久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

高中數(shù)學(xué)幾何證明選講

時間:2019-05-13 15:09:50下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《高中數(shù)學(xué)幾何證明選講》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《高中數(shù)學(xué)幾何證明選講》。

第一篇:高中數(shù)學(xué)幾何證明選講

幾何證明選講

1、(佛山市2014屆高三教學(xué)質(zhì)量檢測

(一))如圖,從圓O 外一點A引圓的切線AD和割線ABC,已知AD?3,AC?3,圓O的半徑為5,則圓心O 到AC的距離為. 答案:

22、(廣州市2014屆高三1月調(diào)研測試)如圖4,AC為⊙O的直徑,A

B

OB?AC,弦BN交AC于點M

.若OC?OM?1,則MN的長為

答案:1ks5u3、(增城市2014屆高三上學(xué)期調(diào)研)如圖2,在△ABC中,DE//BC,DF//AC,AE=4,EC=2,BC=8,則 答案:

4、(省華附、省實、廣雅、深中四校2014屆高三上學(xué)期期末)如圖,過點C作?ABC的外接圓O的切線交BA的延長線 于點D.若

A

83DB

F

EC

2CD?,AB?AC?2,則BC?.答案:

5、(惠州市2014屆高三第三次調(diào)研考)如圖,已知圓中兩條弦AB與CD相交于點F, E是AB延長線上一點,且DF?CF?,AF:FB:BE?4:2:1,若CE與圓相切,則線段CE的長為

答案:

6、(珠海市2014屆高三上學(xué)期期末)如右圖,AB是圓O的直徑,D

F E 72 C

BC是圓O的切線,切點為B,OC平行于弦AD,若OB?3,OC?5,則CD?答案:

47、(揭陽市2014屆高三學(xué)業(yè)水平考試)如圖(3),已知AB是圓O的直徑,C是AB延長線上一點,CD切圓O于D,CD=4,AB=3BC,則圓O的半徑長是.

答案:

3AOB8、(汕頭市2014屆高三上學(xué)期期末教學(xué)質(zhì)量監(jiān)測)已知PA是圓O的切線,切點為A,PA?2.AC是圓O的直徑,PC與圓O交于點B,PB?1,則圓O的半徑R?答案:

9、(肇慶市2014屆高三上學(xué)期期末質(zhì)量評估)如圖3,在?ABC中,?ACB?90o,CE?AB于點E,以AE為直徑的圓與AC交于點D,若BE?2AE?4,CD?3,則AC?______

答案:8

310、(東莞市2014屆高三上學(xué)期期末調(diào)研測試)如圖,已知△ABC內(nèi)接于圓O,點D在OC的延長線上,AD是圓O的切線,若∠OAC=60°,AC=1,則AD的長為____

答案:

11、(汕尾市2014屆高中畢業(yè)生第二次綜合測試)已知AB為半

圓O的直徑,AB?4,C為半圓上一點,過點C作半圓的切線CD,過點A作AD?CD于D,交半圓O于點E,DE?1,則BC的長為

答案:2

第二篇:幾何證明選講專題

幾何證明選講

幾何證明選講專題

一、基礎(chǔ)知識填空:

1.平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段_________.推論1: 經(jīng)過三角形一邊的中點與另一邊平行的直線必______________.推論2: 經(jīng)過梯形一腰的中點,且與底邊平行的直線________________.2.平行線分線段成比例定理:三條平行線截兩條直線,所得的________________成比例.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段___________.3.相似三角形的性質(zhì)定理:相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于______;相似三角形周長的比、外接圓的直徑比、外接圓的周長比都等于_______________; 相似三角形面積的比、外接圓的面積比都等于____________________;

4.直角三角形的射影定理:直角三角形斜邊上的高是______________________的比例中項;兩直角邊分別是它們在斜邊上_______與_________的比例中項.5.圓周角定理:圓上一條弧所對的圓周角等于它所對的____________的一半.圓心角定理:圓心角的度數(shù)等于_______________的度數(shù).推論1:同弧或等弧所對的圓周角_________;同圓或等圓中,相等的圓周角所對的弧_______.o推論2:半圓(或直徑)所對的圓周角是____;90的圓周角所對的弦是________.弦切角定理:弦切角等于它所夾的弧所對的______________.6.圓內(nèi)接四邊形的性質(zhì)定理與判定定理:

圓的內(nèi)接四邊形的對角______;圓內(nèi)接四邊形的外角等于它的內(nèi)角的_____.如果一個四邊形的對角互補,那么這個四邊形的四個頂點______;如果四邊形的一個外角等于它的內(nèi)角的對角,那么這個四邊形的四個頂點_________.7.切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的__________.推論:經(jīng)過圓心且垂直于切線的直線必經(jīng)過_______;經(jīng)過切點且垂直于切線的直線必經(jīng)過______.切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的________.8.相交弦定理:圓內(nèi)兩條相交弦,_____________________的積相等.割線定理:從圓外一點引圓的兩條割線,_____________的兩條線段長的積相等.切割線定理:從圓外一點引圓的切線和割線,切線長是__________的比例中項.切線長定理:從圓外一點引圓的兩條切線,它們的切線長____;

圓心和這點的連線平分_____的夾角.二、經(jīng)典試題:

1.(梅州一模文)如圖所示,在四邊形ABCD中,EFFG+=. EF//BC,F(xiàn)G//AD,則D BCAD

C

2.(廣州一模文、理)在平行四邊形ABCD中,點E在邊AB上,且AE:EB=1:2,DE與AC交于

點F,若△AEF的面積為6cm2,則△ABC的面積為

B cm2.

3.(廣州一模文、理)如圖所示,圓O上

一點C在直徑AB上的射影為D,CD=4,BD=8,則圓O的半徑等于.

4.(深圳二模文)如圖所示,從圓O外一點P 作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=__ 第1頁

5.(廣東文、理)已知PA是圓O的切線,切點為A,PA=2.AC是圓O的直徑,PC與圓O交于點B,PB=1,則圓O的半徑R=_______.6.(廣東文、理)如圖所示,圓O的直徑

AB=6,C圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點 D、E,則∠DAC=,線段AE的長為

三、基礎(chǔ)訓(xùn)練: 1.(韶關(guān)一模理)

如圖所示,PC切⊙O于

點C,割線

PAB經(jīng)過圓心O,弦CD⊥AB于 點E,PC=4,PB=8,則CD=________.2.(深圳調(diào)研文)如圖所示,從圓O外一點A 引圓的切線AD和割線ABC,已知AD=

AC=6,圓O的半徑為3,則圓心O到AC的距 離為________.3.(東莞調(diào)研文、理)如圖所示,圓O上一

點C

在直徑AB上的射影為D,CD=4,則圓O的半徑等于.

4.(韶關(guān)調(diào)研理)如圖所示,圓O是

△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=AB=BC=3.則BD的長______,AC的長_______.5.(韶關(guān)二模理)如圖,⊙O′和

⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延長線于N,MN=3,NQ=15,則 PN=______.

6.(廣州二模文、理)如圖所示, 圓的內(nèi)接

△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段.N7.(湛江一模文)如圖,四邊形ABCD內(nèi)接

于⊙O,BC是直徑,MN切⊙O于A,∠MAB=25則∠D=___.8.(湛江一模理)如圖,在△ABC中,D 是AC的中點,E是BD的中點,AE交BC

BF=于F,則

FC

第2頁

9.(惠州一模理)如圖:EB、EC是⊙O的兩

條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=460,∠DCF=320,則∠A的度數(shù)是.10.(汕頭一模理)如圖,AB是圓O的直徑,直線CE和圓O相切于點C,AD⊥CE于D,若AD=1,∠ABC=300,則圓O的面積是______.11.(佛山一模理)如圖,AB、CD是圓O的兩條弦,C

且AB是線段CD的中垂線,已知AB=6,CD=25,則線段AC的長度為.

12.已知:如圖,在梯形ABCD中,AD∥BC∥EF,E是AB的中點,EF交BD于G,交AC于H.若 AD=5,BC=7,則GH=________.13.如圖,圓O上一點C在直徑AB上的射影為D.C

AD=2,AC= 25,則AB=____

14.如圖,PA是圓的切線,A為切點,PBC是圓的 割線,且PB=

B

1PABC,則的值是________.2PB

15.如圖,⊙O的割線PAB交⊙O于A、B兩點,割線

PCD經(jīng)過圓心O,PE是⊙O的切線。已知PA=6,AB=7,PO=12,則PE=____O的半徑是_______.3答 案

二、經(jīng)典試題:

1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基礎(chǔ)訓(xùn)練:

243

.5.3..3.5.4.4,522116..7.115o.8..9.99O.10.4?.25

11..12.1.13.10,4.14..15.4, 8.1.第3頁

第三篇:幾何證明選講

幾何證明選講

2007年:

15.(幾何證明選講選做題)如圖4所示,圓O的直徑AB?6,C為圓周上一點,BC?3,過C作圓的切線l,過A作l的 垂線AD,垂足為D,則?DAC?

A

2008年:

15.(幾何證明選講選做題)已知PA是圓O的切線,切點為A,PA=2.AC是圓O的直徑,PC與圓O交于B點,PB=1,則圓O的半徑R=

4l

2009年:

15.(幾何證明選講選做題)如下圖,點A、B、C是圓O上的點,且AB=4,?ACB?30,則圓O的面積等于

o

2010年:

14.(幾何證明選講選做題)如上圖3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=

a,點E,F(xiàn)分別為線段AB,AD的中點,則EF=2

2011年:

15.(幾何證明選講選做題)如圖,在梯形ABCD中,AB//CAD,B?4,C?D2,分別為E,F,上的點,且ADBC,?

3EF,EFAB

則梯形ABFE與梯形EFCD的面積比為

A

2012年:

15.(幾何證明選講選做題)如圖3,直線PB與圓O相切與點B,D是弦AC上的點,?PBA??DBA,若AD?m,AC?n,則AB

圖3

2013年:

15.(幾何證明選講選做題)如圖3,在矩形ABCD

中,AB?BC?3,BE?AC,垂足為E,則ED?

圖3

第四篇:幾何證明選講專題)

幾何證明選講專題1.了解平行線截割定理,會證直角三角形射影定理.2.會證圓周角定理、圓的切線的判定定理及性質(zhì)定理.3.會證相交弦定理、圓內(nèi)接四邊形的性質(zhì)定理與判定定理、切割線定理.一、基礎(chǔ)知識填空:

1.平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段 推論1: 經(jīng)過三角形一邊的中點與另一邊平行的直線必______________.推論2: 經(jīng)過梯形一腰的中點,且與底邊平行的直線________________.2.平行線分線段成比例定理:三條平行線截兩條直線,所得的________________成比例.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段___________.3.相似三角形的性質(zhì)定理:相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于______;相似三角形周長的比、外接圓的直徑比、外接圓的周長比都等于_________________; 相似三角形面積的比、外接圓的面積比都等于____________________;

4.直角三角形的射影定理:直角三角形斜邊上的高是______________________的比例中項;兩直角邊分別是它們在斜邊上_______與_________的比例中項.5.圓周角定理:圓上一條弧所對的圓周角等于它所對的____________的一半.圓心角定理:圓心角的度數(shù)等于_______________的度數(shù).推論1:同弧或等弧所對的圓周角_________;同圓或等圓中,相等的圓周角所對的弧_______.推論2:半圓(或直徑)所對的圓周角是____;90o的圓周角所對的弦是________.弦切角定理:弦切角等于它所夾的弧所對的______________.6.圓內(nèi)接四邊形的性質(zhì)定理與判定定理:

圓的內(nèi)接四邊形的對角______;圓內(nèi)接四邊形的外角等于它的內(nèi)角的_____.如果一個四邊形的對角互補,那么這個四邊形的四個頂點______;如果四邊形的一個外角等于它的內(nèi)角的對角,那么這個四邊形的四個頂點_________.7.切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的__________.推論:經(jīng)過圓心且垂直于切線的直線必經(jīng)過_______;經(jīng)過切點且垂直于切線的直線必經(jīng)過______.切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的________.8.相交弦定理:圓內(nèi)兩條相交弦,_____________________的積相等.割線定理:從圓外一點引圓的兩條割線,_____________的兩條線段長的積相等.切割線定理:從圓外一點引圓的切線和割線,切線長是__________的比例中項.切線長定理:從圓外一點引圓的兩條切線,它們的切線長____;圓心和這點的連線平分_____的夾角.二、經(jīng)典試題:

1.(梅州一模文)如圖所示,在四邊形ABCD中,EF//BC,F(xiàn)G//AD,則

EFBC+FG

AD

= D

2.(廣州一模文、理)在平行四邊形ABCD中,點E在邊AB上,且AE:EB=1:2,DE與AC交于

點F,若△AEF的面積為6cm2,則△ABC的面積為

2. B

第1頁

3.(廣州一模文、理)如圖所示,圓O上

一點C在直徑AB上的射影為D,CD=4,BD=8,則圓O的半徑等于.

4.(深圳二模文)如圖所示,從圓O外一點P 作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=__

5.(廣東文、理)已知PA是圓O的切線,切點為A,PA=2.AC是圓O的直徑,PC與圓O交于點B,PB=1,則圓O的半徑R=_______.6.(廣東文、理)

如圖所示,圓O的直徑

AB=6,C圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線

AD,AD分別與直線l、圓交于點 D、E,則∠DAC=,線段AE的長為

三、基礎(chǔ)訓(xùn)練:

1.(韶關(guān)一模理)如圖所示,PC切⊙O于

點C,割線PAB經(jīng)過圓心O,弦CD⊥AB于

點E,PC=4,PB=8,則CD=________.2.(深圳調(diào)研文)如圖所示,從圓O外一點A

引圓的切線AD和割線ABC,已知AD=,AC=6,圓O的半徑為3,則圓心O到AC的距 離為________.3.(東莞調(diào)研文、理)如圖所示,圓O上一

點C在直徑AB上的射影為D,CD=4,則圓O的半徑等于.

4.(韶關(guān)調(diào)研理)如圖所示,圓O是

△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=AB=BC=3.則BD的長______,AC的長_______.

5.(韶關(guān)二模理)如圖,⊙O′和

⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延長線于N,MN=3,NQ=15,則 PN=______.

6.(廣州二模文、理)如圖所示, 圓的內(nèi)接

△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段

N 7.(湛江一模文)如圖,四邊形ABCD內(nèi)接

于⊙O,BC是直徑,MN切⊙O于A,∠MAB=250,則∠D=___.8.(湛江一模理)如圖,在△ABC中,D 是AC的中點,E是BD的中點,AE交BC

D

于F,則

BFFC=.9.(惠州一模理)如圖:EB、EC是⊙O的兩 條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=460,∠DCF=320,則∠A的度數(shù)是.C

10.(汕頭一模理)如圖,AB是圓O的直徑,直線CE和圓O相切于點C,AD⊥CE于D,若AD=1,∠ABC=300,則圓O的面積是______.11.(佛山一模理)如圖,AB、CD是圓O的兩條弦,且AB是線段CD的中垂線,已知AB=6,CD=2,則線段AC的長度為. C

12.已知:如圖,在梯形ABCD中,AD∥BC∥EF,E是AB的中點,EF交BD于G,交AC于H.若

AD=5,BC=7,則GH=________.BC

13.如圖,圓O上一點C在直徑AB上的射影為D.AD=2,AC= 2,則AB=______,CD=_____.14.如圖,PA是圓的切線,A為切點,PBC是圓的第2頁

割線,且PB=12BC,則PA

PB的值是________.15.如圖,⊙O的割線PAB交⊙O于A、B兩點,割線

PCD經(jīng)過圓心O,PE是⊙O的切線。已知PA=6,AB=7,PO=12,則PE=____⊙O

3的半徑是_______.答 案

二、經(jīng)典試題:

1.1 ;2.72;3.5 ;4.30o;5.;6.30°,3.三、基礎(chǔ)訓(xùn)練:

1.245.3.5.4.4,2.5.3.6.21

5.7.115o.8.12.9.99O.10.4?.11.30.12.1.13.10,4.14.3.15.4, 8.1.如圖4所示,圓O的直徑AB=6,C為圓周上一點,BC=3過C作 圓的切線l,過A作l的垂線AD,垂足為D,則∠DAC =()A.15?B.30?C.45?D.60?

2.在Rt?ABC中,CD、CE分別是斜邊AB上的高和中線,是該圖中共有x個三角形與?ABC相似,則x?()A.0B.1C.2 D.33.一個圓的兩弦相交,一條弦被分為12cm和18cm兩段,另一弦被分為3:8,則另一弦的長為()A.11cmB.33cmC.66cmD.99cm

4.如圖,在?ABC和?DBE中,ABDB?BCBE?ACDE?53,若?ABC與

?DBE的周長之差為10cm,則?ABC的周長為()A.20cmB.254cmC.50

cm D.25cm

E 第4題圖 5.O的割線PAB交O于A,B兩點,割線PCD經(jīng)過圓心,已知

PA?6,PO?12,AB?2

2,則O的半徑為()

A.4B

.6C.612.如圖,用與底面成30?角的平面截圓柱得一橢圓截線, D.8

6.如圖,AB是半圓O的直徑,點C在半圓上,CD?AB于點D, 且AD?3DB,設(shè)?COD??,則tan2?

=()

A.13

B.1C.4?D.3

7.在?ABC中,D,E分別為AB,AC上的點,且DE//BC,?ADE的面積是2cm2,梯形

DBCE的面積為6

cm,則DE:BC的值為()

A.B.1:2C.1:3D.1:

48.半徑分別為1和2的兩圓外切,作半徑為3的圓與這兩圓均相切,一共可作()個.A.2B.3C.4D.5 9.如圖甲,四邊形ABCD是等腰梯形,AB//CD.由4個這樣的 等腰梯形可以拼出圖乙所示的平行四邊形, 則四邊形ABCD中?A度數(shù)為()

第9題圖

A.30?B.45?C.60?D.75?

10.如圖,為測量金屬材料的硬度,用一定壓力

把一個高強度鋼珠壓向該種材料的表面,在材料表面 留下一個凹坑,現(xiàn)測得凹坑直徑為10mm,若所 用鋼珠的直徑為26 mm,則凹坑深度為()

A.1mmB.2 mmC.3mmD.4 mm

第10題圖

11.如圖,設(shè)P,Q為?ABC內(nèi)的兩點,且AP?2AB?1

5AC,AQ=

23AB+1

AC,則

?ABP的面積與?ABQ的面積之比為()

1A.5B.45C.11

4D.3

第11題圖

第3頁

則該橢圓的離心率為()A.1

B

2.3C.2

D.非上述結(jié)論 第12題圖

13.一平面截球面產(chǎn)生的截面形狀是_______;它截圓柱面所產(chǎn)生的截面形狀是

________

14.如圖,在△ABC中,AB=AC,∠C=720,⊙O過A、B兩點且與BC相切于點B,與AC

O ?

D

交于點D,連結(jié)BD,若BC=5?1,則AC=B

C

第 15.如圖,14 題圖

AB為O的直徑,弦AC、BD交于點P,若AB?3,CD?1,則sin?APD=16.如圖為一物體的軸截面圖,則圖中R的值是

第15題圖

第16題圖

17.如圖:EB,EC是O的兩條切線,B,C是切點,A,D是

O上兩點,如果?E?46?,?

DCF?32?,試求?A的度數(shù).18.如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O

上一點,AE?AC,DE交AB于點F,且AB?2BP?4,求PF的長度.E

A FB O

C

D

P

第18題圖

第17題圖 19.已知:如右圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.

求證:(1)△ABC≌△DCB(2)DE·DC=AE·BD.

20.如圖,△ABC中,AB=AC,AD是中線,P為AD上一點,CF∥AB,BP延長線交AC、CF于E、F,求證: PB2=PE?PF.

E

C

第19題圖

第20題圖

21.如圖,A是以BC為直徑的O上一點,AD?BC于點D,過點B作圓O的切線,與CA的延長線相交于點E,G 是AD的中點,連結(jié)CG并延長與BE相交于 點F,延長AF與CB的延長線相交于點P.C

(1)求證:BF?EF;(2)求證:PA是O(3)若FG?BF,且O的半徑長為求BD第21題圖

第4頁

22.如圖1,點C將線段AB分成兩.

部分,如果ACAB?BC

AC,那么稱點C為線段AB的黃金分割點.某研究小組在進行課題學(xué)習(xí)時,由黃金分割點聯(lián)想到“黃金分割

線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為SS11,S2,如果S?S2

S,那么稱直線l為該圖形的黃1

金分割線.(1)研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點(如圖2),則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?

(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?

(3)研究小組在進一步探究中發(fā)現(xiàn):過點C任作一條直線交AB于點E,再過點D作直線DF∥CE,交AC于點F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請你說明理由.(4)如圖4,點E是ABCD的邊AB的黃金分割點,過點E作EF∥AD,交DC于點F,顯然直線EF是ABCD的黃金分割線.請你畫一條ABCD的黃金分割線,使它不經(jīng)過ABCD各邊黃金分割點.第22題圖

第五篇:幾何證明選講習(xí)題

幾何證明選講

已知正方形ABCD,E、F分別為BC、AB邊上的點,且BE=BF,BH⊥CF于H,連結(jié)DH.求證:DH⊥EH.已知AD⊥BC于D,AE:ED=CD:BD,DF⊥BE于F,求證:AF⊥CF.已知正方形ABCD,E為對角線AC上一點,AE=3CE,F(xiàn)為AB邊中點,求證:DE⊥EF.F

B

如圖1,在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,?BAC??AGF?90,它們的斜邊長為2,若△ABC固定不動,△AFG繞點

?

A旋轉(zhuǎn),AF,AG與邊BC的交點分別為D,E(點D不與點B重合,點E不與點C重合),設(shè)BE?m,CD?n.

(1)請在圖中找出兩對相似而不全等的三角形,并選取其中一對進行證明;(2)求m與n的函數(shù)關(guān)系式,直接寫出自變量n的取值范圍;

(3)以△ABC的斜邊BC所在直線為x軸,BC邊上的高所在的直線為y軸,建立平面直角坐標系(如圖2).在邊BC上找一點D,使BD?CE,求出D點的坐標,并通過計算

驗證BD?CE?DE.

(4)在旋轉(zhuǎn)過程中,(3)中的等量關(guān)系BD?CE?DE是否始終成立,若成立,請證明;若不成立,請說明理由.

A

C G

2F 圖

1圖2

如圖甲,在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF. 解答下列問題:

(1)如果AB=AC,∠BAC=90o.

①當(dāng)點D在線段BC上時(與點B不重合),如圖乙,線段CF、BD之間的位置關(guān)系為,數(shù)量關(guān)系為.

F

E

A

E

C

B

圖乙

FEC

B圖甲

圖丙

②當(dāng)點D在線段BC的延長線上時,如圖丙,①中的結(jié)論是否仍然成立,為什么?

(2)如果AB≠AC,∠BAC≠90o,點D在線段BC上運動.

試探究:當(dāng)△ABC滿足一個什么條件時,CF⊥BC(點C、F重合除外)?畫出相應(yīng)圖形,并說明理由.(畫圖不寫作法)

(3)若AC

=BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點P,求線段CP長的最大值.

已知:如圖①所示,在△ABC和△ADE中,AB?AC,AD?AE,?BAC??DAE,且點B,A,D在一條直線上,連接BE,CD,M,N分別為BE,CD的中點.(1)求證:①BE?CD;②△AMN是等腰三角形.

(2)在圖①的基礎(chǔ)上,將△ADE繞點A按順時針方向旋轉(zhuǎn)180,其他條件不變,得到圖②所示的圖形.請直接寫出(1)中的兩個結(jié)論是否仍然成立;

△PBD∽△AMN.(3)在(2)的條件下,請你在圖②中延長ED交線段BC于點P.求證:

C

B

D

B

E

圖② A

?

如圖,已知:Rt△ABC中,?C?90?,AC?BC?2,將一塊三角尺的直角頂點與斜邊

A 圖①

AB的中點M重合,當(dāng)三角尺繞著點M旋轉(zhuǎn)時,兩直角邊始終保持分別與邊BC,AC交于D,E兩點(D,E不與B,A重合).(1)求證:MD?ME;

(2)求四邊形MDCE的面積;

(3)若只將原題目中的“AC?BC?2”改為“BC?a,AC?b(a?b)”其它都不變,請你探究:MD和ME還相等嗎?如果相等,請證明;如果不相等,請求出MD:ME的值.B

D

M

C

E

A

下載高中數(shù)學(xué)幾何證明選講word格式文檔
下載高中數(shù)學(xué)幾何證明選講.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    幾何證明選講練習(xí)題

    選修4-1幾何證明選講綜合練習(xí)題1.如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,AE=AC ,DE交AB于點F,且AB?2BP?4,(1)求PF的長度.(2)若圓F且與圓O內(nèi)切,直線PT與圓F......

    幾何證明選講訓(xùn)練

    幾何證明選講專題1.如圖所示,在四邊形ABCD中,EF//BC,FG//AD,則EFFG??BCAD1由平行線分線段成比例可知EFAFFGFCEFFGAF?FC,所以?,????1 BCACADACBCADAC2.在平行四邊形ABCD中,點E在邊AB上,且AE:E......

    幾何證明選講測試題

    幾何證明選講測試題班級姓名一. 選擇題1.如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3過C作圓的切線l,過A作l的垂線AD,垂足為D,則∠DAC=()A.15?B.30?C.45?D.60?2.一個圓的兩弦相交......

    高中數(shù)學(xué)選修4-1 幾何證明選講知識點梳理

    《選修4-1幾何證明選講知識點梳理》1.平行線等分線段定理平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。 推理1:經(jīng)過三角......

    幾何證明選講答案(最終五篇)

    幾何選講答案1解.由弦切角定理得?DCA??B?60?,又AD?l,故?DAC?30?, 故選B.2解.2個:?ACD和?CBD,故選C.3解.設(shè)另一弦被分的兩段長分別為3k,8k(k?0),由相交弦定理得3k?8k?12?18,解得k?3,故所求弦......

    幾何證明選講知識點(五篇范文)

    幾何證明選講1.平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段相等。推論1: 經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第......

    高三數(shù)學(xué)~幾何證明選講

    德智答疑 http://dayi.dezhi.com/shuxue 高三數(shù)學(xué)~~幾何證明選講1、外接圓的切線證明?? [ 高三數(shù)學(xué)] 題型:探究題問題癥結(jié):找不到突破口,請老師幫我理一下思路考查知識點:? 圓的切......

    2012高考數(shù)學(xué)幾何證明選講

    幾何證明選講模塊點晴一、知識精要值叫做相似比(或相似系數(shù))。由于從定義出發(fā)判斷兩個三角形是否相似,需考慮6個元素,即三組對應(yīng)角是否分別相等,三組對應(yīng)邊是否分別成比例,顯然比......

主站蜘蛛池模板: 久久97超碰人人澡人人爱| 久久婷婷五月综合色欧美| 亚洲欧美日韩国产国产a| 国产强伦姧在线观看无码| 草草影院精品一区二区三区| 少妇无码太爽了不卡视频在线看| 成人免费毛片内射美女-百度| 69久久夜色精品国产69| 人人妻人人澡人人爽人人精品av| 国产真人无码作爱视频免费| 欧洲吸奶大片在线看| 性一交一乱一伦一色一情孩交| 欧美黑人巨大videos在线| 久久视频这里有精品33| 色宅男看片午夜大片啪啪| 高潮流白浆潮喷在线播放视频| 2019年最好看的中文免费视频| 人妻少妇被粗大爽9797pw| 在线亚洲精品国产一区麻豆| 亚洲经典三级| 人妻耻辱中文字幕在线bd| 亚洲の无码国产の无码步美| 人妻在线日韩免费视频| 亚洲老熟女av一区二区在线播放| 久久久久久久人妻无码中文字幕爆| 中文字幕精品无码一区二区| 久久久精品2019免费观看| 欧美日韩国产在线人成| 精品国产制服丝袜高跟| 男人边吃奶边做呻吟免费视频| 久久精品无码专区免费| 国产精品久久久久久久久软件| 亚洲国产精品无码久久电影| 成人无码a级毛片免费| 国产内射合集颜射| 少妇被粗大的猛烈进出动视频| 天天综合网天天综合色| 国产精品亚洲片在线| 日本一卡2卡3卡四卡精品网站| 日韩人妻无码一区二区三区久久| 熟妇人妻中文字幕|