久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

英語專業(yè)論文

時間:2019-05-13 10:15:51下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《英語專業(yè)論文》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《英語專業(yè)論文》。

第一篇:英語專業(yè)論文

英語專業(yè)文學(xué)方向本科畢業(yè)論文寫作問題探究

[摘 要]英語畢業(yè)論文由于從事英美文學(xué)教學(xué)的教師理論水平參差不齊、教師對學(xué)生文藝?yán)碚摻邮苣芰Φ膽岩伞⑸唐方?jīng)濟時代文學(xué)和文藝?yán)碚撉吆凸训纫蛩?造成文學(xué)學(xué)習(xí)和文學(xué)方向畢業(yè)論文寫作中缺乏科學(xué)的分析方法。本研究將探索將文藝?yán)碚撘氡究飘厴I(yè)生的論文寫作課程中的必要性和可行性,從而建構(gòu)以文藝?yán)碚摓橹行牡挠⒄Z專業(yè)文學(xué)方向畢業(yè)論文寫作的新模式。

[關(guān)鍵詞]文學(xué)理論;讀者反映理論;認(rèn)知教學(xué)法

依據(jù)《高等教育法》(1998)的本科教育學(xué)業(yè)標(biāo)準(zhǔn),學(xué)生應(yīng)比較系統(tǒng)地掌握本專業(yè)所必需的基礎(chǔ)理論知識、基本技能和相關(guān)知識,并“具有從事本專業(yè)實際工作和研究工作的初步能力”。這一標(biāo)準(zhǔn)強調(diào)了研究性教學(xué)(research-oriented teaching)的重要性,無疑為英美文學(xué)教學(xué)中理論研究與實踐的有機融合提出了要求,而這種融合往往體現(xiàn)在學(xué)生文學(xué)論文寫作的能力之中。然而,高校中實用主義風(fēng)氣、急功近利思想和“重技能,輕人文”弊端的集中體現(xiàn)沖擊著文學(xué)課教學(xué),助長了學(xué)生輕視與人文修養(yǎng)有關(guān)的課程,助長了他們對文學(xué)作品敬而遠之的傾向(馬愛華, 2006)。作為全面考核畢業(yè)生綜合素質(zhì)的有效途徑,畢業(yè)論文寫作是本科學(xué)生畢業(yè)前必須經(jīng)受的考驗關(guān)口,是師生教學(xué)相長的過程。本文將從文學(xué)課教學(xué)的現(xiàn)狀出發(fā),通過畢業(yè)論文寫作的過程,在揭示現(xiàn)象、總結(jié)經(jīng)驗的基礎(chǔ)上,提出重視文藝?yán)碚摰慕虒W(xué),提高學(xué)生的文學(xué)素養(yǎng),培養(yǎng)研究性學(xué)習(xí)能力的意義。

一、研究現(xiàn)狀

部分專家認(rèn)為英語專業(yè)(張沖, 2003)是“英語語言技能的專業(yè)訓(xùn)練和對英語語言文化的專門研究”,其特征為“技能加專業(yè),復(fù)合而開放”,其培養(yǎng)目標(biāo)為“純熟的語言能力,深度的專題研究”。這一專業(yè)定位除了強調(diào)語言技能之外,著重強調(diào)了“文化”和“研究”。文化理解和專題研究的基礎(chǔ)在于學(xué)生文學(xué)課程的給養(yǎng)過程,其中,文學(xué)理論分析則既指導(dǎo)了文學(xué)課程的學(xué)習(xí),又加深了學(xué)生對文學(xué)作品的理解。文學(xué)作品的學(xué)習(xí)與文藝?yán)碚摰年P(guān)系好比材料和工具的關(guān)系,“工欲善其事,必先利其器”,如果學(xué)生沒有相關(guān)的文藝?yán)碚摰膶W(xué)習(xí),就好比一個沒有工具的工匠,只能望天興嘆。

二、問題成因

文藝?yán)碚撌菍W(xué)習(xí)英美文學(xué)的分析和鑒賞工具,研究生階段的文藝?yán)碚摻虒W(xué)已經(jīng)有了一定的歷史,但在英語專業(yè)本科教學(xué)中文藝?yán)碚摰慕虒W(xué)目前尚未展開。這直接導(dǎo)致學(xué)生的文學(xué)畢業(yè)論文的寫作難度增大,出現(xiàn)了許多亟待解決的問題。主要成因如下:

1.從事英美文學(xué)教學(xué)的教師理論水平參差不齊。部分教師講授英美文學(xué),而其自身很少涉及文藝?yán)碚摰氖褂?或者說自己的文學(xué)批評理論知識匱乏,因此不可能在授課時有意識地將文藝?yán)碚撊谌氲浇虒W(xué)中去。

2.輕視或放低對學(xué)生的人文素質(zhì)和評析能力的生成要求。有些教師擔(dān)心學(xué)生的接受能力,甚至害怕因為學(xué)生不能正確理解文藝?yán)碚摰木瓒鴮⑵湔`用或者濫用。《高等學(xué)校英語專業(yè)英語教學(xué)大綱》(2000)明確規(guī)定了文學(xué)課程的教學(xué)目的“在于培養(yǎng)學(xué)生閱讀、欣賞、理解英語文學(xué)原著的能力,掌握文學(xué)批評的基本知識和方法。通過閱讀和分析英美文學(xué)作品,促進學(xué)生語言基本功和人文素質(zhì)的提高,增強學(xué)生對西方文學(xué)及文化的了解”,顯而易見,加大文學(xué)批評理論的講授和研討是符合《大綱》要求的。

3.所學(xué)知識與研究性寫作存在三個“不和諧”關(guān)系:文學(xué)課的教與學(xué)脫節(jié);文學(xué)課與語言實踐脫節(jié);文學(xué)教學(xué)理論的研究與外語教學(xué)實踐脫節(jié)(馬愛華, 2006)。學(xué)生習(xí)得的知識孤立于其寫作實踐之外。人才培養(yǎng)目標(biāo)不明確,學(xué)生急功近利,一成不變的文學(xué)課程教學(xué)脫離實際人才

培養(yǎng)模式。學(xué)生將文藝?yán)碚撘暈榧埳险劚R蚨?導(dǎo)致“文學(xué)理論教材和教學(xué)實踐逐漸偏離當(dāng)今消費時代的審美精神”以及“文學(xué)理論的教學(xué)被大學(xué)生們冷落”(李迪江, 2002)。

三、文藝?yán)碚撛谖膶W(xué)論文寫作中的意義

1.文學(xué)理論的專業(yè)知識學(xué)習(xí),鋪墊了文學(xué)論文的研究能力。“文學(xué)理論教學(xué)應(yīng)該優(yōu)先地培養(yǎng)大學(xué)生的理論素養(yǎng),更多地培養(yǎng)大學(xué)生的應(yīng)用能力,如從文學(xué)作品的分析討論中,來培養(yǎng)大學(xué)生的理解能力、分析能力和表達能力等(李迪江, 2002)”。本科學(xué)生已經(jīng)有了一定的文學(xué)常識,至少對于著名作品的情節(jié)有了一定程度的了解,文學(xué)名著選讀課使用文學(xué)名著的原版書籍作為教材,使得學(xué)生有機會對文學(xué)文本進行仔細(xì)研讀,為文藝?yán)碚摰膶W(xué)習(xí)奠定了基礎(chǔ)。

2.畢業(yè)論文寫作,完成學(xué)生從讀者到理論分析的升華。Guerin認(rèn)為,“讀者參與在文本的創(chuàng)作中”。作品的意義是文本和讀者相互作用的結(jié)果,它強調(diào)讀者在閱讀過程中的不同參與方式。這一理論代表人物之一伊瑟爾指出,所有文學(xué)篇章都有“空白”或“缺口”,這些空白和缺口必須由讀者在解讀過程中填補或具體化(劉辰誕, 1999)。文學(xué)作品須由接受者內(nèi)化和心靈化,即需要接受者的理解、體驗、加工、補充和創(chuàng)造,融入接受者的思想和情感、傾向和評價,只有這樣,作品中的時間、人物形象等才會活生生地呈現(xiàn)在自己的頭腦中(郭宏安, 1997)。從這個角度暴露了英語專業(yè)教育中一貫的“知識單一和技能單一”問題,帶來的思考是應(yīng)該如何培養(yǎng)學(xué)生多種語言技能,滿足其獨立學(xué)習(xí)的需要。

3.文學(xué)史學(xué)習(xí)為文藝?yán)碚摰膶W(xué)習(xí)奠定基礎(chǔ)。心理學(xué)、原型批判、女權(quán)主義、馬克思主義的文學(xué)評論等可將傳統(tǒng)文學(xué)史中作家、作品按照時間排序的方式打破。從各種文藝?yán)碚摰慕嵌葘ψ骷摇⒆髌分匦屡判?不同的文學(xué)作品可以用相同的文藝?yán)碚撨M行分析,既起到梳理文學(xué)史和文學(xué)作品的目的,又使學(xué)生對文學(xué)作品甚至文學(xué)史的認(rèn)識提升到一個新的高度。如:莎士比亞的《哈姆雷特》,尤金?奧尼爾《榆樹下的欲望》,勞倫斯的《兒子與情人》等作品中都蘊含著戀母情結(jié)的心理學(xué)分析。以此為基礎(chǔ),給學(xué)生補充講述古希臘劇作家索福克里斯的著名悲劇作品《俄狄浦斯王》,能幫助學(xué)生探究作品人物的內(nèi)心世界,為論文寫作奠定基礎(chǔ)的同時,也有助于選擇一個更為可行的題目。

4.結(jié)合文本與文藝?yán)碚?豐富學(xué)生的論文選題。學(xué)生文學(xué)專業(yè)畢業(yè)論文選題往往單一,如選擇:《偉大的蓋茨比》中美國夢破滅的主題或美國夢的悲劇一類的主題;《呼嘯山莊》、《傲慢與偏見》中的愛情主題等。選擇經(jīng)典作家的代表作品為研究對象并不是不可以,但對于一般本科生而言,要就這些作品的某一方面進行較為深入、有創(chuàng)意的探討,還是有相當(dāng)難度的。因為,對于某一經(jīng)典文本的某些問題,國內(nèi)外評論界可能早有定論,而一般的學(xué)生“尚不能用當(dāng)代文論的新視角去解讀,很難提出自己的新解”(杜志卿, 2005)。

5.研讀詩歌,理論先行。在歷屆本科英語專業(yè)畢業(yè)生的論文中,有關(guān)詩歌的論文很少有人涉及。究其成因,主要是在較短篇幅的詩歌中大量運用意象和象征等寫作手法,再加上詩人用特有的音韻感和

第二篇:英語專業(yè)論文題目參考

英語專業(yè)論文題目

語言與語言學(xué)類

001 從歷史文化的發(fā)展看某個英語詞或短語的語義演變

002 英詩中常用的修辭

003 英語諺語的修辭手法

004 委婉語種

005 英語中的縮略語

006 英語詞匯中的外來語單詞

007 英語新詞新意探究

008 美國英語的特色

009 如何正確把握英語定語從句(或其他各種從句或語法形式)在句子中的確切含義

010 Fuzzy Words and Their Uses in Human Communication

011 Ambiguity and Puns in English

012 Some basic consideration of style

013 English by Newspaper

014 English Personal Pronouns: a Preliminary Textual Analysis

015 Thematic Network and Text Types

016 An Inquiry into Speech Act Theory

017 On Lexical Cohesion in Expository Writing

018 The Inferences of Conversational Implications

019 Context and Meaning

020 The Construction and Interpretation of Cohesion in Texts 語言教學(xué)類

001 擴大詞匯量和提高英語閱讀能力的關(guān)系

002 提高英語閱讀速度的主要障礙

003 英語閱讀能力和閱讀速度的關(guān)系

004 通過擴大知識面提高英語閱讀能力

005 如何在閱讀實踐中提高英語閱讀能力

006 閱讀英文報刊的好處

007 如何處理精讀和泛讀的關(guān)系

008 如何對付英語閱讀材料中的生詞

009 如何通過閱讀擴大詞匯量

010 提高閱讀能力和提高英語聽力的關(guān)系

011 英語聽說讀寫四種技能的關(guān)系

012 通過英語閱讀提高英語寫作能力

013 英語快速閱讀能力的構(gòu)成成分

014 中學(xué)生英語自主學(xué)習(xí)能力的培養(yǎng)

015 英語教學(xué)中的語言焦慮及解決策略

016 簡筆畫-英語教學(xué)中簡單高效的教學(xué)手段

017 提高英語聽力理解能力的策略和技巧

018 電子辭典與英語教學(xué)

019 普通話對英語語音的遷移作用

020 母語遷移在基礎(chǔ)教育各階段中的作用

021 提高大班課堂教學(xué)的效果

022 《英語課程標(biāo)準(zhǔn)》研究

023 口語教學(xué)中教師的角色

024 從心理學(xué)角度探討少兒英語教學(xué)

025 英語課堂提問的策略研究

026 英語后進生產(chǎn)生的原因以及補差方法研究

027 英語詞匯教學(xué)方法探討

028 小學(xué)生英語口語能力評估方法研究

029 朗讀在英語教學(xué)中的作用

030 任務(wù)型教學(xué)法研究

031 方言對學(xué)生英語語音的影響

032 英語閱讀課堂教學(xué)模式探討

033 英語課堂的合作學(xué)習(xí)策略研究

034 中學(xué)生英語學(xué)習(xí)策略的培養(yǎng)

035 探究式教學(xué)法在中學(xué)英語教學(xué)中的應(yīng)用

036 現(xiàn)代信息技術(shù)在英語教學(xué)中的應(yīng)用

037 教師教學(xué)行為對高中生英語學(xué)習(xí)的影響

038 實施成功教育減少兩極分化

039 小學(xué)英語活動課教學(xué)模式研究

040 中學(xué)英語聽力訓(xùn)練最佳方案

041 原版電影與英語學(xué)習(xí)

042 中學(xué)生英語興趣的培養(yǎng)

043 《瘋狂英語》(或各種教學(xué)方式)的利與弊

044 張思中教學(xué)法實踐調(diào)查報告

045 如何杜絕中式英語

046 英語教師的文化素養(yǎng)

047 網(wǎng)絡(luò)時代如何學(xué)好英語

048 背景知識與閱讀理解

049 上下文在閱讀理解中的作用

050 家庭教師在中學(xué)生英語學(xué)習(xí)中的利弊

051 中學(xué)英語教學(xué)現(xiàn)狀分析

052 中學(xué)英語課堂上的Daily Report

053 中外教師解釋課文方法比較

054 中外教師課堂提問方法比較

055 中外教師課堂鼓勵性用語比較

056 中外教師對學(xué)生總體要求之比較

057 計算機輔助英語教學(xué)中的諸問題

058 不同種類的計算機輔助英語教學(xué)方式

059 計算機輔助英語教學(xué)中的教學(xué)法原則

060 The Instructive Meaning of Inter-language Pragmatics for foreign Language Teaching

061 Pedagogical Translation and Translation Teaching

062 The Importance of Cultural Authenticity in Teaching Materials

063 Micro-teaching and Student Teacher Training

064 How to Evaluate the Teacher www.tmdps.cn Performance-A Case Study 065 English Test Design 066 The Interference of Native Language in English Writing or Translation 067 Translation Methods and English Teaching

第三篇:英語專業(yè)論文開場白

Good afternoon, Distinguished professors and teachers.I am Gu Danni From the class of English translation.First, I would like to express my sincere gratitude to my supervisor, Ms.Wang, for her intellectual guidance, invaluable instructions and comments on my thesis.It is with her valuable assistance that I have finally accomplished this paper.The title of my paper is Strategies in Humor Translation of American Sitcom Friends.As a vital part in translation, the translation of humor in subtitle is gradually capturing an increasing attention and developing into an independent research field.The purpose of the paper is to explore the interpretation of verbal humor in American sitcoms Friends under the guidance of the Functional Equivalence Theory, with the hope of helping people express humor and understand humor effectively.The final goal of translating a sitcom is to ensure that the target audience can get the humor and appreciate it in the exactly the same manner as the original audiences do,here is an outline of my presentation and I divide my paper into five parts.Part one and two presents an introduction of this study and Nida’s Functional Equivalence Theory, Part three makes a clear illustration of the different categories of humor in Friends,and discussed the features of language.Then I apply these strategies to the subtitling of Friends featuring humorous language.Part five draws some conclusions that translators should try to find appropriate strategies to convey the humorous effect and make the cross-cultural communication smoothly.I hope the paper can provide some insightful opinions for the improvement of humor translation in American sitcoms.However, due to limited time and resources, the paper may have some deficiency, and there is still a long way to go..I’m looking forward to your sincere comments and suggestions.That’s all.Thank you.

第四篇:英語專業(yè)論文翻譯

A smart copper(II)-responsive binucleargadolinium(III)complex-based magnetic resonanceimaging contrast agent?

Yan-meng Xiao,ab Gui-yan Zhao,ab Xin-xiu Fang,ab Yong-xia Zhao,ab Guan-hua Wang,c Wei Yang*a and Jing-wei Xu*a A novel Gd-DO3A-type bismacrocyclic complex, [Gd2(DO3A)2BMPNA], with a Cu2+-selective binding unitwas synthesized as a potential “smart” copper(II)-responsive magnetic resonance imaging(MRI)contrast agent.The relaxivity of the complex was modulated by the presence or absence of Cu2+;in the absence of Cu2+, the complex exhibited a relatively low relaxivity value(6.40 mM1 s1), while the addition of Cu2+ triggered an approximately 76% enhancement in relaxivity(11.28 mM1 s1).Moreover, this Cu2+-responsive contrast agent was highly selective in its response to Cu2+ over other biologically-relevant metal ions.The influence of some common biological anions on the Cu2+-responsive contrast agent and the luminescence lifetime of the complex were also studied.The results of the luminescence lifetime measurements indicated that the enhancement in relaxivity was mainly ascribed to the increased number of inner-sphere water molecules binding to the paramagnetic Gd3+ core upon the addition of Cu2+.In addition, the visual change associated with the significantly enhanced relaxivity due to the addition of Cu2+ was observed from T1-weighted phantom images.Introduction Copper(II)ion is a vital metal nutrient for the metabolism of life and plays a critical role in various biological processes.1,2 Its homeostasis is critical for the metabolism and development of living organisms.3,4 On the other hand, the disruption of its homeostasis may lead to a variety of physical diseases and neurological problems such as Alzheimer's disease,5 Menkes and Wilson's disease,6 amyotrophic lateral sclerosis,7,8 and prion disease.9,10 Therefore, the assessment and understanding of the distribution of biological copper in living systems by noninvasive imaging is crucial to provide more insight into copper homeostasis and better understand the relationship between copper regulation and its physiological function.A wide variety of organic uorescent dyes have been exploited for the optical detection of ions in the last few decades.11–13However, optical imaging using organic uorescent dyes hasseveral limitations such as photobleaching, light scattering,limited penetration, low spatial resolution and the disturbance of auto uorescence.14 By comparison, magnetic resonance imaging(MRI)is an increasingly accessible technique used as a noninvasive clinical diagnostic modality for medical diagnosis and biomedical research.15 It can provide high spatial resolution three-dimensional anatomical images with information about physiological signals and biochemical events.16 As a powerful diagnostic imaging tool in medicine, MRI can distinguish normal tissue from diseased tissue and lesions in a noninvasive manner,17–19 which avoids diagnostic thoracotomy or laparotomy surgery for medical diagnoses and greatly improves the diagnostic efficiency.Multiple MRI imaging parameters can provide a wealth of diagnostic information.In addition, the desired cross-section for acquiring multi-angle and multi-planar images of various parts of the entire body can be freely chosen by adjusting the MRI magnetic eld;this ability makes medical diagnostics and studies of the body's metabolism and function more and more effective and convenient.Contrast agents are often used in MRI examinations to improve the resolution and sensitivity;the image quality can be signicantly improved by applying contrast agents which enhance the MRI signal intensity by increasing the relaxation rates of the surrounding water protons.20 Due to the high magnetic moment(seven unpaired electrons)and slow electronic relaxation of the

paramagnetic gadolinium(III)ion, gadolinium(III)-based MRI contrast agents are commonly employed to increase the relaxation rate of the surrounding water protons.16,21 However, most of these contrast agents are nonspecific and provide only anatomical information.On the basis of Solomon–Bloembergen–Morgan theory,22–24 several parameters can be manipulated to alter the relaxivity of gadolinium(III)-based MRI contrast agents.These parameters include the number of coordinated water molecules(q), the rotational correlation time(sR)and the residence lifetime of coordinated water molecules bound to the paramagnetic Gd3+ center(sM).Adjusting any of these three factors provides the opportunity to design “smart” MRI contrast agents for specific biochemical events.25–27 In recent years, there have been many studies on the development of responsive gadolinium(III)-based MRI contrast agents;most of them have focused on the development of targeted, high relaxivity and bioactivated contrast agents.These responsive gadolinium(III)-based MRI contrast agents can be modulated by particular in vivo stimuli including pH,28–35 metal ion concentration36–43 and enzyme activity.44–50 Notably, a number of copper-responsive MRI contrast agents have been reported to detect uctuations of copper ions in vivo.51–58 These activated contrast agents exploit the modulation of the number of coordinated water molecules to generate distinct enhancements in longitudinal relaxivity in response to copper ions(Cu+ or Cu2+).In this study, we designed and synthesized a binuclear gadolinium-based MRI contrast agent, [Gd2(DO3A)2BMPNA], that is specically responsive to Cu2+ over other biologicallyrelevant metal ions.The new copper-responsive MRI contrast agent comprises two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold59,60(BMPNA), which functions as a receptor for copper-induced relaxivity switching.The synthetic strategy for [Gd2(DO3A)2BMPNA] is depicted in Scheme 1.Subsequently, the T1 relaxivity of [Gd2(DO3A)2BMPNA] was studied at 25 C and 60 MHz in the absence or presence of Cu2+.Experiments to determine the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+ over other biologically-relevant ions were carried out as well.Luminescence lifetime was measured to determine the number of coordinated water molecules(q)of [Gd2(DO3A)2BMPNA] in the absence or presence of Cu2+.In addition, T1-weighted phantom images were collected to visualize the relaxivity enhancement caused by Cu2+, suggesting potential in vivo applications.Experimental section

Materials and instruments

All materials for synthesis were purchased from commercial suppliers and used without further purication.1H and 13C NMR spectra were taken on an AMX600 Bruker FT-NMR spectrometer with tetramethylsilane(TMS)as an internal standard.Luminescence measurements were performed on a Hitachi Fluorescence spectrophotometer-F-4600.The time-resolved luminescence emission spectra were recorded on a Perkin-Elmer LS-55 uorimeter with the following conditions: excitation wavelength, 295 nm;emission wavelength, 545 nm;dela time, 0.02 ms;gate time, 2.00 ms;cycle time, 20 ms;excitation slit, 5 nm;emission slit, 10 nm.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Mass spectra(MS)were obtained on an auto ex III TOF/TOF MALDI-MS and anIonSpec ESI-FTICR mass spectrometer.Elemental analyses were performed on a Vario EL Element Analyzer.Synthesis Synthesis of compound 3.Methyl 2,6-bis(3-(bromomethyl)-1H-pyrazol-1-yl)isonicotinate(Compound1)59,60 and 4,7,10-tris(2-(tert-butoxy)-2-oxoethyl)-4,7,10-triaza-azoniacyclododecan-1-ium bromide(Compound 2)61 were prepared following thereported methods.Compound 2(0.25 g, 0.296 mmol)was suspended in 2 ml anhydrous acetonitrile with 6 equivalents of NaHCO3(0.1492 g)and the mixture was stirred at room temperature for 0.5 h.Compound 1(0.0675 g, 0.148 mmol)was added, and the mixture was slowly heated to reflux(80 C)and stirred overnight.After the reaction was terminated, the mixture was cooled to room temperature, and the solution was ltered.The precipitate was washed several times with anhydrous acetonitrile, and the collected ltrate solution was evaporated under reduced pressure.The residue was puried using silicagel column chromatography eluted with CH2Cl2–n-hexane–CH3OH(10 : 3 : 1, v/v/v)to afford Compound 3(0.1038 g, 53%)as a pale yellow solid.1H NMR(600 MHz, DMSO): 8.22(s, 2H), 8.15(s, 2H), 6.62(s, 2H), 4.53(s, 4H), 3.82(s, 3H), 3.42(m, 4H), 2.98(m, 8H), 2.85(s, 8H), 2.71(m, 24H), 1.33(s, 54H)(Fig.S1?).13C NMR(151 MHz, CDCl3): d 173.21, 172.44, 163.99, 152.38, 150.11, 143.13, 128.07, 109.83, 108.36, 82.59, 57.84, 56.52, 56.06, 55.56, 52.98, 50.55, 48.91, 47.30, 27.96(Fig.S2?).HRMS(ESI): m/z calc.for C67H111N13O14 [M + 2H]2+ 661.92650, [M + H + Na]2+ 672.91747, [M + 2Na]2+ 683.90844, found [M + 2H]2+ 661.92584, [M+ H + Na]2+ 672.91690, [M + 2Na]2+ 683.90682(Fig.S3?).Synthesis of compound 4.Compound 3(0.1 g, 0.0756 mmol)was stirred with triuoroacetic acid in methylene chloride solution(2 ml)at room temperature for 24 h.The solvent was then evaporated under reduced pressure, and the residue was washed three times in CH3OH and CH2Cl2 to eliminate excess acid.The obtained residue was dissolved with a minimum volume of CH3OH and precipitated with cold Et2O.The precipitate was ltered to afford a brown yellow solid(0.1022 g).1H NMR(600 MHz, DMSO): 9.06(s, 2H), 8.17(s, 2H), 6.84(s, 2H), 4.33(s, 4H), 3.98(s, 3H), 3.56(b, 20H), 3.09(m, 24H)(Fig.S4?).13C NMR(151 MHz, D2O): d 174.11, 169.13, 164.64, 150.75, 148.85, 142.10, 129.88, 109.75, 107.99, 55.69, 54.01, 53.10, 52.43, 51.15, 49.59, 48.22, 47.69(Fig.S5?).MALDI-TOFMS spectrum(CH3OH): m/z calc.for C43H63N13O14 [M H] 984.46, found 984.7(Fig.S6?).Anal calc.for C43H63N13O14-$3CF3COOH$2H2O: C, 43.14;H, 5.17;N, 13.35;found C, 42.34;H, 4.999;N, 13.29%.Preparation of [Gd2(DO3A)2BMPNA] and [Tb2(DO3A)2-BMPNA].Compound 4(0.05 mmol)was dissolved in 2 ml of highly-puried water.GdCl3 or TbCl3(0.1 mmol)was added dropwise.The pH was maintained at 6.5–7.0 with NaOH during the whole process.The solution was then stirred at 75 C for 24 h.MALDI-MS(H2O): m/z calc.for C42H55N13O14Gd2 [M + H]+ 1281.46, found 1281.4(Fig.S7?).MALDI-MS(H2O): m/z calc.for C42H55N13O14Tb2 [M + H]+ 1284.3, found 1284.4(Fig.S8?).T1 measurements.The longitudinal relaxation times(T1)of aqueous solutions of [Gd2(DO3A)2BMPNA] were measured on an HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd)at 1.5 T.All of the tested samples were prepared in HEPES-buffered aqueous solutions at pH 7.4.All of the metal ions(Na+, K+, Ca2+, Mg2+, Cu2+, Zn2+, Fe3+, Fe2+)were used as chloride salts.Concentrations of Gd3+ were determined by ICP-OES.Relaxivities were determined from the slope of the plot of 1/T1 vs.[Gd].The data were tted to the following eqn(1),20

(1/T1)obs ?(1/T1)d + r1[M](1)

where(1/T1)obs and(1/T1)d are the observed values in the presence and absence of the paramagnetic species, respectively, and [M] is the concentration of paramagnetic [Gd].Luminescence measurements.Luminescence emission spectra were collected on a Hitachi uorescence spectrophotometer-F-4600.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Samples were excited at 290 nm, and the emission maximum(545 nm)was used to determine luminescence lifetimes.The Tb(III)-based emission spectra were measured using 0.1 mM solutions of Tb complex analog in 100 mM HEPES buffer at pH 7.4 in H2O and D2O in the absence and presence of Cu2+.The number of coordinated water molecules(q)was calculated according to eqn(2):62,63 q= ? 5(sH2O1 sD2O1 0.06)(2)T1-weighted MRI phantom images.Phantom images were collected on a 1.5 T HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd).Instrument parameter settings were as follows: 1.5 T magnet;matrix =256 256;slice thickness =1 mm;TE= 13 ms;TR= 100 ms;and number of acquisitions =1.Results and discussion Longitudinal relaxivity of [Gd2(DO3A)2BMPNA] in response to copper(II)ion To investigate the inuence of Cu2+ on the relaxivity of [Gd2(DO3A)2BMPNA], the longitudinal relaxivity r1 for the [Gd2(DO3A)2BMPNA] contrast agent was determined using T1 measurements in the absence or presence of Cu2+ at 60 MHz and 25 C using a 0.2mMGd3+ solution of [Gd2(DO3A)2BMPNA] in 100 mM HEPES buffer(pH 7.4)under simulated physiological conditions.The concentrations of Gd3+ were determined by ICP-OES.The relaxivity r1 was calculated from eqn(1).In the absence of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] was 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).64 Upon addition of up to 1 equiv.of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] increased to 11.28 mM1 s1(76% relaxivity enhancement).As shown in Fig.1, the relaxivity gradually increased with the copper ion concentration, reaching a maximum value of approximately 1.2 equivalents of Cu2+.Due to the use of triuoroacetic acid in the synthesis of Compound 4, triuoroacetic acid residues produced CF3COO in the [Gd2(DO3A)2BMPNA] solution, allowing CF3COO to partially coordinate with Cu2+ to form “Chinese lantern” type structure complexes.65 When the amount of added copper ions was further increased to above 1.2 equiv., the relaxivity was maintained at the same level.The observed difference in Cu2+-triggered relaxivity enhancement demonstrated the ability of this contrast agent to sense Cu2+ in vivo by means of MRI.Our designed contrast agent not only exhibited a higher relaxivity, but also displayed a Cu2+-responsive relaxivity enhancement.Selectivity studies The relaxivity response of [Gd2(DO3A)2BMPNA] exhibited excellent selectivity for Cu2+ over a variety of other competing, biologically-relevant metal ions at physiological levels.As depicted in Fig.2(white bars), the addition of alkali metal cations(10 mM Na+, 2 mM K+)and alkaline earth metal cations(2 mM Mg2+, 2 mM Ca2+)did not generate an increase in relaxivity compared to the copper ion turn-on response;even the introduction of d-block metal cations(0.2 mM Fe2+, 0.2 mM Fe3+, 0.2 mM or 2 mM Zn2+)did not trigger relaxivity enhancements.We noted that Zn2+ is also known to replace Gd3+ in transmetalation experiments;however, studies with analogous Gd3+-DO3A complexes demonstrated that this ligand is more kinetically inert to metal-ion exchange.66 To ensure the kinetic stability of the complex, we used MS to monitor [Gd2(DO3A)2BMPNA] in the presence of 1 equiv.of Zn2+.No metal-ion exchange was observed at room temperature after 7 days(Fig.S13?).Relaxivity interference experiments for [Gd2(DO3A)2BMPNA] in the presence of both Cu2+(0.2 mM)and other biologically-relevant metal ions were also conducted;the results are shown as black bars in Fig.2, indicating that these biologically-relevant metal ions(Na+, K+, Mg2+, Ca2+, Fe2+, Fe3+, Zn2+)had no interference on the Cu2+-triggered relaxivity enhancement.In addition, we also tested the Cu2+ response for [Gd2(DO3A)2BMPNA] in the presence of physiologically-relevant concentrations of common biological anions to determine whether the Cu2+-triggered relaxivity enhancement was affected by biological anions at physiological levels.As previously mentioned, Cu2+ binding induced an enhancement in relaxivity from 6.40 mM1 s1 to 11.28 mM1 s1(a 76% increase).As shown in Fig.3, in the presence of citrate(0.13 mM), lactate(0.9 mM), H2PO4(0.9 mM), or HCO3(10 mM), the Cu2+-triggered relaxivity enhancement was approximately 61%(from 6.01 mM1 s1 to 9.66mM1 s1), 66%(from 6.13mM1 s1 to 10.16 mM1 s1), 20%(from 5.88 mM1 s1 to 7.02 mM1 s1), or 55%(from 6.15 mM1 s1 to 9.55 mM1 s1), respectively.Additionally, 100 mM NaCl had almost no effect(an approximately 75% increase), and a simulated extracellular anion solution(EAS, contain 30 mM NaHCO3, 100 mM NaCl, 0.9 mM KH2PO4, 2.3 mM sodium lactate, and 0.13 mM sodium citrate, pH =7),67 resulted in a Cu2+-triggered relaxivity enhancement of approximately 26%(from 6.02 mM1 s1 to 7.56 mM1 s1).Generally, the results revealed that lactate, citrate, and HCO3 had slight impacts on the Cu2+-triggered relaxivity enhancement, while H2PO4 and EAS influenced the enhancement to a greater degree.As shown in Scheme 2, [Gd2(DO3A)2BMPNA] possessed two water molecules after the addition of 1 equiv.Of Cu2+.According to the work of Dickins and coworkers, in lanthanide complexes with two water molecules, the waters can be partially displaced by phosphate, carbonate, acetate, carboxylate, lactate and citrate at different levels.68–70 The influence of these anions on the Cu2+-triggered relaxivity enhancement may be attributed to the partial replacement of coordinated water molecules by these anions.The relatively high concentration of phosphate could likely replace coordinated water molecules to reduce the increased number of water molecules surrounding the paramagnetic Gd3+ centre induced by Cu2+.As shown in Table 1, we measured the number of water molecules in the rst coordination sphere of Tb3+ in the presence of phosphate;the number of coordinated water molecules(q)decreased from 1.5 to 0.8.Coordination features Luminescence lifetime experiments were performed to explore the mechanism of the Cu2+-triggered relaxivity enhancement.Luminescence lifetime measurements of lanthanide complexes have been widely used to quantify the number of inner-sphere water molecules.71 In particular, Tb3+ and Eu3+ have commonly been applied for lifetime measurements because their emission spectra are in the visible region when their 4f electrons are relaxed from higher energy levels to the lowest energy multiplets.72,73 Therefore, the Tb3+ analogue of [Gd2(DO3A)2BMPNA], [Tb2(DO3A)2BMPNA], was prepared according to a similar method, and the luminescence lifetimes of the Tb3+ analogue in HEPES-buffered H2O and D2O in the absence and presence of Cu2+ were measured.As shown in Fig.S9,? the luminescence decay curve of [Tb2(DO3A)2BMPNA] was tted to obtain the luminescence lifetimes74(Table 1), and the number of coordinated water molecules(q)was calculated by eqn(2).The analysis results(Table 1)for [Tb2(DO3A)2BMPNA] in HEPES-bufferedH2OandD2O in the absence and presence of Cu2+ indicated that q increased from 0.6 to 1.5 upon the addition of 1 equiv.of Cu2+;this result indicated that the Cu2+-triggered relaxivity enhancement for [Gd2(DO3A)2BMPNA] was most likely due to the increased number of coordinated water molecules around the Gd3+ ion upon Cu2+ binding to the pyrazole centre(Scheme 2).Aer the addition of Cu2+, Cu2+ removed the pyrazole centre N atom from the paramagnetic Gd3+ ion to generate an open coordination site available for a water molecule.Luminescence emission titrations of [Tb2(DO3A)2BMPNA] towards Cu2+ were also performed to investigate the binding properties of the contrast agent towards Cu2+.Upon addition of 1 equiv.Cu2+, the luminescence of [Tb2(DO3A)2BMPNA] at 545 nm decreased gradually and reached a minimum due to the quenching nature of the paramagnetic Cu2+(Fig.S10?).The titration data indicated a 1 : 1 binding stoichiometry(Scheme 2)Copper-responsive T1-weighted phantom MRI in vitro To demonstrate the potential feasibility of this Cu2+-responsive [Gd2(DO3A)2BMPNA] for copper-imaging applications, T1-weighted phantom images of [Gd2(DO3A)2BMPNA] were acquired in the absence and presence of copper ions.The phantom images depicted in Fig.4 displayed distinct increases in image intensity in the presence of 1 equiv.Cu2+ compared with those without Cu2+(Fig.4D).Moreover, some of the other competing metal ions were also tested to further verify the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+.Discernible differences were not observed upon the addition of Mg2+(Fig.4C), Zn2+(Fig.4E), or Ca2+(Fig.4F).In addition, we also tested the clinical contrast agent Magnevist(Fig.4G);the image intensity was a bit darker than that of our contrast agent.Conclusions

In conclusion, we designed and synthesized a novel bismacrocyclic DO3A-type Cu2+-responsive MRI contrast agent, [Gd2(DO3A)2BMPNA].The new Cu2+-responsive MRI contrast agent comprised two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold(BMPNA)that functioned as a Cu2+ receptor switch to induce a distinct relaxivity enhancement in response to Cu2+;the relaxivity was increased up to 76%.Importantly, the complex exhibited high selectivity for Cu2+ over a range of other biologically-relevant metal ions at physiological levels.Luminescence lifetime experiment results showed that the number of inner-sphere water molecules(q)increased from 0.6 to 1.5 upon the addition of 1 equiv.Cu2+.When Cu2+ was coordinated in the central part of the complex, the donor N atom of the pyrazole centre was removed from the paramagnetic Gd3+ ion and replaced by a water molecule(Scheme 2).Consequently, the Cu2+-triggered relaxivity enhancement could be ascribed to the increase in the number of inner-sphere water molecules.The designed contrast agent had a longitudinal relaxivity of 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).In addition, the visual change associated with the signicantly enhanced relaxivity from the addition of Cu2+ was observed in T1-weighted phantom images.Acknowledgements We are grateful to the State Key Laboratory of Electroanalytical Chemistry for nancial support.Notes and references 1 S.Puig and D.J.Thiele, Curr.Opin.Chem.Biol., 2002, 6, 171.2 S.C.Leary, D.R.Winge and P.A.Cobine, Biochim.Biophys.Acta, Gen.Subj., 2009, 146, 1793.3 D.D.Agranoff and S.Krishna, Mol.Microbiol., 1998, 28, 403.4 H.Kozlowski, A.Janicka-Klos, J.Brasun, E.Gaggelli, D.Valensin and G.Valensin, Coord.Chem.Rev., 2009, 253, 2665.5 K.J.Barnham, C.L.Masters and A.I.Bush, Nat.Rev.Drug Discovery, 2004, 3, 205.6 D.J.Waggoner, T.B.Bartnikas and J.D.Gitlin, Neurobiol.Dis., 1999, 6, 221.7 J.S.Valentine and P.J.Hart, Proc.Natl.Acad.Sci.U.S.A., 2003, 100, 3617.8 L.I.Bruijn, T.M.Miller and D.W.Cleveland, Annu.Rev.Neurosci., 2004, 27, 723.9 G.L.Millhauser, Acc.Chem.Res., 2004, 37, 79.10 D.R.Brown and H.Kozlowski, Dalton Trans., 2004, 1907.11 A.W.Czarnik, Acc.Chem.Res., 1994, 27, 302.12 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.13 H.N.Kim, M.H.Lee, H.J.Kim, J.S.Kim and J.Yoon, Chem.Soc.Rev., 2008, 37, 1465.14 M.Mahmoudi, V.Serpooshan and S.Laurent, Nanoscale, 2011, 3, 3007.15 P.A.Rinck, Magnetic Resonance Imaging, Blackwell Science, Berlin, 4th edn, 2001, p.149.16 A.E.Merbach and ′E.T′oth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Ltd., New York, 2001.17 S.Aime, E.Terreno, D.D.Castelli and A.Viale, Chem.Rev., 2010, 110, 3019.18 S.Aime, M.Fasano and E.Terreno, Chem.Soc.Rev., 1998, 27, 19.19 M.Woods, D.E.Woessner and A.D.Sherry, Chem.Soc.Rev., 2006, 35, 500.20 R.B.Lauffer, Chem.Rev., 1987, 87, 901.21 J.Kowalewski, D.Kruk and J.Parigi, Adv.Inorg.Chem., 2005, 57, 42.22 I.Solomon, Phys.Rev., 1955, 99, 559.23 N.Bloembergen, J.Chem.Phys., 1957, 27, 572.24 N.Bloembergen and L.O.Morgan, J.Chem.Phys., 1961, 34, 842.25 E.L.Que and C.J.Chang, Chem.Soc.Rev., 2010, 39, 51.26 C.S.Bonnet and ′E.T′oth, Future Med.Chem., 2010, 2, 367.27 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.28 S.Aime, S.G.Crich, M.Botta, G.Giovenzana, G.Palmisano and M.Sisti, Chem.Commun., 1999, 1577.29 J.Hall, R.Haner, S.Aime, M.Botta, S.Faulkner, D.Parker and A.S.de Sousa, New J.Chem., 1998, 22, 627.30 M.P.Lowe and D.Parker, Chem.Commun., 2000, 707.31 S.Aime, A.Barge, M.Botta, D.Parker and A.S.De Sousa, J.Am.Chem.Soc., 1997, 119, 4767.32 S.Aime, F.Fedeli, A.Sanino and E.Terreno, J.Am.Chem.Soc., 2006, 128, 11326.33 M.P.Lowe, D.Parker, O.Reany, S.Aime, M.Botta, G.Castellano, E.Gianolio and R.Pagliarin, J.Am.Chem.Soc., 2001, 123, 7601.34 R.Hovland, C.Glogard, A.J.Aasen and J.Klaveness, J.Chem.Soc., Perkin Trans.2, 2001, 929.35 ′E.T′oth, R.D.Bolskar, A.Borel, G.Gonz′alez, L.Helm, A.E.Merbach, B.Sitharaman and L.J.Wilson, J.Am.Chem.Soc., 2004, 127, 799.36 W.H.Li, S.E.Fraser and T.J.Meade, J.Am.Chem.Soc., 1999, 121, 1413.37 K.Dhingra, M.E.Maier, M.Beyerlein, G.Angelovski and N.K.Logothetis, Chem.Commun., 2008, 3444.38 H.Hifumi, A.Tanimoto, D.Citterio, H.Komatsu and K.Suzuki, Analyst, 2007, 132, 1153.39 L.M.De Le′on-Rodr′?guez, A.J.M.Lubag, J.A.L′opez, G.Andreu-de-Riquer, J.C.Alvarado-Monz′on and A.D.Sherry, MedChemComm, 2012, 3, 480.40 R.Trokowski, J.Ren, F.K.Kalman and A.D.Sherry, Angew.Chem., Int.Ed., 2005, 44, 6920.41 W.S.Li, J.Luo, F.Jiang and Z.N.Chen, Dalton Trans., 2012, 41, 9405.42 K.Hanaoka, K.Kikuchi, Y.Urano and T.Nagano, J.Chem.Soc., Perkin Trans.2, 2001, 1840.43 R.Ruloff, G.v.Koten and A.E.Merbach, Chem.Commun., 2004, 842.44 M.Giardiello, M.P.Lowe and M.Botta, Chem.Commun., 2007, 4044.45 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.46 W.Xu and Y.Lu, Chem.Commun., 2011, 47, 4998.47 R.A.Moats, S.E.Fraser and T.J.Meade, Angew.Chem., Int.Ed., 1997, 36, 726.48 A.Y.Louie, M.M.Huber, E.T.Ahrens, U.Rothbacher, R.Moats, R.E.Jacobs, S.E.Fraser and T.J.Meade, Nat.Biotechnol., 2000, 18, 321.49 B.Yoo and M.D.Pagel, J.Am.Chem.Soc., 2006, 128, 14032.50 Q.Wei, G.K.Seward, P.A.Hill, B.Patton, I.E.Dimitrov, N.N.Kuzma and I.J.Dmochowski, J.Am.Chem.Soc., 2006, 128, 13274.51 E.L.Que and C.J.Chang, J.Am.Chem.Soc., 2006, 128, 15942.52 E.L.Que, E.Gianolio, S.L.Baker, A.P.Wong, S.Aime and C.J.Chang, J.Am.Chem.Soc., 2009, 131, 8527.53 E.L.Que, E.Gianolio, S.L.Baker, S.Aime and C.J.Chang, Dalton Trans., 2010, 39, 469.54 W.S.Li, J.Luo and Z.N.Chen, Dalton Trans., 2011, 484.55 E.L.Que, E.J.New and C.J.Chang, Chem.Sci., 2012, 3, 1829.56 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.57 D.Kasala, T.S.Lin, C.Y.Chen, G.C.Liu, C.L.Kao, T.L.Cheng and Y.M.Wang, Dalton Trans., 2011, 5018.58 D.Patel, A.Kell, B.Simard, B.Xiang, H.Y.Lin and G.Tian, Biomaterials, 2011, 32, 1167.59 E.Brunet, O.Juanes, R.Sedano and J.C.Rodr′?guez-Ubis, Photochem.Photobiol.Sci., 2002, 1, 613.60 Z.Q.Ye, G.L.Wang, J.X.Chen, X.Y.Fu, W.Z.Zhang and J.L.Yuan, Biosens.Bioelectron., 2010, 26, 1043.61 S.Mizukami, K.Tonai, M.Kaneko and K.Kikuchi, J.Am.Chem.Soc., 2008, 130, 14376.62 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.63 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.64 P.Caravan, J.J.Ellison, T.J.McMurry and R.B.Laufer, Chem.Rev., 1999, 99, 2293.65 O.G.Polyakov, B.G.Nolan, B.P.Fauber, S.M.Miller, O.P.Anderson and S.H.Strauss, Inorg.Chem., 2000, 39, 1735.66 M.F.Tweedle, J.J.Hagan, K.Kumar, S.Mantha and C.A.Chang, Magn.Reson.Imaging, 1991, 9, 409.67 D.Parker, Coord.Chem.Rev., 2000, 205, 109.68 R.S.Dickins, T.Gunnlaugsson, D.Parker and R.D.Peacock, Chem.Commun., 1998, 1643.69 J.I.Bruce, R.S.Dickins, L.J.Govenlock, T.Gunnlaugsson, S.Lopinski, M.P.Lowe, D.Parker, R.D.Peacock, J.J.B.Perry, S.Aime and M.Botta, J.Am.Chem.Soc., 2000, 122, 9674.70 R.S.Dickins, S.Aime, A.S.Batsanov, A.Beeby, M.Botta, J.I.Bruce, J.A.K.Howard, C.S.Love, D.Parker, R.D.Peacock and H.Puschmann, J.Am.Chem.Soc., 2002, 124, 12697–12705.71 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.72 C.C.Bryden and C.N.Reilley, Anal.Chem., 1982, 54, 610.73 K.Binnemans, Chem.Rev., 2009, 109, 4283.74 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.This journal is ? The Royal Society of Chemistry 2014 RSC Adv., 2014, 4, 34421–34427 | 34427

第五篇:愛麗絲夢游仙境英語專業(yè)論文

Alice adventures in wonder land 主要內(nèi)容

《愛麗絲奇境歷險記》講述了小姑娘愛麗絲追趕一只揣著懷表、會說話的白兔,掉進了一個兔子洞,由此墜入了神奇的地下世界。在這個世界里,喝一口水就能縮得如同老鼠大小,吃一塊蛋糕又會變成巨人,在這個世界里,似乎所有吃的東西都有古怪。她還遇到了一大堆人和動物:渡渡鳥、蜥蜴比爾、柴郡貓、瘋帽匠、三月野兔、睡鼠、素甲魚、鷹頭獅、丑陋的公爵夫人。兔子洞里還另有乾坤,她在一扇小門后的大花園里遇到了一整副的撲克牌,牌里粗暴的紅桃王后、老好人紅桃國王和神氣活現(xiàn)的紅桃杰克(J)等等。在這個奇幻瘋狂的世界里,似乎只有愛麗絲是唯一清醒的人,她不斷探險,同時又不斷追問“我是誰”,在探險的同時不斷認(rèn)識自我,不斷成長,終于成長為一個“大”姑娘的時候,猛然驚醒,才發(fā)現(xiàn)原來這一切都是自己的一個夢境。

《愛麗絲穿鏡奇幻記》講述的是小姑娘愛麗絲剛下完一盤國際象棋,又對鏡子里反映的東西好奇不已,以致穿鏡而入,進入了鏡子中的象棋世界。在這里,整個世界就是一個大棋盤,愛麗絲本人不過是這個棋盤中的一個小卒。小姑娘從自己所處的棋格開始,一步一步向前走,每一步棋都有奇妙的遭遇:愛麗絲會腳不沾地地飛著走路,那里的花朵和昆蟲都會說話,白王后變成了綿羊女店主,她手中的編織針變成劃船的槳,等等。鏡中的故事大多取材于英國傳統(tǒng)童謠,作者通過自己的想象加以展開,并詳細(xì)敘述,童謠里的人和物活靈活現(xiàn)地呈現(xiàn)在讀者面前:為一丁點兒小事打架的對頭兄弟,行止傲慢的憨蛋和為爭奪王冠而戰(zhàn)的獅子和獨角獸。看來只有發(fā)明家兼廢品收藏家白騎士無法歸類,但他恰好是作者本人的化身。等到愛麗絲終于走到第八格,當(dāng)了王后之后,為所有這些人準(zhǔn)備了一次盛大的宴會,宴會上的烤羊腿會鞠躬,布丁會說話,盛宴最終變成了一片混亂,忍無可忍的愛麗絲緊緊捉住搖晃的紅后最后變成了一只小黑貓,愛麗絲也在搖晃中醒來,開始追問這到底是自己的夢呢,還是紅國王的夢? 作者介紹

劉易斯·卡羅爾(Lewis Carroll),原名查爾斯·路德維希·道奇遜,與安徒生、格林兄弟齊名的世界頂尖兒童文學(xué)大師。原名查爾斯·路德維希·道奇遜。1832年1月出生于英國柴郡的一個 牧師家庭,1898年卒于薩里。曾在牛津大學(xué)基督堂學(xué)院任教達30年之久,業(yè)余愛好非常廣泛,尤其喜愛兒童肖像攝影。他的第一本童書《愛麗絲奇境歷險記》于1865年出版,當(dāng)時就引起了巨大轟動,1871年又推出了續(xù)篇《愛麗絲穿鏡奇幻記》,更是好評如潮。兩部童書旋即風(fēng)靡了整個世界,成為一代又一代孩子們乃至成人最喜愛的讀物。

如果說劉易斯·卡羅爾因為這兩部童書而被稱為現(xiàn)代童話之父,絲毫沒有夸大的成分。至少他的兩部《愛麗絲》一改此前傳統(tǒng)童話(包括《安徒生童話》、《格林童話》)充斥著殺戮和說教的風(fēng)格,從而奠定了怪誕、奇幻的現(xiàn)代童話基調(diào)。僅從這點來說,就堪稱跨時代的里程碑。故事簡介

Alice, sitting with her sister, is bored.A White Rabbit scurries by, muttering to himself and pulling a watch from his waistcoat pocket.Curious, Alice follows the animal down a rabbit hole, the first of many instances in which she is propelled by her curiosity.Alice falls, landing in a pile of leaves.She finds herself in a hall and discovers a tiny key to a tiny door leading to a garden.She drinks from a bottle labeled DRINK ME, and shrinks down to ten inches tall.Too short to unlock the garden door, Alice begins to cry.She eats some cake, grows unusually tall, then fans herself and becomes exceedingly small.She finds herself swimming in a pool of her own giant tears.A group of animals gathers around her on the shore.A Mouse gives a speech and then a foot race ensues.Alice is soon left alone and begins to cry again.The White Rabbit approaches.Thinking Alice is his housemaid, he sends her on an errand to fetch some things from his house.Alice drinks from a bottle she finds inside and grows until she fills the house, spilling out windows and bumping her head against the ceiling.Frightened, the Rabbit and his friends throw pebbles at Alice.The pebbles become cakes, which Alice eats to shrink.She escapes and meets a Caterpillar sitting on a mushroom, smoking.While he questions her identity and learning, Alice experiments with eating parts of the mushroom to alter her height.After a brief conversation with a Pigeon, she visits the highly

peppered house of the ill-tempered Duchess and encounters the Cheshire Cat, traveling next to the house of the March Hare.Here the Hare, the Mad Hatter, and the Dormouse have tea.Confused, she leaves the party in disgust and finds her way to the garden she could not reach earlier.In the garden, Alice encounters a very curious croquet game and a Queen of Hearts who threatens to chop off everyone's heads.Alice talks with the moralizing Duchess until the Queen threatens to execute the woman.At the Queen's orders, a Gryphon leads Alice to the Mock Turtle.She listens to his life story and his instructions for dancing the Lobster

Quadrille.The two creatures ask Alice to recount her own adventures, which she does, until a Trial is announced in the distance.The Trial concerns some tarts stolen from the Queen.When she is called to the witness stand, Alice begins to grow again and knocks over the jury box.The King orders her to leave the court because of her height.She refuses and continues to grow as the White Rabbit introduces more evidence.The Queen threatens to chop off Alice's head.Having grown to her full size, Alice calls the Queen and her soldiers a mere deck of cards, at which point the entire pack of them rises up and flies down upon her.Alice awakes.Her sister is brushing off some leaves from Alice's face.She recounts her Adventures and runs off.Her sister watches Alice and begins to dream herself, imagining that the White Rabbit rushes by through the grass.梗概:Alice's Adventures in Wonderland(commonly shortened to Alice in Wonderland)is an 1865 novel written by English author Charles Lutwidge Dodgson under the pseudonym LewisCarroll。[1]It tells of a girl named Alice who falls down a rabbit hole into a fantasy world(Wonderland)populated by peculiar, anthropomorphic creatures.The tale plays with logic, giving the story lasting popularity with adults as well as children.[2] It is considered to be one of the best examples of the literary nonsense genre,[2][3] and its narrative course and structure have been enormously influential,[3] especially in the fantasy genre.

下載英語專業(yè)論文word格式文檔
下載英語專業(yè)論文.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    英語專業(yè)最新論文選題大全

    最新英語專業(yè)論文選題,共十個方面 第一方面 第二方面 第三方面 第四方面第五方面 第六方面第七方面 第八方面第九方面 第十方面一,英語文化選題 第一部分(1~~80) 1 從《遠離塵囂......

    英語專業(yè)推薦論文題目

    2011 淺析《荊棘鳥》中宗教桎梏下的愛情 Analysis of the Love Shackled by Religion in The Thorn Birds 英語語言在商業(yè)廣告中的應(yīng)用分析與研究 The Analysis of Advertis......

    英語專業(yè)論文題目大全范文合集

    英語專業(yè)論文題目大全 好的論文題目既是研究的方向,也是一個新的學(xué)習(xí)領(lǐng)域。你會像一葉小舟,盡情游弋在知識的海洋中。 確定選題 寫論文,首先要有選題。我們要從當(dāng)前英語教學(xué)實......

    英語專業(yè)論文選題參考

    英美文學(xué) 1.英國文學(xué)(選題范圍,含各個時期的作家) 2.美國文學(xué)(選題范圍,含各個時期的作家) 3女性研究(選題范圍) 4.電影中婦女解放思想探索 5.淺析女性雜志中的性別現(xiàn)象 6.歌詞中女......

    英語專業(yè)論文題目參考

    一、翻譯類畢業(yè)論文選題 1.Study on Translation of Trade Marks and Culture 商標(biāo)翻譯與文化研究 2.The Social and Cultural Factors in Translation Practice 影響翻譯......

    英語專業(yè)論文選題

    從中英禮貌原則的角度談?wù)摽缥幕浑H的失誤 如何處理廣告英譯中的跨文化英譯失誤 試論中西文化習(xí)慣在商務(wù)談判中的作用 淺析中美家庭教育的差異 翻譯研究參考選題 翻譯中語......

    英語專業(yè)論文題目[大全]

    英語畢業(yè)論文寫作 論文題目 語言學(xué)類: 1. 年齡和學(xué)習(xí)時間對第二語言習(xí)得的影響(The Influence of Starting Age and Length of Learning on SLA) 2. 性別與語言中的意識形態(tài)(Id......

    英語專業(yè)學(xué)年論文參考題目

    附1:英語專業(yè)學(xué)年論文參考選題 文學(xué)類 1 解讀布萊克詩篇《老虎》的象征意義 2 彌爾頓創(chuàng)作目的和結(jié)果的矛盾之我見 3 華滋華斯詩歌的自然觀 4 簡析《秋頌》的美學(xué)價值 5 由《......

主站蜘蛛池模板: 无线日本视频精品| 亚洲午夜久久久久久噜噜噜| 18禁真人抽搐一进一出动态图| 久久青青草原av免费观看| 久久无码专区国产精品s| 久久精品2021国产| 国产精品久久久久久久久久久不卡| 亚洲精品一区国产精品丝瓜| 人妻丰满熟av无码区hd| 国产女人高潮叫床免费视频| 狠狠色噜噜狠狠狠狠av| 久久这里只精品热在线18| 久久精品国产99久久久香蕉| 国产人与禽zoz0性伦| 国产真实高潮太爽了| 国产成人无遮挡免费视频| 人妻丰满熟妇av无码区app| 天天躁日日摸久久久精品| 深爱婷婷国产在线精品av| 一本色道久久综合无码人妻| 久久久亚洲裙底偷窥综合| 亚洲午夜无码久久久久小说| 欧美牲交a欧美牲交aⅴ免费真| 偷窥国产亚洲免费视频| 日本欧美久久久久免费播放网| 人妻内射一区二区在线视频| 免费无码又爽又刺激高潮的动漫| 亚洲中文精品久久久久久| 久久综合狠狠综合久久| 又大又硬又爽免费视频| 亚洲中文字幕无码av在线| 在线无码午夜福利高潮视频| 水蜜桃无码视频在线观看| 久久无码人妻丰满熟妇区毛片| 亚洲精品乱码久久久久久日本麻豆| 精品无码久久久久国产手机版| 日日摸日日添日日碰9学生露脸| 国产在线亚州精品内射| 久久综合a∨色老头免费观看| 亚洲色大成网站www永久在线观看| 亚洲精品国男人在线视频|