

(4)據規律底數的小數點移動一位,平方數的小數點移動二位.2.3.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.4.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.5.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.6.特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.六、:整式的加減。

1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.3.多項式:幾個單項式的和叫多項式.4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)是常見的兩個二次三項式.5.整式:單項式和多項式統稱為整式.七、:整式分類為。

1.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.2.合并同類項法則:系數相加,字母與字母的指數不變.3.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.4.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.5.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列.八、:一元一次方程

1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!

2.等式的性質:

等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.3.方程:含未知數的等式,叫方程.4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!

5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數化為1……(檢驗方程的解).九、:列一元一次方程解應用題。

(1)讀題分析法:…………多用于“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.(2)畫圖分析法:…………多用于“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.十、:.列方程解應用題的常用公式。

初一數學上冊知識點

整式的加減

1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。

2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數;

單項式中所有字母指數的和,叫單項式的次數.3.多項式:幾個單項式的和叫多項式.4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;

5..6.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.7.合并同類項法則:系數相加,字母與字母的指數不變.8.去(添)括號法則:

去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.9.整式的加減:一找:(劃線);二“+”(務必用+號開始合并)三合:(合并)

10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).一元一次方程

1.等式:用“=”號連接而成的式子叫等式.2.等式的性質:

等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;

等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.3.方程:含未知數的等式,叫方程.4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!

5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).8.一元一次方程解法的一般步驟:

化簡方程----------分數基本性質

去分母----------同乘(不漏乘)最簡公分母

去括號----------注意符號變化

移項----------變號(留下靠前)

合并同類項--------合并后符號

系數化為1---------除前面

10.列一元一次方程解應用題:

(1)讀題分析法:…………多用于“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.(2)畫圖分析法:…………多用于“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.11.列方程解應用題的常用公式:

(1)行程問題:距離=速度?時間;

(2)工程問題:工作量=工效?工時;

工程問題常用等量關系:先做的+后做的=完成量

(3)順水逆水問題:

順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;水流速度=(順水速度-逆水速度)÷2

順水逆水問題常用等量關系:順水路程=逆水路程

(4)商品利潤問題:售價=定價,;

利潤問題常用等量關系:售價-進價=利潤

下載初一數學上冊知識點word格式文檔
下載初一數學上冊知識點.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    初一數學上冊知識點總結

    初一數學(上)應知應會的知識點 有理數 1.有理數: (1)整數都可以寫成分母為1的分數,只要能化成分數的數都是有理數。 ?π是無限不循環小數,不能寫成分數形式,不是有理數?有限小數和無......

    初一數學上冊知識點總結

    初一數學上冊知識點總結(一)有理數及其運算復習一、有理數的基礎知識1、三個重要的定義:(1)正數:像1、2.5、這樣大于0的數叫做正數;(2)負數:在正數前面加上“-”號,表示比0小的數叫做負......

    初一上冊數學知識點總結

    初一數學(上)的知識點 有理數 1.有理數: (1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-......

    初一數學上冊知識點總結

    清大學習吧--廣元分校讓更多的孩子受到更好的教育初一數學(上)的知識點 有理數 1.有理數: (1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;......

    初一數學知識點

    初一數學知識點 第一冊 第一章 有理數1.正數和負數 以前學過的0以外的數前面加上負號“-”的書叫做負數。 以前學過的0以外的數叫做正數。 數0既不是正數也不是負數,0是正數與......

    初一數學上冊知識點[優秀范文五篇]

    數學是一們基礎學科,我們從小就開始接觸到它?,F在我們已經步入初中,由于初中數學對知識的難度、深度、廣度要求更高,有一部分同學由于不適應這種變化,數學成績總是不如人意。初......

    北師版初一數學上冊知識點[精選合集]

    對世界上的一切學問與知識的掌握也并非難事,只要持之以恒地學習,努力掌握規律,達到熟悉的境地,就能融會貫通,運用自如。學習需要持之以恒。下面是小編給大家整理的一些初一數學的......

    初一數學上冊知識點總結五篇

    人教版初一數學(上冊)人教版 第一章有理數 1.1 正數和負數 閱讀與思考 用正負數表示加工允許誤差 1.3 有理數的加減法 實驗與探究 填幻方 閱讀與思考 中國人最先使用負數 1.4 有......

主站蜘蛛池模板: 236宅宅理论片免费| 99久久综合精品五月天| 无码熟妇人妻av在线影片最多| 国产精品无码一二区免费| 国产一区二区三区久久精品| 久艾草久久综合精品无码| 久久久久国精品产熟女久色| 国产精品毛片va一区二区三区| 亚洲国产日韩a在线乱码| 精品久久久无码人妻字幂| 久久久久成人精品免费播放动漫| 亚洲av纯肉无码精品动漫| 色偷偷噜噜噜亚洲男人| 免费人成再在线观看视频| 久久香蕉国产线看观看怡红院妓院| 男女野外做爰电影免费| 在线观看国产精品日韩av| 欧美 日韩 国产 成人 在线观看| 国产精品爆乳奶水无码视频免费| 成人无码潮喷在线观看| 色欲αv一区二区三区天美传媒| 欧美亚洲国产精品久久高清| 六月丁香综合在线视频| 国产情侣作爱视频免费观看| av在线中文字幕不卡电影网| 丰满的少妇xxxxx青青青| 在线观看无码不卡av| 亚洲性爱视频| 国产成人精品福利一区二区三区| 日日噜噜大屁股熟妇| 国产精品国产三级国产av品爱网| 丝袜足控一区二区三区| 九九在线精品国产| 97日日碰人人模人人澡| 久久精品国产字幕高潮| 国产精品自产拍高潮在线观看| 成年无码av片在线| 国产美女视频免费的| 四虎影视国产精品永久地址| 无码乱人伦一区二区亚洲一| 66lu国产在线观看|