久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

向量法證明不等式

時間:2019-05-13 06:36:58下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《向量法證明不等式》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《向量法證明不等式》。

第一篇:向量法證明不等式

向量法證明不等式

高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、數乘運算都沒有發生改變.若在歐式空間中規定一種涵蓋平面向量和空間向量上的數量積的運算,則高中階段的向量即為n=2,3時的情況.設a,b是歐氏空間的兩向量,且a=(x1,x2,…,xn),b=(y1,y2,…,yn)(xi,yi∈R,i=1,…,n)

規定a·b=(x1,x2,…,xn)·(y1,y2,…,yn)=x1y1+x2y2+…+xnyn=xiyi.(注:a·b可記為(a,b),表示兩向量的內積),有

由上,我們就可以利用向量模的和與和向量的模的不等式及數量積的不等式建立一系列n元不等式,進而構造n維向量來證明其他不等式.一、利用向量模的和與和向量的模的不等式(即

例1設a,b,c∈R+,求證:(a+b+c)≤++≤.證明:先證左邊,設m=(a,b),n=(b,c),p=(c,a),則由

綜上,原不等式成立.點評:利用向量模的和不小于和向量的模建立不等式證明左邊,利用向量數量積建立不等式證明右邊.作單位向量j⊥AC

j(AC+CB)=jAB

jAC+jCB=jAB

jCB=jAB

|CB|cos(π/2-∠C)=|AB|cos(π/2-∠A)

即|CB|sinC=|AB|sinA

a/sinA=c/sinC

其余邊同理

在三角形ABC平面上做一單位向量i,i⊥BC,因為BA+AC+CB=0恒成立,兩邊乘以i得i*BA+i*AC=0①根據向量內積定義,i*BA=c*cos(i,AB)=c*sinB,同理i*AC=bcos(i,AC)=b(-sinC)=-bsinC代入①得csinB-bsinC=0所以b/sinB=c/sinC類似地,做另外兩邊的單位垂直向量可證a/sinA=b/sinB,所以a/sinA=b/sinB=c/sinC

步驟1

記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c

∴a+b+c=0

則i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接著得到正弦定理

其他

步驟2.在銳角△ABC中,設BC=a,AC=b,AB=c。作CH⊥AB垂足為點H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步驟3.證明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度

因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

類似可證其余兩個等式。

第二篇:用向量可以證明不等式

運用向量可以證明不等式

向量一章中有兩處涉及到不等式,其一,?a?a+???b?a?b或-???b?a?b;其二,??a?b??a?b。前者的幾何意義是三角形兩邊之和大于第三邊,兩邊之差小于第三邊,后者是數量積的性質,這兩個結論用于證明不等式,可以使證明思路清晰明快,過程簡單明了之功效。

????

一、利用a-b?a?b證明不等式

1、函數f(x)?,a?b,求證:

f(a)?f(b)?a?b

解析:f(a)?f(b)?a?b

即??a?b

??

構造兩個向量 a?(1,a),b?(1,b),?可??以理解為兩個向量的模的差a?b,那么a?b表示向量???c?(0,a?b)的模,其中a?b?(1,a)?(1,b)?(0,a?b)。????

因此,原不等式等價于證明a?b?a?b,其中a?b,向量 ??a和b不可能同向,不取等號。

????

二 利用a?b?ab證明不等式

2222例2、已知實數mnxy滿足m?n?a,x?y?b

(a?b),求mx?ny得最大值

???解析:構造向量a?(m,n),b?(x,y),則a?? ??a?b?mx?ny????,因為a?b?ab,所以mx?ny

?

?my

?nx取最大值。?例

3、已知a?b?

1,解析: 構造向

量???a?b?1m?,n??

12?2 ???n?(1,1),m?。???

。m?n?????因為m?n???

m?n

所以,??????n??n?2。

第三篇:用向量法證明

用向量法證明

步驟1

記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c

∴a+b+c=0

則i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接著得到正弦定理

其他

步驟2.在銳角△ABC中,設BC=a,AC=b,AB=c。作CH⊥AB垂足為點H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步驟3.證明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度

因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

類似可證其余兩個等式.希望對你有所幫助!

設向量AB=a,向量AC=b,向量AM=c向量BM=d,延長AM到D使AM=DM,連接BD,CD,則ABCD為平行四邊形

則向量a+b=2c(a+b)平方=4c平方a平方+2ab+b平方=4c

平方(1)

向量b-a=2d(b-a)平方=4d平方a平方-2ab+b平方=4d

平方(2)

(1)+(2)2a平方+2b平方=4d平方+4c平方

c平方=1/2(a+b)-d平方

AM^2=1/2(AB^2+AC^2)-BM^2

已知EF是梯形ABCD的中位線,且AD//BC,用向量法證明梯形的中位線定理

過A做AG‖DC交EF于p點

由三角形中位線定理有:

向量Ep=?向量BG

又∵AD‖pF‖GC且AG‖DC∴向量pF=向量AD=向量GC(平行四邊形性質)

∴向量pF=?(向量AD+向量GC)

∴向量Ep+向量pF=?(向量BG+向量AD+向量GC)

∴向量EF=?(向量AD+向量BC)

∴EF‖AD‖BC且EF=(AD+BC)

得證

先假設兩條中線AD,BE交與p點

連接Cp,取AB中點F連接pF

pA+pC=2pE=Bp

pB+pC=2pD=Ap

pA+pB=2pF

三式相加

2pA+2pB+2pC=Bp+Ap+2pF

3pA+3pB+2pC=2pF

6pF+2pC=2pF

pC=-2pF

所以pC,pF共線,pF就是中線

所以ABC的三條中線交于一點p

連接OD,OE,OF

OA+OB=2OF

OC+OB=2OD

OC+OC=2OE

三式相加

OA+OB+OC=OD+OE+OF

OD=Op+pD

OE=Op+pE

OF=Op+pF

OA+OB+OC=3Op+pD+pE+pF=3Op+1/2Ap+1/2Bp+1/2Cp

由第一問結論

2pA+2pB+2pC=Bp+Ap+Cp

2pA+2pB+2pC=0

1/2Ap+1/2Bp+1/2Cp

所以OA+OB+OC=3Op+pD+pE+pF=3Op

向量Op=1/3(向量OA+向量OB+OC向量)

第四篇:放縮法證明不等式

放縮法證明不等式

不等式是數學的基本內容之一,它是研究許多數學分支的重要工具,在數學中有重要的地位,也是高中數學的重要組成部分,在高考和競賽中都有舉足輕重的地位。不等式的證明變化大,技巧性強,它不僅能夠檢驗學生數學基礎知識的掌握程度,而且是衡量學生數學水平的一個重要標志,本文將著重介紹以下幾種不等式的初等證明方法和部分方法的例題以便理解。

一、不等式的初等證明方法

1.綜合法:由因導果。

2.分析法:執果索因。基本步驟:要證..只需證..,只需證..(1)“分析法”證題的理論依據:尋找結論成立的充分條件或者是充要條件。

(2)“分析法”證題是一個非常好的方法,但是書寫不是太方便,所以我們可利用分析法尋找證題的途徑,然后用“綜合法”進行表達。

3.反證法:正難則反。

4.放縮法:將不等式一側適當的放大或縮小以達證題目的。放縮法的方法有:

(1)添加或舍去一些項,如

(2)利用基本不等式,如:

(3)將分子或分母放大(或縮小):

5.換元法:換元的目的就是減少不等式中變量,以使問題

化難為易、化繁為簡,常用的換元有三角換元和代數換元。

二、部分方法的例題

1.換元法

換元法是數學中應用最廣泛的解題方法之一。有些不等式通過變量替換可以改變問題的結構,便于進行比較、分析,從而起到化難為易、化繁為簡、化隱蔽為外顯的積極效果。

2.放縮法

欲證A≥B,可將B適當放大,即B1≥B,只需證明A≥B1。相反,將A適當縮小,即A≥A1,只需證明A1≥B即可。

注意:用放縮法證明數列不等式,關鍵是要把握一個度,如果放得過大或縮得過小,就會導致解決失敗。放縮方法靈活多樣,要能想到一個恰到好處進行放縮的不等式,需要積累一定的不等式知識,同時要求我們具有相當的數學思維能力和一定的解題智慧。

數學題目是無限的,但數學的思想和方法卻是有限的。我們只要學好了有關的基礎知識,掌握了必要的數學思想和方法,就能順利地應對那無限的題目。題目并不是做得越多越好,題海無邊,總也做不完。關鍵是你有沒有培養起良好的數學思維習慣,有沒有掌握正確的數學解題方法。當然,題目做得多也有若干好處:一是“熟能生巧”,加快速度,節省時間,這一點在考試時間有限時顯得很重要;二是利用做題來鞏固、記憶所學的定義、定理、法則、公式,形成良性循環。

解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;有了自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學習,才有希望攻克難關,迎來屬于自己的春天。

第五篇:放縮法證明不等式

主備人:審核:包科領導:年級組長:使用時間:

放縮法證明不等式

【教學目標】

1.了解放縮法的概念;理解用放縮法證明不等式的方法和步驟。

2.能夠利用放縮法證明簡單的不等式。

【重點、難點】

重點:放縮法證明不等式。

難點:放縮法證明不等式。

【學法指導】

1.據學習目標,自學課本內容,限時獨立完成導學案;

2.紅筆勾出疑難點,提交小組討論;

3.預習p18—p19,【自主探究】

1,放縮法:證明命題時,有時可以通過縮小(或)分式的分母(或),或通過放大(或縮小)被減式(或)來證明不等式,這種證明不

等式的方法稱為放縮法。

2,放縮時常使用的方法:①舍去或加上一些項,即多項式加上一些正的值,多項式的值變大,或多項式減上一些正的值,多項式的值變小。如t2?2?t2,t2?2?t2等。

②將分子或分母放大(或縮小):分母變大,分式值減小,分母變小,分

式值增大。

如當(k?N,k?1)1111,22kkk(k?1)k(k?1),③利用平均值不等式,④利用函數單調性放縮。

【合作探究】

證明下列不等式

(1)

(2),已知a>0,用放縮法證明不等式:loga

(a?1)1111??...??2(n?N?)2222123nloga(a?1)?1

(3)已知x>0, y>0,z>0求證

?x?y?z

(4)已知n?

N?,求證:1

【鞏固提高】

已知a,b,c,d都是正數,s?

【能力提升】

求證: ?...?abcd???求證:1

1?a?b?a

1?a?b

1?b

本節小結:

下載向量法證明不等式word格式文檔
下載向量法證明不等式.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    不等式證明20法

    不等式證明方法大全1、比較法(作差法)在比較兩個實數a和b的大小時,可借助a?b的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有:配方、通分、因......

    賦值法證明不等式

    賦值法證明不等式的有關問題1、 已知函數f(x)=lnx(1)、求函數g(x)?(x?1)f(x)?2x?2(x?1)的最小值;(2)、當0......

    幾何法證明不等式

    幾何法證明不等式用解析法證明不等式:^2A)A=B,剛好構成,若A不等于B時,側中間會出現一個小正方形,所以小正方形的面積為(B-A)^2,經化簡有(B+A)^2=4AB,所以有((A+B)/2)^2=AB,又......

    放縮法證明不等式

    放縮法證明不等式 在學習不等式時,放縮法是證明不等式的重要方法之一,在證明的過程如何合理放縮,是證明的關鍵所在。現例析如下,供大家討論。 例1:設a、b、c是三角形的邊長,求證ab......

    函數法證明不等式[大全]

    函數法證明不等式已知函數f(x)=x-sinx,數列{an}滿足0證明0證明an+1g(0)=0,故不等式①成立因此an+1a>b>0,求證:p19第9題:已知三角形三邊的長是a,b,c,且m是正數,求證:p12例題2:已知......

    向量法證明正弦定理

    向量法證明正弦定理證明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度因為同弧所對的圓周角......

    巧用構造法證明不等式

    巧用構造法證明不等式構造法是指在解決數學問題的過程中,為了完成由條件向結論的轉化,通過構造輔助元素,架起一座溝通條件和結論的橋梁,從而使問題得到解決。不等式證明是高中數......

    構造法證明不等式(合集五篇)

    構造法證明不等式由于證明不等式沒有固定的模式,證法靈活多樣,技巧性強,使得不等式證明成為中學數學的難點之一.下面通過數例介紹構造法在證明不等式中的應用.一、構造一次函數......

主站蜘蛛池模板: 中文字幕人妻丝袜美腿乱| 亚洲一区av无码少妇电影| 狠狠躁天天躁中文字幕| 精品久久久久久久无码人妻热| 日韩少妇内射免费播放| 亚洲精品国产精品乱码不卡| 蜜臀av一区二区| 亚洲无线码在线一区观看| 无码日韩精品一区二区人妻| 玩弄japan白嫩少妇hd小说| 欧美老妇人与禽交| 一本色道久久88综合日韩精品| 日日摸天天摸97狠狠婷婷| 97人妻无码专区| 国产成人欧美一区二区三区| 久久无码人妻精品一区二区三区| 深爱婷婷国产在线精品av| 2021在线精品自偷自拍无码| 日本三级欧美三级人妇视频黑白配| 久久国产精品99久久久久久口爆| 亚洲人和日本人jzz视频| 中文字幕+乱码+中文字幕无忧| 永久免费的av在线电影网无码| 亚洲一本大道无码av天堂| 100禁毛片免费40分钟视频| 免费人妻无码不卡中文视频| 国产乱女婬av麻豆国产| 无码人妻巨屁股系列| 强奷乱码中文字幕熟女一| 国产久9视频这里只有精品| 人妻少妇被粗大爽9797pw| 久久久久无码精品国产h动漫| 天干夜啦天干天干国产免费| 欧美精品videosex极品| 男人边做边吃奶头视频| 国产成人无码18禁午夜福利免费| 妺妺窝人体色www在线观看| 国产精品国产三级国产av剧情| 亚洲超碰无码色中文字幕97| 国产丰满乱子伦无码专| 久久人人97超碰国产公开|